// -*- mode: C++; c-file-style: "cc-mode" -*- //************************************************************************* // // Copyright 2009-2019 by Wilson Snyder. This program is free software; you can // redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License. // Version 2.0. // // Verilator is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // //========================================================================= /// /// \file /// \brief Verilator: VPI implementation code /// /// This file must be compiled and linked against all objects /// created from Verilator or called by Verilator that use the VPI. /// /// Use "verilator --vpi" to add this to the Makefile for the linker. /// /// Code available from: http://www.veripool.org/verilator /// //========================================================================= #if VM_SC # include "verilated_sc.h" #endif #include "verilated.h" #include "verilated_vpi.h" #include #include #include //====================================================================== // Internal constants #define VL_DEBUG_IF_PLI VL_DEBUG_IF #define VL_VPI_LINE_SIZE 8192 //====================================================================== // Internal macros #define _VL_VPI_INTERNAL VerilatedVpiImp::error_info()->setMessage(vpiInternal)->setMessage #define _VL_VPI_SYSTEM VerilatedVpiImp::error_info()->setMessage(vpiSystem )->setMessage #define _VL_VPI_ERROR VerilatedVpiImp::error_info()->setMessage(vpiError )->setMessage #define _VL_VPI_WARNING VerilatedVpiImp::error_info()->setMessage(vpiWarning )->setMessage #define _VL_VPI_NOTICE VerilatedVpiImp::error_info()->setMessage(vpiNotice )->setMessage #define _VL_VPI_ERROR_RESET VerilatedVpiImp::error_info()->resetError // Not supported yet #define _VL_VPI_UNIMP() \ _VL_VPI_ERROR(__FILE__, __LINE__, Verilated::catName("Unsupported VPI function: ", VL_FUNC)); //====================================================================== // Implementation // Base VPI handled object class VerilatedVpio { // MEM MANGLEMENT static VL_THREAD_LOCAL vluint8_t* t_freeHead; public: // CONSTRUCTORS VerilatedVpio() {} virtual ~VerilatedVpio() {} inline static void* operator new(size_t size) VL_MT_SAFE { // We new and delete tons of vpi structures, so keep them around // To simplify our free list, we use a size large enough for all derived types // We reserve word zero for the next pointer, as that's safer in case a // dangling reference to the original remains around. static const size_t chunk = 96; if (VL_UNCOVERABLE(size>chunk)) VL_FATAL_MT(__FILE__, __LINE__, "", "increase chunk"); if (VL_LIKELY(t_freeHead)) { vluint8_t* newp = t_freeHead; t_freeHead = *((vluint8_t**)newp); return newp+8; } // +8: 8 bytes for next vluint8_t* newp = reinterpret_cast(::operator new(chunk+8)); return newp+8; } inline static void operator delete(void* obj, size_t size) VL_MT_SAFE { vluint8_t* oldp = ((vluint8_t*)obj)-8; *((void**)oldp) = t_freeHead; t_freeHead = oldp; } // MEMBERS static inline VerilatedVpio* castp(vpiHandle h) { return dynamic_cast((VerilatedVpio*)h); } inline vpiHandle castVpiHandle() { return reinterpret_cast(this); } // ACCESSORS virtual const char* name() const { return ""; } virtual const char* fullname() const { return ""; } virtual const char* defname() const { return ""; } virtual vluint32_t type() const { return 0; } virtual vluint32_t size() const { return 0; } virtual const VerilatedRange* rangep() const { return NULL; } virtual vpiHandle dovpi_scan() { return 0; } }; typedef PLI_INT32 (*VerilatedPliCb)(struct t_cb_data *); class VerilatedVpioCb : public VerilatedVpio { t_cb_data m_cbData; s_vpi_value m_value; QData m_time; public: // cppcheck-suppress uninitVar // m_value VerilatedVpioCb(const t_cb_data* cbDatap, QData time) : m_cbData(*cbDatap), m_time(time) { m_value.format = cbDatap->value ? cbDatap->value->format : vpiSuppressVal; m_cbData.value = &m_value; } virtual ~VerilatedVpioCb() {} static inline VerilatedVpioCb* castp(vpiHandle h) { return dynamic_cast((VerilatedVpio*)h); } virtual vluint32_t