// -*- mode: C++; c-file-style: "cc-mode" -*- //************************************************************************* // // Code available from: https://verilator.org // // Copyright 2009-2023 by Wilson Snyder. This program is free software; you can // redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License // Version 2.0. // SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0 // //========================================================================= /// /// \file /// \brief Verilated implementation Header, only for verilated.cpp internals. /// /// This file is not part of the Verilated public-facing API. /// It is only for internal use by the Verilated libraries. /// //========================================================================= #ifndef VERILATOR_VERILATED_IMP_H_ #define VERILATOR_VERILATED_IMP_H_ // clang-format off #if !defined(VERILATOR_VERILATED_CPP_) && !defined(VERILATOR_VERILATED_DPI_CPP_) \ && !defined(VERILATOR_VERILATED_VPI_CPP_) && !defined(VERILATOR_VERILATED_SAVE_CPP_) # error "verilated_imp.h only to be included by verilated*.cpp internals" #endif #include "verilatedos.h" #include "verilated.h" #include "verilated_syms.h" #include #include #include #include #include #include #include #include #include #include #include // clang-format on class VerilatedScope; //====================================================================== // Threaded message passing // Message, enqueued on an mtask, and consumed on the main eval thread class VerilatedMsg final { public: // TYPES struct Cmp { bool operator()(const VerilatedMsg& a, const VerilatedMsg& b) const { return a.mtaskId() < b.mtaskId(); } }; private: // MEMBERS uint32_t m_mtaskId; // MTask that did enqueue std::function m_cb; // Lambda to execute when message received public: // CONSTRUCTORS explicit VerilatedMsg(const std::function& cb) : m_mtaskId{Verilated::mtaskId()} , m_cb{cb} {} ~VerilatedMsg() = default; VerilatedMsg(const VerilatedMsg&) = default; VerilatedMsg(VerilatedMsg&&) = default; VerilatedMsg& operator=(const VerilatedMsg&) = default; VerilatedMsg& operator=(VerilatedMsg&&) = default; // METHODS uint32_t mtaskId() const { return m_mtaskId; } // Execute the lambda function void run() const { m_cb(); } }; // Each thread has a queue it pushes to // This assumes no thread starts pushing the next tick until the previous has drained. // If more aggressiveness is needed, a double-buffered scheme might work well. class VerilatedEvalMsgQueue final { using VerilatedThreadQueue = std::multiset; std::atomic m_depth; // Current depth of queue (see comments below) mutable VerilatedMutex m_mutex; // Mutex protecting queue VerilatedThreadQueue m_queue VL_GUARDED_BY(m_mutex); // Message queue public: // CONSTRUCTORS VerilatedEvalMsgQueue() : m_depth{0} { assert(atomic_is_lock_free(&m_depth)); } ~VerilatedEvalMsgQueue() = default; private: VL_UNCOPYABLE(VerilatedEvalMsgQueue); public: // METHODS // Add message to queue (called by producer) void post(const VerilatedMsg& msg) VL_MT_SAFE_EXCLUDES(m_mutex) { const VerilatedLockGuard lock{m_mutex}; m_queue.insert(msg); // Pass by value to copy the message into queue ++m_depth; } // Service queue until completion (called by consumer) void process() VL_MT_SAFE_EXCLUDES(m_mutex) { // Tracking m_depth is redundant to e.g. getting the mutex and looking at queue size, // but on the reader side it's 4x faster to test an atomic then getting a mutex while (m_depth) { // Wait for a message to be added to the queue // We don't use unique_lock as want to unlock with the message copy still in scope m_mutex.lock(); assert(!m_queue.empty()); // Otherwise m_depth is wrong // Unfortunately to release the lock we need to copy the message // (Or have the message be a pointer, but then new/delete cost on each message) // We assume messages are small, so copy const auto it = m_queue.begin(); const VerilatedMsg msg = *(it); m_queue.erase(it); m_mutex.unlock(); --m_depth; // Ok if outside critical section as only this code checks the value { VL_DEBUG_IF(VL_DBG_MSGF("Executing callback from mtaskId=%d\n", msg.mtaskId());); msg.run(); } } } }; // Each thread has a local queue to build up messages until the end of the eval() call class VerilatedThreadMsgQueue final { std::queue m_queue; public: // CONSTRUCTORS VerilatedThreadMsgQueue() = default; ~VerilatedThreadMsgQueue() = default; // The only call of destructor with a non-empty queue is a fatal error. // So this does not flush the queue, as the destination queue is not known to this class. private: VL_UNCOPYABLE(VerilatedThreadMsgQueue); // METHODS static VerilatedThreadMsgQueue& threadton() { static thread_local VerilatedThreadMsgQueue t_s; return t_s; } public: // Add message to queue, called by producer static void post(const VerilatedMsg& msg) VL_MT_SAFE { // Handle calls to threaded routines outside // of any mtask -- if an initial block calls $finish, say. if (Verilated::mtaskId() == 0) { // No queueing, just do the action immediately msg.run(); } else { Verilated::endOfEvalReqdInc(); threadton().m_queue.push(msg); // Pass by value to copy the message into queue } } // Push all messages to the eval's queue static void flush(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE { while (!threadton().m_queue.empty()) { evalMsgQp->post(threadton().m_queue.front()); threadton().m_queue.pop(); Verilated::endOfEvalReqdDec(); } } }; // FILE* list constructed from a file-descriptor class VerilatedFpList final { FILE* m_fp[31] = {}; std::size_t m_sz = 0; public: using const_iterator = FILE* const*; explicit VerilatedFpList() = default; const_iterator begin() const { return m_fp; } const_iterator end() const { return m_fp + m_sz; } std::size_t size() const { return m_sz; } static std::size_t capacity() { return 31; } void push_back(FILE* fd) { if (VL_LIKELY(size() < capacity())) m_fp[m_sz++] = fd; } }; //====================================================================== // VerilatedContextImpData // Class for hidden implementation members inside VerilatedContext // Avoids needing std::unordered_map inside verilated.h class VerilatedContextImpData final { friend class VerilatedContext; friend class VerilatedContextImp; protected: // Map of // Used by scopeInsert, scopeFind, scopeErase, scopeNameMap mutable VerilatedMutex m_nameMutex; // Protect m_nameMap VerilatedScopeNameMap m_nameMap VL_GUARDED_BY(m_nameMutex); }; //====================================================================== // VerilatedContextImp // Class to "add" implementation-only methods to VerilatedContext class VerilatedContextImp final : VerilatedContext { friend class VerilatedContext; // MEMBERS - non-static not allowed, use only VerilatedContext // Select initial value of otherwise uninitialized signals. // Internal note: Globals may multi-construct, see verilated.cpp top. // Medium speed, so uses singleton accessing struct Statics { VerilatedMutex s_randMutex; // Mutex protecting s_randSeedEpoch // Number incrementing on each reseed, 0=illegal int s_randSeedEpoch = 1; // Reads ok, wish had a VL_WRITE_GUARDED_BY(s_randMutex) }; static Statics& s() VL_MT_SAFE { static Statics s_s; return s_s; } public: // But only for verilated*.cpp // CONSTRUCTORS - no data can live here, use only VerilatedContext VerilatedContextImp() = delete; ~VerilatedContextImp() = delete; // METHODS - extending into VerilatedContext, call via impp()-> // Random seed handling uint64_t randSeedDefault64() const VL_MT_SAFE; static uint32_t randSeedEpoch() VL_MT_SAFE { return s().s_randSeedEpoch; } // METHODS - timeformat int timeFormatUnits() const VL_MT_SAFE { if (m_s.m_timeFormatUnits == VerilatedContext::Serialized::UNITS_NONE) return timeprecision(); return m_s.m_timeFormatUnits; } void timeFormatUnits(int value) VL_MT_SAFE { m_s.m_timeFormatUnits = value; } int timeFormatPrecision() const VL_MT_SAFE { return m_s.m_timeFormatPrecision; } void timeFormatPrecision(int value) VL_MT_SAFE { m_s.m_timeFormatPrecision = value; } int timeFormatWidth() const VL_MT_SAFE { return m_s.m_timeFormatWidth; } void timeFormatWidth(int value) VL_MT_SAFE { m_s.m_timeFormatWidth = value; } std::string timeFormatSuffix() const VL_MT_SAFE_EXCLUDES(m_timeDumpMutex) { const VerilatedLockGuard lock{m_timeDumpMutex}; return m_timeFormatSuffix; } void timeFormatSuffix(const std::string& value) VL_MT_SAFE_EXCLUDES(m_timeDumpMutex) { const VerilatedLockGuard lock{m_timeDumpMutex}; m_timeFormatSuffix = value; } // METHODS - arguments std::string argPlusMatch(const char* prefixp) VL_MT_SAFE_EXCLUDES(m_argMutex); std::pair argc_argv() VL_MT_SAFE_EXCLUDES(m_argMutex); // METHODS - scope name - INTERNAL only for verilated*.cpp void scopeInsert(const VerilatedScope* scopep) VL_MT_SAFE; void scopeErase(const VerilatedScope* scopep) VL_MT_SAFE; // METHODS - file IO - INTERNAL only for verilated*.cpp IData fdNewMcd(const char* filenamep) VL_MT_SAFE_EXCLUDES(m_fdMutex) { const VerilatedLockGuard lock{m_fdMutex}; if (m_fdFreeMct.empty()) return 0; const IData idx = m_fdFreeMct.back(); m_fdFreeMct.pop_back(); m_fdps[idx] = std::fopen(filenamep, "w"); if (VL_UNLIKELY(!m_fdps[idx])) return 0; return (1 << idx); } IData fdNew(const char* filenamep, const char* modep) VL_MT_SAFE_EXCLUDES(m_fdMutex) { FILE* const fp = std::fopen(filenamep, modep); if (VL_UNLIKELY(!fp)) return 0; // Bit 31 indicates it's a descriptor not a MCD const VerilatedLockGuard lock{m_fdMutex}; if (m_fdFree.empty()) { // Need to create more space in m_fdps and m_fdFree const std::size_t start = std::max(31UL + 1UL + 3UL, m_fdps.size()); const std::size_t excess = 10; m_fdps.resize(start + excess); std::fill(m_fdps.begin() + start, m_fdps.end(), static_cast(nullptr)); m_fdFree.resize(excess); for (std::size_t i = 0, id = start; i < m_fdFree.size(); ++i, ++id) { m_fdFree[i] = id; } } const IData idx = m_fdFree.back(); m_fdFree.pop_back(); m_fdps[idx] = fp; return (idx | (1UL << 31)); // bit 31 indicates not MCD } void fdFlush(IData fdi) VL_MT_SAFE_EXCLUDES(m_fdMutex) { const VerilatedLockGuard lock{m_fdMutex}; const VerilatedFpList fdlist = fdToFpList(fdi); for (const auto& i : fdlist) std::fflush(i); } IData fdSeek(IData fdi, IData offset, IData origin) VL_MT_SAFE_EXCLUDES(m_fdMutex) { const VerilatedLockGuard lock{m_fdMutex}; const VerilatedFpList fdlist = fdToFpList(fdi); if (VL_UNLIKELY(fdlist.size() != 1)) return ~0U; // -1 return static_cast( std::fseek(*fdlist.begin(), static_cast(offset), static_cast(origin))); } IData fdTell(IData fdi) VL_MT_SAFE_EXCLUDES(m_fdMutex) { const VerilatedLockGuard lock{m_fdMutex}; const VerilatedFpList fdlist = fdToFpList(fdi); if (VL_UNLIKELY(fdlist.size() != 1)) return ~0U; // -1 return static_cast(std::ftell(*fdlist.begin())); } void fdWrite(IData fdi, const std::string& output) VL_MT_SAFE_EXCLUDES(m_fdMutex) { const VerilatedLockGuard lock{m_fdMutex}; const VerilatedFpList fdlist = fdToFpList(fdi); for (const auto& i : fdlist) { if (VL_UNLIKELY(!i)) continue; (void)fwrite(output.c_str(), 1, output.size(), i); } } void fdClose(IData fdi) VL_MT_SAFE_EXCLUDES(m_fdMutex) { const VerilatedLockGuard lock{m_fdMutex}; if (VL_BITISSET_I(fdi, 31)) { // Non-MCD case const IData idx = VL_MASK_I(31) & fdi; if (VL_UNLIKELY(idx >= m_fdps.size())) return; if (VL_UNLIKELY(idx <= 2)) return; // stdout/stdin/stderr if (VL_UNLIKELY(!m_fdps[idx])) return; // Already free std::fclose(m_fdps[idx]); m_fdps[idx] = nullptr; m_fdFree.push_back(idx); } else { // MCD case // Starts at 1 to skip stdout fdi >>= 1; for (int i = 1; (fdi != 0) && (i < 31); i++, fdi >>= 1) { if (fdi & VL_MASK_I(1)) { std::fclose(m_fdps[i]); m_fdps[i] = nullptr; m_fdFreeMct.push_back(i); } } } } FILE* fdToFp(IData fdi) VL_MT_SAFE_EXCLUDES(m_fdMutex) { const VerilatedLockGuard lock{m_fdMutex}; const VerilatedFpList fdlist = fdToFpList(fdi); if (VL_UNLIKELY(fdlist.size() != 1)) return nullptr; return *fdlist.begin(); } private: VerilatedFpList fdToFpList(IData fdi) VL_REQUIRES(m_fdMutex) { VerilatedFpList fp; // cppverilator-suppress integerOverflow shiftTooManyBitsSigned if ((fdi & (1 << 31)) != 0) { // Non-MCD case const IData idx = fdi & VL_MASK_I(31); switch (idx) { case 0: fp.push_back(stdin); break; case 1: fp.push_back(stdout); break; case 2: fp.push_back(stderr); break; default: if (VL_LIKELY(idx < m_fdps.size())) fp.push_back(m_fdps[idx]); break; } } else { // MCD Case if (fdi & 1) fp.push_back(stdout); fdi >>= 1; for (size_t i = 1; (fdi != 0) && (i < fp.capacity()); ++i, fdi >>= 1) { if (fdi & VL_MASK_I(1)) fp.push_back(m_fdps[i]); } } return fp; } protected: // METHODS - protected void commandArgsGuts(int argc, const char** argv) VL_MT_SAFE_EXCLUDES(m_argMutex); void commandArgsAddGutsLock(int argc, const char** argv) VL_MT_SAFE_EXCLUDES(m_argMutex); void commandArgsAddGuts(int argc, const char** argv) VL_REQUIRES(m_argMutex); void commandArgVl(const std::string& arg); bool commandArgVlString(const std::string& arg, const std::string& prefix, std::string& valuer); bool commandArgVlUint64(const std::string& arg, const std::string& prefix, uint64_t& valuer, uint64_t min = std::numeric_limits::min(), uint64_t max = std::numeric_limits::max()); void commandArgDump() const VL_MT_SAFE_EXCLUDES(m_argMutex); }; //====================================================================== // VerilatedImp class VerilatedImpData final { // Whole class is internal use only - Global information shared between verilated*.cpp files. // All only medium-speed, so use singleton function protected: friend class Verilated; friend class VerilatedImp; // TYPES using UserMap = std::map, void*>; using ExportNameMap = std::map; // MEMBERS // Nothing below here is save-restored; users expected to re-register appropriately VerilatedMutex m_userMapMutex; // Protect m_userMap // For userInsert, userFind. As indexed by pointer is common across contexts. UserMap m_userMap VL_GUARDED_BY(m_userMapMutex); // Map of <(scope,userkey), userData> VerilatedMutex m_hierMapMutex; // Protect m_hierMap // Map that represents scope hierarchy // Used by hierarchyAdd, hierarchyRemove, hierarchyMap VerilatedHierarchyMap m_hierMap VL_GUARDED_BY(m_hierMapMutex); // Slow - somewhat static: VerilatedMutex m_exportMutex; // Protect m_nameMap // Map of // Used by exportInsert, exportFind, exportName. // Export numbers same across all contexts as just a string-to-number conversion ExportNameMap m_exportMap VL_GUARDED_BY(m_exportMutex); int m_exportNext VL_GUARDED_BY(m_exportMutex) = 0; // Next export funcnum // CONSTRUCTORS VerilatedImpData() = default; }; class VerilatedImp final { // Whole class is internal use only - Global information shared between verilated*.cpp files. protected: friend class Verilated; // MEMBERS static VerilatedImpData& s() VL_MT_SAFE { // Singleton static VerilatedImpData s_s; return s_s; } public: // But only for verilated*.cpp // CONSTRUCTORS VerilatedImp() = default; ~VerilatedImp() = default; private: VL_UNCOPYABLE(VerilatedImp); public: // METHODS - debug static void versionDump() VL_MT_SAFE; // METHODS - user scope tracking // We implement this as a single large map instead of one map per scope. // There's often many more scopes than userdata's and thus having a ~48byte // per map overhead * N scopes would take much more space and cache thrashing. // As scopep's are pointers, this implicitly handles multiple Context's static void userInsert(const void* scopep, void* userKey, void* userData) VL_MT_SAFE { const VerilatedLockGuard lock{s().m_userMapMutex}; const auto it = s().m_userMap.find(std::make_pair(scopep, userKey)); if (it != s().m_userMap.end()) { it->second = userData; } else { s().m_userMap.emplace(std::make_pair(scopep, userKey), userData); } } static void* userFind(const void* scopep, void* userKey) VL_MT_SAFE { const VerilatedLockGuard lock{s().m_userMapMutex}; const auto& it = vlstd::as_const(s().m_userMap).find(std::make_pair(scopep, userKey)); if (VL_UNLIKELY(it == s().m_userMap.end())) return nullptr; return it->second; } // METHODS - But only for verilated.cpp // Symbol table destruction cleans up the entries for each scope. static void userEraseScope(const VerilatedScope* scopep) VL_MT_SAFE { // Slow ok - called once/scope on destruction, so we only iterate. const VerilatedLockGuard lock{s().m_userMapMutex}; for (auto it = s().m_userMap.begin(); it != s().m_userMap.end();) { if (it->first.first == scopep) { s().m_userMap.erase(it++); } else { ++it; } } } static void userDump() VL_MT_SAFE { const VerilatedLockGuard lock{s().m_userMapMutex}; // Avoid it changing in middle of dump bool first = true; for (const auto& i : s().m_userMap) { if (first) { VL_PRINTF_MT(" userDump:\n"); first = false; } VL_PRINTF_MT(" DPI_USER_DATA scope %p key %p: %p\n", i.first.first, i.first.second, i.second); } } // METHODS - hierarchy - only for verilated*.cpp static void hierarchyAdd(const VerilatedScope* fromp, const VerilatedScope* top) VL_MT_SAFE { // Slow ok - called at construction for VPI accessible elements const VerilatedLockGuard lock{s().m_hierMapMutex}; s().m_hierMap[fromp].push_back(top); } static void hierarchyRemove(const VerilatedScope* fromp, const VerilatedScope* top) VL_MT_SAFE { // Slow ok - called at destruction for VPI accessible elements const VerilatedLockGuard lock{s().m_hierMapMutex}; VerilatedHierarchyMap& map = s().m_hierMap; if (map.find(fromp) == map.end()) return; auto& scopes = map[fromp]; const auto it = find(scopes.begin(), scopes.end(), top); if (it != scopes.end()) scopes.erase(it); } static const VerilatedHierarchyMap* hierarchyMap() VL_MT_SAFE_POSTINIT { // Thread save only assuming this is called only after model construction completed return &s().m_hierMap; } // METHODS - export names - only for verilated*.cpp // Each function prototype is converted to a function number which we // then use to index a 2D table also indexed by scope number, because we // can't know at Verilation time what scopes will exist in other modules // in the design that also happen to have our same callback function. // Rather than a 2D map, the integer scheme saves 500ish ns on a likely // miss at the cost of a multiply, and all lookups move to slowpath. static int exportInsert(const char* namep) VL_MT_SAFE { // Slow ok - called once/function at creation const VerilatedLockGuard lock{s().m_exportMutex}; const auto it = s().m_exportMap.find(namep); if (it == s().m_exportMap.end()) { s().m_exportMap.emplace(namep, s().m_exportNext++); return s().m_exportNext++; } else { return it->second; } } static int exportFind(const char* namep) VL_MT_SAFE { const VerilatedLockGuard lock{s().m_exportMutex}; const auto& it = s().m_exportMap.find(namep); if (VL_LIKELY(it != s().m_exportMap.end())) return it->second; const std::string msg = (std::string{"%Error: Testbench C called "} + namep + " but no such DPI export function name exists in ANY model"); VL_FATAL_MT("unknown", 0, "", msg.c_str()); return -1; } static const char* exportName(int funcnum) VL_MT_SAFE { // Slowpath; find name for given export; errors only so no map to reverse-map it const VerilatedLockGuard lock{s().m_exportMutex}; for (const auto& i : s().m_exportMap) { if (i.second == funcnum) return i.first; } return "*UNKNOWN*"; } static void exportsDump() VL_MT_SAFE { const VerilatedLockGuard lock{s().m_exportMutex}; bool first = true; for (const auto& i : s().m_exportMap) { if (first) { VL_PRINTF_MT(" exportDump:\n"); first = false; } VL_PRINTF_MT(" DPI_EXPORT_NAME %05d: %s\n", i.second, i.first); } } // We don't free up m_exportMap until the end, because we can't be sure // what other models are using the assigned funcnum's. }; //====================================================================== #endif // Guard