// -*- mode: C++; c-file-style: "cc-mode" -*- //************************************************************************* // // Copyright 2010-2020 by Wilson Snyder. This program is free software; you can // redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License. // Version 2.0. // // Verilator is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // //************************************************************************* /// /// \file /// \brief Verilator: String include for all Verilated C files /// /// This file is included automatically by Verilator at the top of /// all C++ files it generates. It is used when strings or other /// heavyweight types are required; these contents are not part of /// verilated.h to save compile time when such types aren't used. /// /// Code available from: https://verilator.org /// //************************************************************************* #ifndef _VERILATED_HEAVY_H_ #define _VERILATED_HEAVY_H_ 1 ///< Header Guard #include "verilated.h" #include #include #include //=================================================================== // String formatters (required by below containers) extern std::string VL_TO_STRING(CData obj); extern std::string VL_TO_STRING(SData obj); extern std::string VL_TO_STRING(IData obj); extern std::string VL_TO_STRING(QData obj); inline std::string VL_TO_STRING(const std::string& obj) { return "\"" + obj + "\""; } //=================================================================== // Verilog array container // Similar to std::array, but: // 1. Doesn't require C++11 // 2. Lighter weight, only methods needed by Verilator, to help compile time. // // This is only used when we need an upper-level container and so can't // simply use a C style array (which is just a pointer). template class VlWide { WData m_storage[T_Words]; public: // Default constructor/destructor/copy are fine const WData& at(size_t index) const { return m_storage[index]; } WData& at(size_t index) { return m_storage[index]; } WData* data() { return &m_storage[0]; } const WData* data() const { return &m_storage[0]; } bool operator<(const VlWide& rhs) const { return VL_LT_W(T_Words, data(), rhs.data()); } }; // Convert a C array to std::array reference by pointer magic, without copy. // Data type (second argument) is so the function template can automatically generate. template VlWide& VL_CVT_W_A(WDataInP inp, const VlWide&) { return *((VlWide*)inp); } //=================================================================== // Verilog associative array container // There are no multithreaded locks on this; the base variable must // be protected by other means // template class VlAssocArray { private: // TYPES typedef std::map Map; public: typedef typename Map::const_iterator const_iterator; private: // MEMBERS Map m_map; // State of the assoc array T_Value m_defaultValue; // Default value public: // CONSTRUCTORS VlAssocArray() { // m_defaultValue isn't defaulted. Caller's constructor must do it. } ~VlAssocArray() {} // Standard copy constructor works. Verilog: assoca = assocb // METHODS T_Value& atDefault() { return m_defaultValue; } // Size of array. Verilog: function int size(), or int num() int size() const { return m_map.size(); } // Clear array. Verilog: function void delete([input index]) void clear() { m_map.clear(); } void erase(const T_Key& index) { m_map.erase(index); } // Return 0/1 if element exists. Verilog: function int exists(input index) int exists(const T_Key& index) const { return m_map.find(index) != m_map.end(); } // Return first element. Verilog: function int first(ref index); int first(T_Key& indexr) const { typename Map::const_iterator it = m_map.begin(); if (it == m_map.end()) return 0; indexr = it->first; return 1; } // Return last element. Verilog: function int last(ref index) int last(T_Key& indexr) const { typename Map::const_reverse_iterator it = m_map.rbegin(); if (it == m_map.rend()) return 0; indexr = it->first; return 1; } // Return next element. Verilog: function int next(ref index) int next(T_Key& indexr) const { typename Map::const_iterator it = m_map.find(indexr); if (VL_UNLIKELY(it == m_map.end())) return 0; it++; if (VL_UNLIKELY(it == m_map.end())) return 0; indexr = it->first; return 1; } // Return prev element. Verilog: function int prev(ref index) int prev(T_Key& indexr) const { typename Map::const_iterator it = m_map.find(indexr); if (VL_UNLIKELY(it == m_map.end())) return 0; if (VL_UNLIKELY(it == m_map.begin())) return 0; --it; indexr = it->first; return 1; } // Setting. Verilog: assoc[index] = v // Can't just overload operator[] or provide a "at" reference to set, // because we need to be able to insert only when the value is set T_Value& at(const