type() const { return vpiCallback; } vluint32_t reason() const { return m_cbData.reason; } VerilatedPliCb cb_rtnp() const { return m_cbData.cb_rtn; } t_cb_data* cb_datap() { return &(m_cbData); } QData time() const { return m_time; } }; class VerilatedVpioConst : public VerilatedVpio { vlsint32_t m_num; public: explicit VerilatedVpioConst(vlsint32_t num) : m_num(num) {} virtual ~VerilatedVpioConst() {} static inline VerilatedVpioConst* castp(vpiHandle h) { return dynamic_cast((VerilatedVpio*)h); } virtual vluint32_t type() const { return vpiUndefined; } vlsint32_t num() const { return m_num; } }; class VerilatedVpioRange : public VerilatedVpio { const VerilatedRange* m_range; vlsint32_t m_iteration; public: explicit VerilatedVpioRange(const VerilatedRange* range) : m_range(range), m_iteration(0) {} virtual ~VerilatedVpioRange() {} static inline VerilatedVpioRange* castp(vpiHandle h) { return dynamic_cast((VerilatedVpio*)h); } virtual vluint32_t type() const { return vpiRange; } virtual vluint32_t size() const { return m_range->elements(); } virtual const VerilatedRange* rangep() const { return m_range; } int iteration() const { return m_iteration; } void iterationInc() { ++m_iteration; } virtual vpiHandle dovpi_scan() { if (!iteration()) { VerilatedVpioRange* nextp = new VerilatedVpioRange(*this); nextp->iterationInc(); return ((nextp)->castVpiHandle()); } return 0; // End of list - only one deep } }; class VerilatedVpioScope : public VerilatedVpio { const VerilatedScope* m_scopep; public: explicit VerilatedVpioScope(const VerilatedScope* scopep) : m_scopep(scopep) {} virtual ~VerilatedVpioScope() {} static inline VerilatedVpioScope* castp(vpiHandle h) { return dynamic_cast((VerilatedVpio*)h); } virtual vluint32_t type() const { return vpiScope; } const VerilatedScope* scopep() const { return m_scopep; } virtual const char* name() const { return m_scopep->name(); } virtual const char* fullname() const { return m_scopep->name(); } }; class VerilatedVpioVar : public VerilatedVpio { const VerilatedVar* m_varp; const VerilatedScope* m_scopep; vluint8_t* m_prevDatap; // Previous value of data, for cbValueChange union { vluint8_t u8[4]; vluint32_t u32; } m_mask; // memoized variable mask vluint32_t m_entSize; // memoized variable size protected: void* m_varDatap; // varp()->datap() adjusted for array entries vlsint32_t m_index; const VerilatedRange& get_range() const { // Determine number of dimensions and return outermost return (m_varp->dims()>1) ? m_varp->unpacked() : m_varp->packed(); } public: VerilatedVpioVar(const VerilatedVar* varp, const VerilatedScope* scopep) : m_varp(varp), m_scopep(scopep), m_index(0) { m_prevDatap = NULL; m_mask.u32 = VL_MASK_I(varp->packed().elements()); m_entSize = varp->entSize(); m_varDatap = varp->datap(); } virtual ~VerilatedVpioVar() { if (m_prevDatap) { delete [] m_prevDatap; m_prevDatap = NULL; } } static inline VerilatedVpioVar* castp(vpiHandle h) { return dynamic_cast((VerilatedVpio*)h); } const VerilatedVar* varp() const { return m_varp; } const VerilatedScope* scopep() const { return m_scopep; } vluint32_t mask() const { return m_mask.u32; } vluint8_t mask_byte(int idx) { return m_mask.u8[idx & 3]; } vluint32_t entSize() const { return m_entSize; } vluint32_t index() { return m_index; } virtual vluint32_t type() const { return (varp()->dims()>1) ? vpiMemory : vpiReg; // but might be wire, logic } virtual vluint32_t size() const { return get_range().elements(); } virtual const VerilatedRange* rangep() const { return &get_range(); } virtual const char* name() const { return m_varp->name(); } virtual const char* fullname() const { static VL_THREAD_LOCAL std::string out; out = std::string(m_scopep->name())+"."