// -*- mode: C++; c-file-style: "cc-mode" -*- //============================================================================= // // THIS MODULE IS PUBLICLY LICENSED // // Copyright 2001-2020 by Wilson Snyder. This program is free software; you // can redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License // Version 2.0. // SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0 // //============================================================================= /// /// \file /// \brief Verilator coverage analysis /// //============================================================================= #include "verilatedos.h" #include "verilated.h" #include "verilated_cov.h" #include "verilated_cov_key.h" #include #include #include //============================================================================= // VerilatedCovImpBase /// Implementation base class for constants struct VerilatedCovImpBase { // TYPES enum { MAX_KEYS = 33 }; /// Maximum user arguments + filename+lineno enum { KEY_UNDEF = 0 }; /// Magic key # for unspecified values }; //============================================================================= // VerilatedCovImpItem /// Implementation class for a VerilatedCov item class VerilatedCovImpItem : VerilatedCovImpBase { public: // But only local to this file // MEMBERS int m_keys[MAX_KEYS]; ///< Key int m_vals[MAX_KEYS]; ///< Value for specified key // CONSTRUCTORS // Derived classes should call zero() in their constructor VerilatedCovImpItem() { for (int i = 0; i < MAX_KEYS; ++i) { m_keys[i] = KEY_UNDEF; m_vals[i] = 0; } } virtual ~VerilatedCovImpItem() {} virtual vluint64_t count() const = 0; virtual void zero() const = 0; }; //============================================================================= /// VerilatedCoverItem templated for a specific class /// Creates a new coverage item for the specified type. /// This isn't in the header file for auto-magic conversion because it /// inlines to too much code and makes compilation too slow. template class VerilatedCoverItemSpec : public VerilatedCovImpItem { private: // MEMBERS T* m_countp; ///< Count value public: // METHODS // cppcheck-suppress truncLongCastReturn virtual vluint64_t count() const override { return *m_countp; } virtual void zero() const override { *m_countp = 0; } // CONSTRUCTORS // cppcheck-suppress noExplicitConstructor explicit VerilatedCoverItemSpec(T* countp) : m_countp(countp) { *m_countp = 0; } virtual ~VerilatedCoverItemSpec() override {} }; //============================================================================= // VerilatedCovImp /// Implementation class for VerilatedCov. See that class for public method information. /// All value and keys are indexed into a unique number. Thus we can greatly reduce /// the storage requirements for otherwise identical keys. class VerilatedCovImp : VerilatedCovImpBase { private: // TYPES typedef std::map ValueIndexMap; typedef std::map IndexValueMap; typedef std::deque ItemList; // MEMBERS VerilatedMutex m_mutex; ///< Protects all members ValueIndexMap m_valueIndexes VL_GUARDED_BY(m_mutex); ///< Unique arbitrary value for values IndexValueMap m_indexValues VL_GUARDED_BY(m_mutex); ///< Unique arbitrary value for keys ItemList m_items VL_GUARDED_BY(m_mutex); ///< List of all items VerilatedCovImpItem* m_insertp VL_GUARDED_BY(m_mutex); ///< Item about to insert const char* m_insertFilenamep VL_GUARDED_BY(m_mutex); ///< Filename about to insert int m_insertLineno VL_GUARDED_BY(m_mutex); ///< Line number about to insert // CONSTRUCTORS VerilatedCovImp() { m_insertp = nullptr; m_insertFilenamep = nullptr; m_insertLineno = 0; } VL_UNCOPYABLE(VerilatedCovImp); public: ~VerilatedCovImp() { clearGuts(); } static VerilatedCovImp& imp() VL_MT_SAFE { static VerilatedCovImp s_singleton; return s_singleton; } private: // PRIVATE METHODS int valueIndex(const std::string& value) VL_REQUIRES(m_mutex) { static int nextIndex = KEY_UNDEF + 1; ValueIndexMap::iterator iter = m_valueIndexes.find(value); if (iter != m_valueIndexes.end()) return iter->second; nextIndex++; assert(nextIndex > 0); // Didn't rollover m_valueIndexes.insert(std::make_pair(value, nextIndex)); m_indexValues.insert(std::make_pair(nextIndex, value)); return nextIndex; } static std::string dequote(const std::string& text) VL_PURE { // Quote any special characters std::string rtn; for (const char* pos = text.c_str(); *pos; ++pos) { if (!isprint(*pos) || *pos == '%' || *pos == '"') { char hex[10]; sprintf(hex, "%%%02X", pos[0]); rtn += hex; } else { rtn += *pos; } } return