// -*- mode: C++; c-file-style: "cc-mode" -*- //************************************************************************* // // Copyright 2010-2020 by Wilson Snyder. This program is free software; you can // redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License // Version 2.0. // SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0 // //************************************************************************* /// /// \file /// \brief Verilator: String include for all Verilated C files /// /// This file is included automatically by Verilator at the top of /// all C++ files it generates. It is used when strings or other /// heavyweight types are required; these contents are not part of /// verilated.h to save compile time when such types aren't used. /// /// Code available from: https://verilator.org /// //************************************************************************* #ifndef _VERILATED_HEAVY_H_ #define _VERILATED_HEAVY_H_ 1 ///< Header Guard #include "verilated.h" #include #include #include #include #include #include //=================================================================== // String formatters (required by below containers) extern std::string VL_TO_STRING(CData lhs); extern std::string VL_TO_STRING(SData lhs); extern std::string VL_TO_STRING(IData lhs); extern std::string VL_TO_STRING(QData lhs); inline std::string VL_TO_STRING(const std::string& obj) { return "\"" + obj + "\""; } extern std::string VL_TO_STRING_W(int words, WDataInP obj); //=================================================================== // Readmem/Writemem operation classes class VlReadMem { bool m_hex; // Hex format int m_bits; // Bit width of values const std::string& m_filename; // Filename QData m_end; // End address (as specified by user) FILE* m_fp; // File handle for filename QData m_addr; // Next address to read int m_linenum; // Line number last read from file public: VlReadMem(bool hex, int bits, const std::string& filename, QData start, QData end); ~VlReadMem(); bool isOpen() const { return m_fp != nullptr; } int linenum() const { return m_linenum; } bool get(QData& addrr, std::string& valuer); void setData(void* valuep, const std::string& rhs); }; class VlWriteMem { bool m_hex; // Hex format int m_bits; // Bit width of values FILE* m_fp; // File handle for filename QData m_addr; // Next address to write public: VlWriteMem(bool hex, int bits, const std::string& filename, QData start, QData end); ~VlWriteMem(); bool isOpen() const { return m_fp != nullptr; } void print(QData addr, bool addrstamp, const void* valuep); }; //=================================================================== // Verilog queue and dynamic array container // There are no multithreaded locks on this; the base variable must // be protected by other means // // Bound here is the maximum size() allowed, e.g. 1 + SystemVerilog bound // For dynamic arrays it is always zero template class VlQueue { private: // TYPES typedef std::deque Deque; public: typedef typename Deque::const_iterator const_iterator; private: // MEMBERS Deque m_deque; // State of the assoc array T_Value m_defaultValue; // Default value public: // CONSTRUCTORS VlQueue() { // m_defaultValue isn't defaulted. Caller's constructor must do it. } ~VlQueue() {} // Standard copy constructor works. Verilog: assoca = assocb // Also must allow conversion from a different T_MaxSize queue template VlQueue operator=(const VlQueue& rhs) { m_deque = rhs.privateDeque(); if (VL_UNLIKELY(T_MaxSize && T_MaxSize < m_deque.size())) m_deque.resize(T_MaxSize - 1); return *this; } static VlQueue cons(const T_Value& lhs) { VlQueue out; out.push_back(lhs); return out; } static VlQueue cons(const