+name(); return out.c_str(); } void* prevDatap() const { return m_prevDatap; } void* varDatap() const { return m_varDatap; } void createPrevDatap() { if (VL_UNLIKELY(!m_prevDatap)) { m_prevDatap = new vluint8_t [entSize()]; memcpy(prevDatap(), varp()->datap(), entSize()); } } }; class VerilatedVpioMemoryWord : public VerilatedVpioVar { public: VerilatedVpioMemoryWord(const VerilatedVar* varp, const VerilatedScope* scopep, vlsint32_t index, int offset) : VerilatedVpioVar(varp, scopep) { m_index = index; m_varDatap = ((vluint8_t*)varp->datap()) + entSize()*offset; } virtual ~VerilatedVpioMemoryWord() {} static inline VerilatedVpioMemoryWord* castp(vpiHandle h) { return dynamic_cast((VerilatedVpio*)h); } virtual vluint32_t type() const { return vpiMemoryWord; } virtual vluint32_t size() const { return varp()->packed().elements(); } virtual const VerilatedRange* rangep() const { return &(varp()->packed()); } virtual const char* fullname() const { static VL_THREAD_LOCAL std::string out; char num[20]; sprintf(num, "%d", m_index); out = std::string(scopep()->name())+"."+name()+"["+num+"]"; return out.c_str(); } }; class VerilatedVpioVarIter : public VerilatedVpio { const VerilatedScope* m_scopep; VerilatedVarNameMap::const_iterator m_it; bool m_started; public: explicit VerilatedVpioVarIter(const VerilatedScope* scopep) : m_scopep(scopep), m_started(false) { } virtual ~VerilatedVpioVarIter() {} static inline VerilatedVpioVarIter* castp(vpiHandle h) { return dynamic_cast((VerilatedVpio*)h); } virtual vluint32_t type() const { return vpiIterator; } virtual vpiHandle dovpi_scan() { if (VL_LIKELY(m_scopep->varsp())) { VerilatedVarNameMap* varsp = m_scopep->varsp(); if (VL_UNLIKELY(!m_started)) { m_it = varsp->begin(); m_started=true; } else if (VL_UNLIKELY(m_it == varsp->end())) return 0; else ++m_it; if (m_it == varsp->end()) return 0; return ((new VerilatedVpioVar(&(m_it->second), m_scopep)) ->castVpiHandle()); } return 0; // End of list - only one deep } }; class VerilatedVpioMemoryWordIter : public VerilatedVpio { const vpiHandle m_handle; const VerilatedVar* m_varp; vlsint32_t m_iteration; vlsint32_t m_direction; bool m_done; public: VerilatedVpioMemoryWordIter(const vpiHandle handle, const VerilatedVar* varp) : m_handle(handle), m_varp(varp), m_iteration(varp->unpacked().right()), m_direction(VL_LIKELY(varp->unpacked().left() > varp->unpacked().right()) ? 1 : -1), m_done(false) { } virtual ~VerilatedVpioMemoryWordIter() {} static inline VerilatedVpioMemoryWordIter* castp(vpiHandle h) { return dynamic_cast((VerilatedVpio*)h); } virtual vluint32_t type() const { return vpiIterator; } void iterationInc() { if (!(m_done = (m_iteration == m_varp->unpacked().left()))) { m_iteration += m_direction; } } virtual vpiHandle dovpi_scan() { vpiHandle result; if (m_done) return 0; result = vpi_handle_by_index(m_handle, m_iteration); iterationInc(); return result; } }; //====================================================================== struct VerilatedVpiTimedCbsCmp { /// Ordering sets keyed by time, then callback descriptor bool operator()(const std::pair& a, const std::pair& b) const { if (a.first < b.first) return 1; if (a.first > b.first) return 0; return a.second < b.second; } }; class VerilatedVpiError; class VerilatedVpiImp { enum { CB_ENUM_MAX_VALUE = cbAtEndOfSimTime+1 }; // Maxium callback reason typedef std::list VpioCbList; typedef std::set,VerilatedVpiTimedCbsCmp > VpioTimedCbs; struct product_info { PLI_BYTE8* product; }; VpioCbList m_cbObjLists[CB_ENUM_MAX_VALUE]; // Callbacks for each supported reason VpioTimedCbs m_timedCbs; // Time based callbacks VerilatedVpiError* m_errorInfop; // Container for vpi error info VerilatedAssertOneThread m_assertOne; ///< Assert only called from single thread static VerilatedVpiImp s_s; // Singleton public: VerilatedVpiImp() { m_errorInfop=NULL; } ~VerilatedVpiImp() {} static void assertOneCheck() { s_s.m_assertOne.check(); } static void cbReasonAdd(VerilatedVpioCb* vop) { if (vop->reason() == cbValueChange) { if (VerilatedVpioVar* varop = VerilatedVpioVar::castp(vop->cb_datap()->obj)) { varop->createPrevDatap(); } } if (VL_UNCOVERABLE(vop->reason() >= CB_ENUM_MAX_VALUE)) { VL_FATAL_MT(__FILE__, __LINE__, "", "vpi bb reason too large"); } s_s.m_cbObjLists[vop->reason()].push_back(vop); } static void cbTimedAdd(VerilatedVpioCb* vop) { s_s.m_timedCbs.insert(std::make_pair(vop->time(), vop)); } static void cbReasonRemove(VerilatedVpioCb* cbp) { VpioCbList& cbObjList = s_s.m_cbObjLists[cbp->reason()]; // We do not remove it now as we may be iterating the list, // instead set to NULL and will cleanup later for (VpioCbList::iterator it=cbObjList.begin(); it!