T_Key& index) { typename Map::iterator it = m_map.find(index); if (it == m_map.end()) { std::pair pit = m_map.insert(std::make_pair(index, m_defaultValue)); return pit.first->second; } return it->second; } // Accessing. Verilog: v = assoc[index] const T_Value& at(const T_Key& index) const { typename Map::iterator it = m_map.find(index); if (it == m_map.end()) return m_defaultValue; else return it->second; } // For save/restore const_iterator begin() const { return m_map.begin(); } const_iterator end() const { return m_map.end(); } // Dumping. Verilog: str = $sformatf("%p", assoc) std::string to_string() const { std::string out = "'{"; std::string comma; for (typename Map::const_iterator it = m_map.begin(); it != m_map.end(); ++it) { out += comma + VL_TO_STRING(it->first) + ":" + VL_TO_STRING(it->second); comma = ", "; } // Default not printed - maybe random init data return out + "} "; } }; template std::string VL_TO_STRING(const VlAssocArray& obj) { return obj.to_string(); } //=================================================================== // Verilog queue container // There are no multithreaded locks on this; the base variable must // be protected by other means // // Bound here is the maximum size() allowed, e.g. 1 + SystemVerilog bound template class VlQueue { private: // TYPES typedef std::deque Deque; public: typedef typename Deque::const_iterator const_iterator; private: // MEMBERS Deque m_deque; // State of the assoc array T_Value m_defaultValue; // Default value public: // CONSTRUCTORS VlQueue() { // m_defaultValue isn't defaulted. Caller's constructor must do it. } ~VlQueue() {} // Standard copy constructor works. Verilog: assoca = assocb // METHODS T_Value& atDefault() { return m_defaultValue; } // Size. Verilog: function int size(), or int num() int size() const { return m_deque.size(); } // Clear array. Verilog: function void delete([input index]) void clear() { m_deque.clear(); } void erase(size_t index) { if (VL_LIKELY(index < m_deque.size())) m_deque.erase(index); } // function void q.push_front(value) void push_front(const T_Value& value) { m_deque.push_front(value); if (VL_UNLIKELY(T_MaxSize != 0 && m_deque.size() > T_MaxSize)) m_deque.pop_back(); } // function void q.push_back(value) void push_back(const T_Value& value) { if (VL_LIKELY(T_MaxSize == 0 || m_deque.size() < T_MaxSize)) m_deque.push_back(value); } // function value_t q.pop_front(); T_Value pop_front() { if (m_deque.empty()) return m_defaultValue; T_Value v = m_deque.front(); m_deque.pop_front(); return v; } // function value_t q.pop_back(); T_Value pop_back() { if (m_deque.empty()) return m_defaultValue; T_Value v = m_deque.back(); m_deque.pop_back(); return v; } // Setting. Verilog: assoc[index] = v // Can't just overload operator[] or provide a "at" reference to set, // because we need to be able to insert only when the value is set T_Value& at(size_t index) { static T_Value s_throwAway; if (VL_UNLIKELY(index >= m_deque.size())) { s_throwAway = atDefault(); return s_throwAway; } else return m_deque[index]; } // Accessing. Verilog: v = assoc[index] const T_Value& at(size_t index) const { static T_Value s_throwAway; if (VL_UNLIKELY(index >= m_deque.size())) return atDefault(); else return m_deque[index]; } // function void q.insert(index, value); void insert(size_t index, const T_Value& value) { if (VL_UNLIKELY(index >= m_deque.size())) return; m_deque[index] = value; } // For save/restore const_iterator begin() const { return m_deque.begin(); } const_iterator end() const { return m_deque.end(); } // Dumping. Verilog: str = $sformatf("%p", assoc) std::string to_string() const { std::string out = "'{"; std::string comma; for (typename Deque::const_iterator it = m_deque.begin(); it != m_deque.end(); ++it) { out += comma + VL_TO_STRING(*it); comma = ", "; } return out + "} "; } }; template std::string VL_TO_STRING(const VlQueue& obj) { return obj.to_string(); } //====================================================================== // Conversion functions extern std::string VL_CVT_PACK_STR_NW(int lwords, WDataInP lwp) VL_MT_SAFE; inline std::string VL_CVT_PACK_STR_NQ(QData lhs) VL_PURE { WData lw[VL_WQ_WORDS_E]; VL_SET_WQ(lw, lhs); return VL_CVT_PACK_STR_NW(VL_WQ_WORDS_E, lw); } inline std::string VL_CVT_PACK_STR_NN(const std::string& lhs) VL_PURE { return lhs; } inline std::string VL_CVT_PACK_STR_NI(IData lhs) VL_PURE { WData lw[VL_WQ_WORDS_E]; VL_SET_WI(lw, lhs); return VL_CVT_PACK_STR_NW(1, lw); } inline std::string VL_CONCATN_NNN(const std::string& lhs, const std::string& rhs) VL_PURE { return lhs + rhs; } inline std::string VL_REPLICATEN_NNQ(int,int,int, const std::string& lhs, IData rep) VL_PURE { std::string out; out.reserve(lhs.length() * rep); for (unsigned times=0; times