T_Value& lhs, const T_Value& rhs) { VlQueue out; out.push_back(rhs); out.push_back(lhs); return out; } static VlQueue cons(const VlQueue& lhs, const T_Value& rhs) { VlQueue out = lhs; out.push_front(rhs); return out; } static VlQueue cons(const T_Value& lhs, const VlQueue& rhs) { VlQueue out = rhs; out.push_back(lhs); return out; } static VlQueue cons(const VlQueue& lhs, const VlQueue& rhs) { VlQueue out = rhs; for (const auto& i : lhs.m_deque) out.push_back(i); return out; } // METHODS T_Value& atDefault() { return m_defaultValue; } const Deque& privateDeque() const { return m_deque; } // Size. Verilog: function int size(), or int num() int size() const { return m_deque.size(); } // Clear array. Verilog: function void delete([input index]) void clear() { m_deque.clear(); } void erase(vlsint32_t index) { if (VL_LIKELY(index >= 0 && index < m_deque.size())) m_deque.erase(m_deque.begin() + index); } // Dynamic array new[] becomes a renew() void renew(size_t size) { clear(); m_deque.resize(size, atDefault()); } // Dynamic array new[]() becomes a renew_copy() void renew_copy(size_t size, const VlQueue& rhs) { if (size == 0) { clear(); } else { *this = rhs; m_deque.resize(size, atDefault()); } } // function void q.push_front(value) void push_front(const T_Value& value) { m_deque.push_front(value); if (VL_UNLIKELY(T_MaxSize != 0 && m_deque.size() > T_MaxSize)) m_deque.pop_back(); } // function void q.push_back(value) void push_back(const T_Value& value) { if (VL_LIKELY(T_MaxSize == 0 || m_deque.size() < T_MaxSize)) m_deque.push_back(value); } // function value_t q.pop_front(); T_Value pop_front() { if (m_deque.empty()) return m_defaultValue; T_Value v = m_deque.front(); m_deque.pop_front(); return v; } // function value_t q.pop_back(); T_Value pop_back() { if (m_deque.empty()) return m_defaultValue; T_Value v = m_deque.back(); m_deque.pop_back(); return v; } // Setting. Verilog: assoc[index] = v // Can't just overload operator[] or provide a "at" reference to set, // because we need to be able to insert only when the value is set T_Value& at(vlsint32_t index) { static T_Value s_throwAway; // Needs to work for dynamic arrays, so does not use T_MaxSize if (VL_UNLIKELY(index < 0 || index >= m_deque.size())) { s_throwAway = atDefault(); return s_throwAway; } else { return m_deque[index]; } } // Accessing. Verilog: v = assoc[index] const T_Value& at(vlsint32_t index) const { static T_Value s_throwAway; // Needs to work for dynamic arrays, so does not use T_MaxSize if (VL_UNLIKELY(index < 0 || index >= m_deque.size())) { return atDefault(); } else { return m_deque[index]; } } // function void q.insert(index, value); void insert(vlsint32_t index, const T_Value& value) { if (VL_UNLIKELY(index < 0 || index >= m_deque.size())) return; m_deque.insert(m_deque.begin() + index, value); } // Return slice q[lsb:msb] VlQueue slice(vlsint32_t lsb, vlsint32_t msb) const { VlQueue out; if (VL_UNLIKELY(lsb < 0)) lsb = 0; if (VL_UNLIKELY(lsb >= m_deque.size())) lsb = m_deque.size() - 1; if (VL_UNLIKELY(msb >= m_deque.size())) msb = m_deque.size() - 1; for (vlsint32_t i = lsb; i <= msb; ++i) out.push_back(m_deque[i]); return out; } // For save/restore const_iterator begin() const { return m_deque.begin(); } const_iterator end() const { return m_deque.end(); } // Methods void sort() { std::sort(m_deque.begin(), m_deque.end()); } template void sort(Func with_func) { // with_func returns arbitrary type to use for the sort comparison std::sort(m_deque.begin(), m_deque.end(), [=](const T_Value& a, const T_Value& b) { return with_func(a) < with_func(b); }); } void rsort() { std::sort(m_deque.rbegin(), m_deque.rend()); } template void rsort(Func with_func) { // with_func returns