=cbObjList.end(); ++it) { if (*it == cbp) *it = NULL; } } static void cbTimedRemove(VerilatedVpioCb* cbp) { VpioTimedCbs::iterator it=s_s.m_timedCbs.find(std::make_pair(cbp->time(), cbp)); if (VL_LIKELY(it != s_s.m_timedCbs.end())) { s_s.m_timedCbs.erase(it); } } static void callTimedCbs() VL_MT_UNSAFE_ONE { assertOneCheck(); QData time = VL_TIME_Q(); for (VpioTimedCbs::iterator it=s_s.m_timedCbs.begin(); it!=s_s.m_timedCbs.end(); ) { if (VL_UNLIKELY(it->first <= time)) { VerilatedVpioCb* vop = it->second; ++it; // iterator may be deleted by callback VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: timed_callback %p\n", vop);); (vop->cb_rtnp()) (vop->cb_datap()); } else { ++it; } } } static QData cbNextDeadline() { VpioTimedCbs::const_iterator it=s_s.m_timedCbs.begin(); if (VL_LIKELY(it != s_s.m_timedCbs.end())) { return it->first; } return ~VL_ULL(0); // maxquad } static bool callCbs(vluint32_t reason) VL_MT_UNSAFE_ONE { VpioCbList& cbObjList = s_s.m_cbObjLists[reason]; bool called = false; for (VpioCbList::iterator it=cbObjList.begin(); it!=cbObjList.end();) { if (VL_UNLIKELY(!*it)) { // Deleted earlier, cleanup it = cbObjList.erase(it); continue; } VerilatedVpioCb* vop = *it++; VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: reason_callback %d %p\n", reason, vop);); (vop->cb_rtnp()) (vop->cb_datap()); called = true; } return called; } static void callValueCbs() VL_MT_UNSAFE_ONE { assertOneCheck(); VpioCbList& cbObjList = s_s.m_cbObjLists[cbValueChange]; typedef std::set VpioVarSet; VpioVarSet update; // set of objects to update after callbacks for (VpioCbList::iterator it=cbObjList.begin(); it!=cbObjList.end();) { if (VL_UNLIKELY(!*it)) { // Deleted earlier, cleanup it = cbObjList.erase(it); continue; } VerilatedVpioCb* vop = *it++; if (VerilatedVpioVar* varop = VerilatedVpioVar::castp(vop->cb_datap()->obj)) { void* newDatap = varop->varDatap(); void* prevDatap = varop->prevDatap(); // Was malloced when we added the callback VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: value_test %s v[0]=%d/%d %p %p\n", varop->fullname(), *((CData*)newDatap), *((CData*)prevDatap), newDatap, prevDatap);); if (memcmp(prevDatap, newDatap, varop->entSize())) { VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: value_callback %p %s v[0]=%d\n", vop, varop->fullname(), *((CData*)newDatap));); update.insert(varop); vpi_get_value(vop->cb_datap()->obj, vop->cb_datap()->value); (vop->cb_rtnp()) (vop->cb_datap()); } } } for (VpioVarSet::const_iterator it=update.begin(); it!=update.end(); ++it) { memcpy((*it)->prevDatap(), (*it)->varDatap(), (*it)->entSize()); } } static VerilatedVpiError* error_info() VL_MT_UNSAFE_ONE; // getter for vpi error info }; class VerilatedVpiError { //// Container for vpi error info t_vpi_error_info m_errorInfo; bool m_flag; char m_buff[VL_VPI_LINE_SIZE]; void setError(PLI_BYTE8 *message, PLI_BYTE8 *code, PLI_BYTE8 *file, PLI_INT32 line) { m_errorInfo.message = message; m_errorInfo.file = file; m_errorInfo.line = line; m_errorInfo.code = code; do_callbacks(); } void do_callbacks() { if (getError()->level >= vpiError && Verilated::fatalOnVpiError()) { // Stop on vpi error/unsupported vpi_unsupported(); } // We need to run above code first because in the case that the // callback executes further vpi functions we will loose the error // as it will be overwritten. VerilatedVpiImp::callCbs(cbPLIError); } public: VerilatedVpiError() : m_flag(false) { m_buff[0] = '\0'; m_errorInfo.product = (PLI_BYTE8*)Verilated::productName(); } ~VerilatedVpiError() {} static void selfTest() VL_MT_UNSAFE_ONE; VerilatedVpiError* setMessage(PLI_INT32 level) { m_flag = true; m_errorInfo.level = level; return this; } void setMessage(std::string file, PLI_INT32 line, const char* message, ...) { // message cannot be a const string& as va_start