rtn; } static bool legalKey(const std::string& key) VL_PURE { // Because we compress long keys to a single letter, and // don't want applications to either get confused if they use // a letter differently, nor want them to rely on our compression... // (Considered using numeric keys, but will remain back compatible.) if (key.length() < 2) return false; if (key.length() == 2 && isdigit(key[1])) return false; return true; } static std::string keyValueFormatter(const std::string& key, const std::string& value) VL_PURE { std::string name; if (key.length() == 1 && isalpha(key[0])) { name += std::string("\001") + key; } else { name += std::string("\001") + dequote(key); } name += std::string("\002") + dequote(value); return name; } static std::string combineHier(const std::string& old, const std::string& add) VL_PURE { // (foo.a.x, foo.b.x) => foo.*.x // (foo.a.x, foo.b.y) => foo.* // (foo.a.x, foo.b) => foo.* if (old == add) return add; if (old.empty()) return add; if (add.empty()) return old; const char* a = old.c_str(); const char* b = add.c_str(); // Scan forward to first mismatch const char* apre = a; const char* bpre = b; while (*apre == *bpre) { apre++; bpre++; } // We used to backup and split on only .'s but it seems better to be verbose // and not assume . is the separator std::string prefix = std::string(a, apre - a); // Scan backward to last mismatch const char* apost = a + strlen(a) - 1; const char* bpost = b + strlen(b) - 1; while (*apost == *bpost && apost > apre && bpost > bpre) { apost--; bpost--; } // Forward to . so we have a whole word std::string suffix = *bpost ? std::string(bpost + 1) : ""; std::string out = prefix + "*" + suffix; // cout << "\nch pre="<zero(); } } // We assume there's always call to i/f/p in that order void inserti(VerilatedCovImpItem* itemp) VL_EXCLUDES(m_mutex) { const VerilatedLockGuard lock(m_mutex); assert(!m_insertp); m_insertp = itemp; } void insertf(const char* filenamep, int lineno) VL_EXCLUDES(m_mutex) { const VerilatedLockGuard lock(m_mutex); m_insertFilenamep = filenamep; m_insertLineno = lineno; } void insertp(const char* ckeyps[MAX_KEYS], const char* valps[MAX_KEYS]) VL_EXCLUDES(m_mutex) { const VerilatedLockGuard lock(m_mutex); assert(m_insertp); // First two key/vals are filename ckeyps[0] = "filename"; valps[0] = m_insertFilenamep; std::string linestr = vlCovCvtToStr(m_insertLineno); ckeyps[1] = "lineno"; valps[1] = linestr.c_str(); // Default page if not specified const char* fnstartp = m_insertFilenamep; while (const char* foundp = strchr(fnstartp, '/')) fnstartp = foundp + 1; const char* fnendp = fnstartp; for (; *fnendp && *fnendp != '.'; fnendp++) {} std::string page_default = "sp_user/" + std::string(fnstartp, fnendp - fnstartp); ckeyps[2] = "page"; valps[2] = page_default.c_str(); // Keys -> strings std::string keys[MAX_KEYS]; for (int i = 0; i < MAX_KEYS; ++i) { if (ckeyps[i] && ckeyps[i][0]) { keys[i] = ckeyps[i]; } } // Ignore empty keys for (int i = 0; i < MAX_KEYS; ++i) { if (!keys[i].empty()) { for (int j = i + 1; j < MAX_KEYS; ++j) { if (keys[i] == keys[j]) { // Duplicate key. Keep the last one keys[i] = ""; break; } } } } // Insert the values int addKeynum = 0; for (int i = 0; i < MAX_KEYS; ++i) { const std::string key = keys[i]; if (!keys[i].empty()) { const std::string val = valps[i]; // cout<<" "<<__FUNCTION__<<" "<m_keys[addKeynum] = valueIndex(key); m_insertp->m_vals[addKeynum] = valueIndex(val); addKeynum++; if (VL_UNCOVERABLE(!legalKey(key))) { std::string msg = ("%Error: Coverage keys of one character, or letter+digit are illegal: " + key); // LCOV_EXCL_LINE VL_FATAL_MT("", 0, "", msg.c_str()); } } } m_items.push_back(m_insertp); // Prepare for next m_insertp = nullptr; } void write(const char* filename) VL_EXCLUDES(m_mutex) { Verilated::quiesce(); const VerilatedLockGuard lock(m_mutex); #ifndef VM_COVERAGE VL_FATAL_MT("", 0, "", "%Error: Called VerilatedCov::write when VM_COVERAGE disabled\n"); #endif selftest(); std::ofstream os(filename); if (os.fail()) { std::string msg = std::string("%Error: Can't write '") + filename + "'"; VL_FATAL_MT("", 0, "", msg.c_str()); return; } os << "# SystemC::Coverage-3\n"; // Build list of events; totalize if collapsing hierarchy typedef std::map> EventMap; EventMap eventCounts; for (ItemList::iterator it = m_items.begin(); it != m_items.end(); ++it) { VerilatedCovImpItem* itemp = *(it); std::string name; std::string hier; bool per_instance = false; for (int i = 0; i < MAX_KEYS; ++i) { if (itemp->m_keys[i] != KEY_UNDEF) { std::string key = VerilatedCovKey::shortKey(m_indexValues[itemp->m_keys[i]]); std::string val = m_indexValues[itemp->m_vals[i]]; if (key == VL_CIK_PER_INSTANCE) { if (val != "0") per_instance = true; } if (key == VL_CIK_HIER) { hier = val; } else { // Print it name += keyValueFormatter(key, val); } } } if (per_instance) { // Not collapsing hierarchies name += keyValueFormatter(VL_CIK_HIER, hier); hier = ""; } // Group versus point labels don't matter here, downstream // deals with it. Seems bad for sizing though and doesn't // allow easy addition of new group codes (would be // inefficient) // Find or insert the named event EventMap::iterator cit = eventCounts.find(name); if (cit != eventCounts.end()) { const std::string& oldhier = cit->second.first; cit->second.second += itemp->count(); cit->second.first = combineHier(oldhier, hier); } else { eventCounts.insert(std::make_pair(name, make_pair(hier, itemp->count()))); } } // Output body for (EventMap::const_iterator it = eventCounts.begin(); it != eventCounts.end(); ++it) { os << "C '" << std::dec; os << it->first; if (!it->second.first.empty()) os << keyValueFormatter(VL_CIK_HIER, it->second.first); os << "' " << it->second.second; os << std::endl; } } }; //============================================================================= // VerilatedCov void VerilatedCov::clear() VL_MT_SAFE { VerilatedCovImp::imp().clear(); } void VerilatedCov::clearNonMatch(const char* matchp) VL_MT_SAFE { VerilatedCovImp::imp().clearNonMatch(matchp); } void VerilatedCov::zero() VL_MT_SAFE { VerilatedCovImp::imp().zero(); } void VerilatedCov::write(const char* filenamep) VL_MT_SAFE { VerilatedCovImp::imp().write(filenamep); } void VerilatedCov::_inserti(vluint32_t* itemp) VL_MT_SAFE { VerilatedCovImp::imp().inserti(new VerilatedCoverItemSpec(itemp)); } void VerilatedCov::_inserti(vluint64_t* itemp) VL_MT_SAFE { VerilatedCovImp::imp().inserti(new VerilatedCoverItemSpec(itemp)); } void VerilatedCov::_insertf(const char* filename, int lineno) VL_MT_SAFE { VerilatedCovImp::imp().insertf(filename, lineno); } #define K(n) const char* key##n #define A(n) const char *key##n, const char *valp##n // Argument list #define C(n) key##n, valp##n // Calling argument list #define N(n) "", "" // Null argument list void VerilatedCov::_insertp(A(0), A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8), A(9), A(10), A(11), A(12), A(13), A(14), A(15), A(16), A(17), A(18), A(19), A(20), A(21), A(22), A(23), A(24), A(25), A(26), A(27), A(28), A(29)) VL_MT_SAFE { const char* keyps[VerilatedCovImpBase::MAX_KEYS] = {nullptr, nullptr, nullptr, // filename,lineno,page key0, key1, key2, key3, key4, key5, key6, key7, key8, key9, key10, key11, key12, key13, key14, key15, key16, key17, key18, key19, key20, key21, key22, key23, key24, key25, key26, key27, key28, key29}; const char* valps[VerilatedCovImpBase::MAX_KEYS] = {nullptr, nullptr, nullptr, // filename,lineno,page valp0, valp1, valp2, valp3, valp4, valp5, valp6, valp7, valp8, valp9, valp10, valp11, valp12, valp13, valp14, valp15, valp16, valp17, valp18, valp19, valp20, valp21, valp22, valp23, valp24, valp25, valp26, valp27, valp28, valp29}; VerilatedCovImp::imp().insertp(keyps, valps); } // And versions with fewer arguments (oh for a language with named parameters!) void VerilatedCov::_insertp(A(0), A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8), A(9)) VL_MT_SAFE { _insertp(C(0), C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8), C(9), N(10), N(11), N(12), N(13), N(14), N(15), N(16), N(17), N(18), N(19), N(20), N(21), N(22), N(23), N(24), N(25), N(26), N(27), N(28), N(29)); } void VerilatedCov::_insertp(A(0), A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8), A(9), A(10), A(11), A(12), A(13), A(14), A(15), A(16), A(17), A(18), A(19)) VL_MT_SAFE { _insertp(C(0), C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8), C(9), C(10), C(11), C(12), C(13), C(14), C(15), C(16), C(17), C(18), C(19), N(20), N(21), N(22), N(23), N(24), N(25), N(26), N(27), N(28), N(29)); } // Backward compatibility for Verilator void VerilatedCov::_insertp(A(0), A(1), K(2), int val2, K(3), int val3, K(4), const std::string& val4, A(5), A(6), A(7)) VL_MT_SAFE { std::string val2str = vlCovCvtToStr(val2); std::string val3str = vlCovCvtToStr(val3); _insertp(C(0), C(1), key2, val2str.c_str(), key3, val3str.c_str(), key4, val4.c_str(), C(5), C(6), C(7), N(8), N(9), N(10), N(11), N(12), N(13), N(14), N(15), N(16), N(17), N(18), N(19), N(20), N(21), N(22), N(23), N(24), N(25), N(26), N(27), N(28), N(29)); } #undef A #undef C #undef N #undef K