arbitrary type to use for the sort comparison std::sort(m_deque.rbegin(), m_deque.rend(), [=](const T_Value& a, const T_Value& b) { return with_func(a) < with_func(b); }); } void reverse() { std::reverse(m_deque.begin(), m_deque.end()); } void shuffle() { std::random_shuffle(m_deque.begin(), m_deque.end(), [=](int) { return VL_RANDOM_I(32) % m_deque.size(); }); } VlQueue unique() const { VlQueue out; std::set saw; for (const auto& i : m_deque) { auto it = saw.find(i); if (it == saw.end()) { saw.insert(it, i); out.push_back(i); } } return out; } VlQueue unique_index() const { VlQueue out; IData index = 0; std::set saw; for (const auto& i : m_deque) { auto it = saw.find(i); if (it == saw.end()) { saw.insert(it, i); out.push_back(index); } ++index; } return out; } template VlQueue find(Func with_func) const { VlQueue out; for (const auto& i : m_deque) if (with_func(i)) out.push_back(i); return out; } template VlQueue find_index(Func with_func) const { VlQueue out; IData index = 0; for (const auto& i : m_deque) { if (with_func(i)) out.push_back(index); ++index; } return out; } template VlQueue find_first(Func with_func) const { const auto it = std::find_if(m_deque.begin(), m_deque.end(), with_func); if (it == m_deque.end()) return VlQueue{}; return VlQueue::cons(*it); } template VlQueue find_first_index(Func with_func) const { const auto it = std::find_if(m_deque.begin(), m_deque.end(), with_func); if (it == m_deque.end()) return VlQueue{}; return VlQueue::cons(std::distance(m_deque.begin(), it)); } template VlQueue find_last(Func with_func) const { const auto it = std::find_if(m_deque.rbegin(), m_deque.rend(), with_func); if (it == m_deque.rend()) return VlQueue{}; return VlQueue::cons(*it); } template VlQueue find_last_index(Func with_func) const { const auto it = std::find_if(m_deque.rbegin(), m_deque.rend(), with_func); if (it == m_deque.rend()) return VlQueue{}; // Return index must be relative to beginning return VlQueue::cons(m_deque.size() - 1 - std::distance(m_deque.rbegin(), it)); } // Reduction operators VlQueue min() const { if (m_deque.empty()) return VlQueue(); const auto it = std::min_element(m_deque.begin(), m_deque.end()); return VlQueue::cons(*it); } VlQueue max() const { if (m_deque.empty()) return VlQueue(); const auto it = std::max_element(m_deque.begin(), m_deque.end()); return VlQueue::cons(*it); } T_Value r_sum() const { T_Value out(0); // Type must have assignment operator for (const auto& i : m_deque) out += i; return out; } template T_Value r_sum(Func with_func) const { T_Value out(0); // Type must have assignment operator for (const auto& i : m_deque) out += with_func(i); return out; } T_Value r_product() const { if (m_deque.empty()) return T_Value(0); auto it = m_deque.begin(); T_Value out{*it}; ++it; for (; it != m_deque.end(); ++it) out *= *it; return out; } template T_Value r_product(Func with_func) const { if (m_deque.empty()) return T_Value(0); auto it = m_deque.begin(); T_Value out{with_func(*it)}; ++it; for (; it != m_deque.end(); ++it) out *= with_func(*it); return out; } T_Value r_and() const { if (m_deque.empty()) return T_Value(0); auto it = m_deque.begin(); T_Value out{*it}; ++it; for (; it != m_deque.end(); ++it) out &= *it; return out; } template T_Value r_and(Func with_func) const { if (m_deque.empty()) return T_Value(0); auto it = m_deque.begin(); T_Value out{with_func(*it)}; ++it; for (; it != m_deque.end(); ++it) out &= with_func(*it); return out; } T_Value r_or() const { T_Value out(0); // Type must have assignment operator for (const auto& i : m_deque) out |= i; return out; } template T_Value r_or(Func with_func) const { T_Value out(0); // Type must have assignment operator for (const auto& i : m_deque) out |= with_func(i); return out; } T_Value r_xor() const { T_Value out(0); // Type must have assignment operator for (const auto& i : m_deque) out ^= i; return out; } template T_Value r_xor(Func with_func) const { T_Value out(0); // Type must have assignment operator for (const auto& i : m_deque) out ^= with_func(i); return out; } // Dumping. Verilog: str = $sformatf("%p", assoc) std::string to_string() const { if (m_deque.empty()) return "'{}"; // No trailing space std::string out = "'{"; std::string comma; for (const auto& i : m_deque) { out += comma + VL_TO_STRING(i); comma = ", "; } return out + "} "; } }; template std::string VL_TO_STRING(const VlQueue& obj) { return obj.to_string(); } //=================================================================== // Verilog array container // Similar to std::array, but lighter weight, only methods needed // by Verilator, to help compile time. // // This is only used when we need an upper-level container and so can't // simply use a C style array (which is just a pointer). template class VlWide { WData m_storage[T_Words]; public: // cppcheck-suppress uninitVar VlWide() {} ~VlWide() {} const WData& at(size_t index) const { return m_storage[index]; } WData& at(size_t index) { return m_storage[index]; } WData* data() { return &m_storage[0]; } const WData* data() const { return &m_storage[0]; } bool operator<(const VlWide& rhs) const { return VL_LT_W(T_Words, data(), rhs.data()); } }; // Convert a C array to std::array reference by pointer magic, without copy. // Data type (second argument) is so the function template can automatically generate. template VlWide& VL_CVT_W_A(WDataInP inp, const VlWide&) { return *((VlWide*)inp); } template std::string VL_TO_STRING(const VlWide& obj) { return VL_TO_STRING_W(T_Words, obj.data()); } //=================================================================== // Verilog associative array container // There are no multithreaded locks on this; the base variable must // be protected by other means // template class VlAssocArray { private: // TYPES typedef std::map Map; public: typedef typename Map::const_iterator const_iterator; private: // MEMBERS Map m_map; // State of the assoc array T_Value m_defaultValue; // Default value public: // CONSTRUCTORS VlAssocArray() { // m_defaultValue isn't defaulted. Caller's constructor must do it. } ~VlAssocArray() {} // Standard copy constructor works. Verilog: assoca = assocb // METHODS T_Value& atDefault() { return m_defaultValue; } // Size of array. Verilog: function int size(), or int num() int size() const { return m_map.size(); } // Clear array. Verilog: function void delete([input index]) void clear() { m_map.clear(); } void erase(const T_Key& index) { m_map.erase(index); } // Return 0/1 if element exists. Verilog: function int exists(input index) int exists(const T_Key& index) const { return m_map.find(index) != m_map.end(); } // Return first element. Verilog: function int first(ref index); int first(T_Key& indexr) const { const auto it = m_map.cbegin(); if (it == m_map.end()) return 0; indexr = it->first; return 1; } // Return last element. Verilog: function int last(ref index) int last(T_Key& indexr) const { const auto it = m_map.crbegin(); if (it == m_map.rend()) return 0; indexr = it->first; return 1; } // Return next element. Verilog: function int next(ref index) int next(T_Key& indexr) const { auto it = m_map.find(indexr); if (VL_UNLIKELY(it == m_map.end())) return 0; ++it; if (VL_UNLIKELY(it == m_map.end())) return 0; indexr = it->first; return 1; } // Return prev element. Verilog: function int prev(ref index) int prev(T_Key& indexr) const { auto it = m_map.find(indexr); if (VL_UNLIKELY(it == m_map.end())) return 0; if (VL_UNLIKELY(it == m_map.begin())) return 0; --it; indexr = it->first; return 1; } // Setting. Verilog: assoc[index] = v // Can't just overload operator[] or provide a "at" reference to set, // because we need to be able to insert only when the value is set T_Value& at(const T_Key& index) { const auto it = m_map.find(index); if (it == m_map.end()) { std::pair pit = m_map.insert(std::make_pair(index, m_defaultValue)); return pit.first->second; } return it->second; } // Accessing. Verilog: v = assoc[index] const T_Value& at(const T_Key& index) const { const auto it = m_map.find(index); if (it == m_map.end()) { return m_defaultValue; } else { return it->second; } } // Setting as a chained operation VlAssocArray& set(const T_Key& index, const T_Value& value) { at(index) = value; return *this; } VlAssocArray& setDefault(const T_Value& value) { atDefault() = value; return *this; } // For save/restore const_iterator begin() const { return m_map.begin(); } const_iterator end() const { return m_map.end(); } // Methods VlQueue unique() const { VlQueue out; std::set saw; for (const auto& i : m_map) { auto it = saw.find(i.second); if (it == saw.end()) { saw.insert(it, i.second); out.push_back(i.second); } } return out; } VlQueue unique_index() const { VlQueue out; std::set saw; for (const auto& i : m_map) { auto it = saw.find(i.second); if (it == saw.end()) { saw.insert(it, i.second); out.push_back(i.first); } } return out; } template VlQueue find(Func with_func) const { VlQueue out; for (const auto& i : m_map) if (with_func(i.second)) out.push_back(i.second); return out; } template VlQueue find_index(Func with_func) const { VlQueue out; for (const auto& i : m_map) if (with_func(i.second)) out.push_back(i.first); return out; } template VlQueue find_first(Func with_func) const { const auto it = std::find_if(m_map.begin(), m_map.end(), [=](const std::pair& i) { return with_func(i.second); }); if (it == m_map.end()) return VlQueue{}; return VlQueue::cons(it->second); } template VlQueue find_first_index(Func with_func) const { const auto it = std::find_if(m_map.begin(), m_map.end(), [=](const std::pair& i) { return with_func(i.second); }); if (it == m_map.end()) return VlQueue{}; return VlQueue::cons(it->first); } template VlQueue find_last(Func with_func) const { const auto it = std::find_if(m_map.rbegin(), m_map.rend(), [=](const std::pair& i) { return with_func(i.second); }); if (it == m_map.rend()) return VlQueue{}; return VlQueue::cons(it->second); } template VlQueue find_last_index(Func with_func) const { const auto it = std::find_if(m_map.rbegin(), m_map.rend(), [=](const std::pair& i) { return with_func(i.second); }); if (it == m_map.rend()) return VlQueue{}; return VlQueue::cons(it->first); } // Reduction operators VlQueue min() const { if (m_map.empty()) return VlQueue(); const auto it = std::min_element( m_map.begin(), m_map.end(), [](const std::pair& a, const std::pair& b) { return a.second < b.second; }); return VlQueue::cons(it->second); } VlQueue max() const { if (m_map.empty()) return VlQueue(); const auto it = std::max_element( m_map.begin(), m_map.end(), [](const std::pair& a, const std::pair& b) { return a.second < b.second; }); return VlQueue::cons(it->second); } T_Value r_sum() const { T_Value out(0); // Type must have assignment operator for (const auto& i : m_map) out += i.second; return out; } template T_Value r_sum(Func with_func) const { T_Value out(0); // Type must have assignment operator for (const auto& i : m_map) out += with_func(i.second); return out; } T_Value r_product() const { if (m_map.empty()) return T_Value(0); auto it = m_map.begin(); T_Value out{it->second}; ++it; for (; it != m_map.end(); ++it) out *= it->second; return out; } template T_Value r_product(Func with_func) const { if (m_map.empty()) return T_Value(0); auto it = m_map.begin(); T_Value out{with_func(it->second)}; ++it; for (; it != m_map.end(); ++it) out *= with_func(it->second); return out; } T_Value r_and() const { if (m_map.empty()) return T_Value(0); auto it = m_map.begin(); T_Value out{it->second}; ++it; for (; it != m_map.end(); ++it) out &= it->second; return out; } template T_Value r_and(Func with_func) const { if (m_map.empty()) return T_Value(0); auto it = m_map.begin(); T_Value out{with_func(it->second)}; ++it; for (; it != m_map.end(); ++it) out &= with_func(it->second); return out; } T_Value r_or() const { T_Value out(0); // Type must have assignment operator for (const auto& i : m_map) out |= i.second; return out; } template T_Value r_or(Func with_func) const { T_Value out(0); // Type must have assignment operator for (const auto& i : m_map) out |= with_func(i.second); return out; } T_Value r_xor() const { T_Value out(0); // Type must have assignment operator for (const auto& i : m_map) out ^= i.second; return out; } template T_Value r_xor(Func with_func) const { T_Value out(0); // Type must have assignment operator for (const auto& i : m_map) out ^= with_func(i.second); return out; } // Dumping. Verilog: str = $sformatf("%p", assoc) std::string to_string() const { if (m_map.empty()) return "'{}"; // No trailing space std::string out = "'{"; std::string comma; for (const auto& i : m_map) { out += comma + VL_TO_STRING(i.first) + ":" + VL_TO_STRING(i.second); comma = ", "; } // Default not printed - maybe random init data return out + "} "; } }; template std::string VL_TO_STRING(const VlAssocArray& obj) { return obj.to_string(); } template void VL_READMEM_N(bool hex, int bits, const std::string& filename, VlAssocArray& obj, QData start, QData end) VL_MT_SAFE { VlReadMem rmem(hex, bits, filename, start, end); if (VL_UNLIKELY(!rmem.isOpen())) return; while (true) { QData addr; std::string data; if (rmem.get(addr /*ref*/, data /*ref*/)) { rmem.setData(&(obj.at(addr)), data); } else { break; } } } template void VL_WRITEMEM_N(bool hex, int bits, const std::string& filename, const VlAssocArray& obj, QData start, QData end) VL_MT_SAFE { VlWriteMem wmem(hex, bits, filename, start, end); if (VL_UNLIKELY(!wmem.isOpen())) return; for (const auto& i : obj) { QData addr = i.first; if (addr >= start && addr <= end) wmem.print(addr, true, &(i.second)); } } //=================================================================== // Verilog class reference container // There are no multithreaded locks on this; the base variable must // be protected by other means // #define VlClassRef std::shared_ptr template // T typically of type VlClassRef inline T VL_NULL_CHECK(T t, const char* filename, int linenum) { if (VL_UNLIKELY(!t)) Verilated::nullPointerError(filename, linenum); return t; } //====================================================================== // Conversion functions extern std::string VL_CVT_PACK_STR_NW(int lwords, WDataInP lwp) VL_MT_SAFE; inline std::string VL_CVT_PACK_STR_NQ(QData lhs) VL_PURE { WData lw[VL_WQ_WORDS_E]; VL_SET_WQ(lw, lhs); return VL_CVT_PACK_STR_NW(VL_WQ_WORDS_E, lw); } inline std::string VL_CVT_PACK_STR_NN(const std::string& lhs) VL_PURE { return lhs; } inline std::string VL_CVT_PACK_STR_NI(IData lhs) VL_PURE { WData lw[VL_WQ_WORDS_E]; VL_SET_WI(lw, lhs); return VL_CVT_PACK_STR_NW(1, lw); } inline std::string VL_CONCATN_NNN(const std::string& lhs, const std::string& rhs) VL_PURE { return lhs + rhs; } inline std::string VL_REPLICATEN_NNQ(int, int, int, const std::string& lhs, IData rep) VL_PURE { std::string