cannot use a reference static VL_THREAD_LOCAL std::string filehold; va_list args; va_start(args, message); VL_VSNPRINTF(m_buff, sizeof(m_buff), message, args); va_end(args); m_errorInfo.state = vpiPLI; filehold = file; setError((PLI_BYTE8*)m_buff, NULL, (PLI_BYTE8*)filehold.c_str(), line); } p_vpi_error_info getError() { if (m_flag) return &m_errorInfo; return NULL; } void resetError() { m_flag = false; } static void vpi_unsupported() { // Not supported yet p_vpi_error_info error_info_p = VerilatedVpiImp::error_info()->getError(); if (error_info_p) { VL_FATAL_MT(error_info_p->file, error_info_p->line, "", error_info_p->message); return; } VL_FATAL_MT(__FILE__, __LINE__, "", "vpi_unsupported called without error info set"); } static const char* strFromVpiVal(PLI_INT32 vpiVal) VL_MT_SAFE; static const char* strFromVpiObjType(PLI_INT32 vpiVal) VL_MT_SAFE; static const char* strFromVpiMethod(PLI_INT32 vpiVal) VL_MT_SAFE; static const char* strFromVpiCallbackReason(PLI_INT32 vpiVal) VL_MT_SAFE; static const char* strFromVpiProp(PLI_INT32 vpiVal) VL_MT_SAFE; }; //====================================================================== VerilatedVpiImp VerilatedVpiImp::s_s; // Singleton VL_THREAD_LOCAL vluint8_t* VerilatedVpio::t_freeHead = NULL; //====================================================================== // VerilatedVpi implementation void VerilatedVpi::callTimedCbs() VL_MT_UNSAFE_ONE { VerilatedVpiImp::callTimedCbs(); } void VerilatedVpi::callValueCbs() VL_MT_UNSAFE_ONE { VerilatedVpiImp::callValueCbs(); } bool VerilatedVpi::callCbs(vluint32_t reason) VL_MT_UNSAFE_ONE { return VerilatedVpiImp::callCbs(reason); } //====================================================================== // VerilatedVpiImp implementation VerilatedVpiError* VerilatedVpiImp::error_info() VL_MT_UNSAFE_ONE { VerilatedVpiImp::assertOneCheck(); if (VL_UNLIKELY(!s_s.m_errorInfop)) { s_s.m_errorInfop = new VerilatedVpiError(); } return s_s.m_errorInfop; } //====================================================================== // VerilatedVpiError Methods const char* VerilatedVpiError::strFromVpiVal(PLI_INT32 vpiVal) VL_MT_SAFE { static const char* const names[] = { "*undefined*", "vpiBinStrVal", "vpiOctStrVal", "vpiDecStrVal", "vpiHexStrVal", "vpiScalarVal", "vpiIntVal", "vpiRealVal", "vpiStringVal", "vpiVectorVal", "vpiStrengthVal", "vpiTimeVal", "vpiObjTypeVal", "vpiSuppressVal", "vpiShortIntVal", "vpiLongIntVal", "vpiShortRealVal", "vpiRawTwoStateVal", "vpiRawFourStateVal", }; if (vpiVal < 0) return names[0]; return names[(vpiVal<=vpiRawFourStateVal) ? vpiVal : 0]; } const char* VerilatedVpiError::strFromVpiObjType(PLI_INT32 vpiVal) VL_MT_SAFE { static const char* const names[] = { "*undefined*", "vpiAlways", "vpiAssignStmt", "vpiAssignment", "vpiBegin", "vpiCase", "vpiCaseItem", "vpiConstant", "vpiContAssign", "vpiDeassign", "vpiDefParam", "vpiDelayControl", "vpiDisable", "vpiEventControl", "vpiEventStmt", "vpiFor", "vpiForce", "vpiForever", "vpiFork", "vpiFuncCall", "vpiFunction", "vpiGate", "vpiIf", "vpiIfElse", "vpiInitial", "vpiIntegerVar", "vpiInterModPath", "vpiIterator", "vpiIODecl", "vpiMemory", "vpiMemoryWord", "vpiModPath", "vpiModule", "vpiNamedBegin", "vpiNamedEvent", "vpiNamedFork", "vpiNet", "vpiNetBit", "vpiNullStmt", "vpiOperation", "vpiParamAssign", "vpiParameter", "vpiPartSelect", "vpiPathTerm", "vpiPort", "vpiPortBit", "vpiPrimTerm", "vpiRealVar", "vpiReg", "vpiRegBit", "vpiRelease", "vpiRepeat", "vpiRepeatControl", "vpiSchedEvent", "vpiSpecParam", "vpiSwitch", "vpiSysFuncCall", "vpiSysTaskCall", "vpiTableEntry", "vpiTask", "vpiTaskCall", "vpiTchk", "vpiTchkTerm", "vpiTimeVar", "vpiTimeQueue", "vpiUdp", "vpiUdpDefn", "vpiUserSystf", "vpiVarSelect", "vpiWait", "vpiWhile", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "vpiAttribute", "vpiBitSelect", "vpiCallback", "vpiDelayTerm", "vpiDelayDevice", "vpiFrame", "vpiGateArray", "vpiModuleArray", "vpiPrimitiveArray", "vpiNetArray", "vpiRange", "vpiRegArray", "vpiSwitchArray", "vpiUdpArray", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "*undefined*", "vpiContAssignBit", "vpiNamedEventArray", "vpiIndexedPartSelect", "*undefined*", "*undefined*", "vpiGenScopeArray", "vpiGenScope", "vpiGenVar" }; if (vpiVal < 0) return names[0]; return names[(vpiVal<=vpiGenVar) ? vpiVal : 0]; } const char* VerilatedVpiError::strFromVpiMethod(PLI_INT32 vpiVal) VL_MT_SAFE { static const char* const names[] = { "vpiCondition", "vpiDelay", "vpiElseStmt", "vpiForIncStmt", "vpiForInitStmt", "vpiHighConn", "vpiLhs", "vpiIndex", "vpiLeftRange", "vpiLowConn", "vpiParent", "vpiRhs", "vpiRightRange", "vpiScope", "vpiSysTfCall", "vpiTchkDataTerm", "vpiTchkNotifier", "vpiTchkRefTerm", "vpiArgument", "vpiBit", "vpiDriver", "vpiInternalScope", "vpiLoad", "vpiModDataPathIn", "vpiModPathIn", "vpiModPathOut", "vpiOperand", "vpiPortInst", "vpiProcess", "vpiVariables", "vpiUse", "vpiExpr", "vpiPrimitive", "vpiStmt" }; if (vpiVal>vpiStmt || vpiValreason) { case cbAfterDelay: { QData time = 0; if (cb_data_p->time) time = _VL_SET_QII(cb_data_p->time->high, cb_data_p->time->low); VerilatedVpioCb* vop = new VerilatedVpioCb(cb_data_p, VL_TIME_Q()+time); VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_register_cb %d %p delay=%" VL_PRI64 "u\n", cb_data_p->reason, vop, time);); VerilatedVpiImp::cbTimedAdd(vop); return vop->castVpiHandle(); } case cbReadWriteSynch: // FALLTHRU // Supported via vlt_main.cpp case cbReadOnlySynch: // FALLTHRU // Supported via vlt_main.cpp case cbNextSimTime: // FALLTHRU // Supported via vlt_main.cpp case cbStartOfSimulation: // FALLTHRU // Supported via vlt_main.cpp case cbEndOfSimulation: // FALLTHRU // Supported via vlt_main.cpp case cbValueChange: // FALLTHRU // Supported via vlt_main.cpp case cbPLIError: // FALLTHRU // NOP, but need to return handle, so make object case cbEnterInteractive: // FALLTHRU // NOP, but need to return handle, so make object case cbExitInteractive: // FALLTHRU // NOP, but need to return handle, so make object case cbInteractiveScopeChange: { // FALLTHRU // NOP, but need to return handle, so make object VerilatedVpioCb* vop = new VerilatedVpioCb(cb_data_p, 0); VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_register_cb %d %p\n", cb_data_p->reason, vop);); VerilatedVpiImp::cbReasonAdd(vop); return vop->castVpiHandle(); } default: _VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported callback type %s", VL_FUNC, VerilatedVpiError::strFromVpiCallbackReason(cb_data_p->reason)); return NULL; }; } PLI_INT32 vpi_remove_cb(vpiHandle object) { VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_remove_cb %p\n", object);); VerilatedVpiImp::assertOneCheck(); VerilatedVpioCb* vop = VerilatedVpioCb::castp(object); _VL_VPI_ERROR_RESET(); if (VL_UNLIKELY(!vop)) return 0; if (vop->cb_datap()->reason == cbAfterDelay) { VerilatedVpiImp::cbTimedRemove(vop); } else { VerilatedVpiImp::cbReasonRemove(vop); } return 1; } void vpi_get_cb_info(vpiHandle object, p_cb_data cb_data_p) { _VL_VPI_UNIMP(); return; } vpiHandle vpi_register_systf(p_vpi_systf_data systf_data_p) { _VL_VPI_UNIMP(); return 0; } void vpi_get_systf_info(vpiHandle object, p_vpi_systf_data systf_data_p) { _VL_VPI_UNIMP(); return; } // for obtaining handles vpiHandle vpi_handle_by_name(PLI_BYTE8* namep, vpiHandle scope) { VerilatedVpiImp::assertOneCheck(); _VL_VPI_ERROR_RESET(); if (VL_UNLIKELY(!namep)) return NULL; VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_handle_by_name %s %p\n", namep, scope);); VerilatedVpioScope* voScopep = VerilatedVpioScope::castp(scope); const VerilatedVar* varp; const VerilatedScope* scopep; std::string scopeAndName = namep; if (voScopep) { scopeAndName = std::string(voScopep->fullname()) + "." + namep; namep = (PLI_BYTE8*)scopeAndName.c_str(); } { // This doesn't yet follow the hierarchy in the proper way scopep = Verilated::scopeFind(namep); if (scopep) { // Whole thing found as a scope return (new VerilatedVpioScope(scopep))->castVpiHandle(); } const char* baseNamep = scopeAndName.c_str(); std::string scopename; const char* dotp = strrchr(namep, '.'); if (VL_LIKELY(dotp)) { baseNamep = dotp+1; scopename = std::string(namep, dotp-namep); } scopep = Verilated::scopeFind(scopename.c_str()); if (!scopep) return NULL; varp = scopep->varFind(baseNamep); } if (!varp) return NULL; return (new VerilatedVpioVar(varp, scopep))->castVpiHandle(); } vpiHandle vpi_handle_by_index(vpiHandle object, PLI_INT32 indx) { // Used to get array entries VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_handle_by_index %p %d\n", object, indx);); VerilatedVpiImp::assertOneCheck(); VerilatedVpioVar* varop = VerilatedVpioVar::castp(object); _VL_VPI_ERROR_RESET(); if (VL_LIKELY(varop)) { if (varop->varp()->dims()<2) return 0; if (VL_LIKELY(varop->varp()->unpacked().left() >= varop->varp()->unpacked().right())) { if (VL_UNLIKELY(indx > varop->varp()->unpacked().left() || indx < varop->varp()->unpacked().right())) return 0; return (new VerilatedVpioMemoryWord(varop->varp(), varop->scopep(), indx, indx - varop->varp()->unpacked().right())) ->castVpiHandle(); } if (VL_UNLIKELY(indx < varop->varp()->unpacked().left() || indx > varop->varp()->unpacked().right())) return 0; return (new VerilatedVpioMemoryWord(varop->varp(), varop->scopep(), indx, indx - varop->varp()->unpacked().left())) ->castVpiHandle(); } _VL_VPI_INTERNAL(__FILE__, __LINE__, "%s : can't resolve handle", VL_FUNC); return 0; } // for traversing relationships vpiHandle vpi_handle(PLI_INT32 type, vpiHandle object) { VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_handle %d %p\n", type, object);); VerilatedVpiImp::assertOneCheck(); _VL_VPI_ERROR_RESET(); switch (type) { case vpiLeftRange: { VerilatedVpioVar* vop = VerilatedVpioVar::castp(object); if (VL_UNLIKELY(!vop)) return 0; if (VL_UNLIKELY(!vop->rangep())) return 0; return (new VerilatedVpioConst(vop->rangep()->left()))->castVpiHandle(); } case vpiRightRange: { VerilatedVpioVar* vop = VerilatedVpioVar::castp(object); if (VL_UNLIKELY(!vop)) return 0; if (VL_UNLIKELY(!vop->rangep())) return 0; return (new VerilatedVpioConst(vop->rangep()->right()))->castVpiHandle(); } case vpiIndex: { VerilatedVpioVar* vop = VerilatedVpioVar::castp(object); if (VL_UNLIKELY(!vop)) return 0; return (new VerilatedVpioConst(vop->index()))->castVpiHandle(); } case vpiScope: { VerilatedVpioVar* vop = VerilatedVpioVar::castp(object); if (VL_UNLIKELY(!vop)) return 0; return (new VerilatedVpioScope(vop->scopep()))->castVpiHandle(); } case vpiParent: { VerilatedVpioMemoryWord* vop = VerilatedVpioMemoryWord::castp(object); if (VL_UNLIKELY(!vop)) return 0; return (new VerilatedVpioVar(vop->varp(), vop->scopep()))->castVpiHandle(); } default: _VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned", VL_FUNC, VerilatedVpiError::strFromVpiMethod(type)); return 0; } } vpiHandle vpi_handle_multi(PLI_INT32 type, vpiHandle refHandle1, vpiHandle refHandle2, ... ) { _VL_VPI_UNIMP(); return 0; } vpiHandle vpi_iterate(PLI_INT32 type, vpiHandle object) { VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_iterate %d %p\n", type, object);); VerilatedVpiImp::assertOneCheck(); _VL_VPI_ERROR_RESET(); switch (type) { case vpiMemoryWord: { VerilatedVpioVar* vop = VerilatedVpioVar::castp(object); if (VL_UNLIKELY(!vop)) return 0; if (vop->varp()->dims() < 2) return 0; if (vop->varp()->dims() > 2) { _VL_VPI_WARNING(__FILE__, __LINE__, "%s: %s, object %s has unsupported number of indices (%d)", VL_FUNC, VerilatedVpiError::strFromVpiMethod(type), vop->fullname() , vop->varp()->dims()); } return (new VerilatedVpioMemoryWordIter(object, vop->varp()))->castVpiHandle(); } case vpiRange: { VerilatedVpioVar* vop = VerilatedVpioVar::castp(object); if (VL_UNLIKELY(!vop)) return 0; if (vop->varp()->dims() < 2) return 0; // Unsupported is multidim list if (vop->varp()->dims() > 2) { _VL_VPI_WARNING(__FILE__, __LINE__, "%s: %s, object %s has unsupported number of indices (%d)", VL_FUNC, VerilatedVpiError::strFromVpiMethod(type), vop->fullname() , vop->varp()->dims()); } return ((new VerilatedVpioRange(vop->rangep()))->castVpiHandle()); } case vpiReg: { VerilatedVpioScope* vop = VerilatedVpioScope::castp(object); if (VL_UNLIKELY(!vop)) return 0; return ((new