out; out.reserve(lhs.length() * rep); for (unsigned times = 0; times < rep; ++times) out += lhs; return out; } inline std::string VL_REPLICATEN_NNI(int obits, int lbits, int rbits, const std::string& lhs, IData rep) VL_PURE { return VL_REPLICATEN_NNQ(obits, lbits, rbits, lhs, rep); } inline IData VL_LEN_IN(const std::string& ld) { return ld.length(); } extern std::string VL_TOLOWER_NN(const std::string& ld); extern std::string VL_TOUPPER_NN(const std::string& ld); extern IData VL_FERROR_IN(IData fpi, std::string& outputr) VL_MT_SAFE; extern IData VL_FOPEN_NN(const std::string& filename, const std::string& mode) VL_MT_SAFE; extern IData VL_FOPEN_MCD_N(const std::string& filename) VL_MT_SAFE; extern void VL_READMEM_N(bool hex, int bits, QData depth, int array_lsb, const std::string& filename, void* memp, QData start, QData end) VL_MT_SAFE; extern void VL_WRITEMEM_N(bool hex, int bits, QData depth, int array_lsb, const std::string& filename, const void* memp, QData start, QData end) VL_MT_SAFE; extern IData VL_SSCANF_INX(int lbits, const std::string& ld, const char* formatp, ...) VL_MT_SAFE; extern void VL_SFORMAT_X(int obits_ignored, std::string& output, const char* formatp, ...) VL_MT_SAFE; extern std::string VL_SFORMATF_NX(const char* formatp, ...) VL_MT_SAFE; extern void VL_TIMEFORMAT_IINI(int units, int precision, const std::string& suffix, int width) VL_MT_SAFE; extern IData VL_VALUEPLUSARGS_INW(int rbits, const std::string& ld, WDataOutP rwp) VL_MT_SAFE; inline IData VL_VALUEPLUSARGS_INI(int rbits, const std::string& ld, CData& rdr) VL_MT_SAFE { WData rwp[2]; // WData must always be at least 2 IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp); if (got) rdr = rwp[0]; return got; } inline IData VL_VALUEPLUSARGS_INI(int rbits, const std::string& ld, SData& rdr) VL_MT_SAFE { WData rwp[2]; // WData must always be at least 2 IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp); if (got) rdr = rwp[0]; return got; } inline IData VL_VALUEPLUSARGS_INI(int rbits, const std::string& ld, IData& rdr) VL_MT_SAFE { WData rwp[2]; IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp); if (got) rdr = rwp[0]; return got; } inline IData VL_VALUEPLUSARGS_INQ(int rbits, const std::string& ld, QData& rdr) VL_MT_SAFE { WData rwp[2]; IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp); if (got) rdr = VL_SET_QW(rwp); return got; } inline IData VL_VALUEPLUSARGS_INQ(int rbits, const std::string& ld, double& rdr) VL_MT_SAFE { WData rwp[2]; IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp); if (got) rdr = VL_CVT_D_Q(VL_SET_QW(rwp)); return got; } extern IData VL_VALUEPLUSARGS_INN(int, const std::string& ld, std::string& rdr) VL_MT_SAFE; //====================================================================== // Strings extern std::string VL_PUTC_N(const std::string& lhs, IData rhs, CData ths) VL_PURE; extern CData VL_GETC_N(const std::string& lhs, IData rhs) VL_PURE; extern std::string VL_SUBSTR_N(const std::string& lhs, IData rhs, IData ths) VL_PURE; inline IData VL_CMP_NN(const std::string& lhs, const std::string& rhs, bool ignoreCase) VL_PURE { // SystemVerilog does not allow a string variable to contain '\0'. // So C functions such as strcmp() can correctly compare strings. int result; if (ignoreCase) { result = VL_STRCASECMP(lhs.c_str(), rhs.c_str()); } else { result = std::strcmp(lhs.c_str(), rhs.c_str()); } return result; } extern IData VL_ATOI_N(const std::string& str, int base) VL_PURE; extern IData VL_FGETS_NI(std::string& destp, IData fpi); //====================================================================== // Dumping extern const char* vl_dumpctl_filenamep(bool setit = false, const std::string& filename = "") VL_MT_SAFE; #endif // Guard