VerilatedVpioVarIter(vop->scopep())) ->castVpiHandle()); } default: _VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned", VL_FUNC, VerilatedVpiError::strFromVpiObjType(type)); return 0; } } vpiHandle vpi_scan(vpiHandle object) { VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_scan %p\n", object);); VerilatedVpiImp::assertOneCheck(); _VL_VPI_ERROR_RESET(); VerilatedVpio* vop = VerilatedVpio::castp(object); if (VL_UNLIKELY(!vop)) return NULL; return vop->dovpi_scan(); } // for processing properties PLI_INT32 vpi_get(PLI_INT32 property, vpiHandle object) { // Leave this in the header file - in many cases the compiler can constant propagate "object" VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_get %d %p\n", property, object);); VerilatedVpiImp::assertOneCheck(); _VL_VPI_ERROR_RESET(); switch (property) { case vpiTimePrecision: { return VL_TIME_PRECISION; } case vpiType: { VerilatedVpio* vop = VerilatedVpio::castp(object); if (VL_UNLIKELY(!vop)) return 0; return vop->type(); } case vpiDirection: { // By forthought, the directions already are vpi enumerated VerilatedVpioVar* vop = VerilatedVpioVar::castp(object); if (VL_UNLIKELY(!vop)) return 0; return vop->varp()->vldir(); } case vpiScalar: // FALLTHRU case vpiVector: { VerilatedVpioVar* vop = VerilatedVpioVar::castp(object); if (VL_UNLIKELY(!vop)) return 0; return (property==vpiVector) ^ (vop->varp()->dims()==0); } case vpiSize: { VerilatedVpioVar* vop = VerilatedVpioVar::castp(object); if (VL_UNLIKELY(!vop)) return 0; return vop->size(); } default: _VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned", VL_FUNC, VerilatedVpiError::strFromVpiProp(property)); return 0; } } PLI_INT64 vpi_get64(PLI_INT32 property, vpiHandle object) { _VL_VPI_UNIMP(); return 0; } PLI_BYTE8 *vpi_get_str(PLI_INT32 property, vpiHandle object) { VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_get_str %d %p\n", property, object);); VerilatedVpiImp::assertOneCheck(); VerilatedVpio* vop = VerilatedVpio::castp(object); _VL_VPI_ERROR_RESET(); if (VL_UNLIKELY(!vop)) return NULL; switch (property) { case vpiName: { return (PLI_BYTE8*)vop->name(); } case vpiFullName: { return (PLI_BYTE8*)vop->fullname(); } case vpiDefName: { return (PLI_BYTE8*)vop->defname(); } case vpiType: { return (PLI_BYTE8*) VerilatedVpiError::strFromVpiObjType(vop->type()); } default: _VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned", VL_FUNC, VerilatedVpiError::strFromVpiProp(property)); return 0; } } // delay processing void vpi_get_delays(vpiHandle object, p_vpi_delay delay_p) { _VL_VPI_UNIMP(); return; } void vpi_put_delays(vpiHandle object, p_vpi_delay delay_p) { _VL_VPI_UNIMP(); return; } // value processing void vpi_get_value(vpiHandle object, p_vpi_value value_p) { // Maximum required size is for binary string, one byte per bit plus null termination static VL_THREAD_LOCAL char outStr[1+VL_MULS_MAX_WORDS*32]; // cppcheck-suppress variableScope static VL_THREAD_LOCAL int outStrSz = sizeof(outStr)-1; VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_get_value %p\n", object);); VerilatedVpiImp::assertOneCheck(); _VL_VPI_ERROR_RESET(); if (VL_UNLIKELY(!value_p)) return; if (VerilatedVpioVar* vop = VerilatedVpioVar::castp(object)) { // We used to presume vpiValue.format = vpiIntVal or if single bit vpiScalarVal // This may cause backward compatability issues with older code. if (value_p->format == vpiVectorVal) { // Vector pointer must come from our memory pool // It only needs to persist until the next vpi_get_value static VL_THREAD_LOCAL t_vpi_vecval out[VL_MULS_MAX_WORDS*2]; value_p->value.vector = out; switch (vop->varp()->vltype()) { case VLVT_UINT8: out[0].aval = *(reinterpret_cast(vop->varDatap())); out[0].bval = 0; return; case VLVT_UINT16: out[0].aval = *(reinterpret_cast(vop->varDatap())); out[0].bval = 0; return; case VLVT_UINT32: out[0].aval = *(reinterpret_cast(vop->varDatap())); out[0].bval = 0; return; case VLVT_WDATA: { int words = VL_WORDS_I(vop->varp()->packed().elements()); if (VL_UNCOVERABLE(words >= VL_MULS_MAX_WORDS)) { VL_FATAL_MT(__FILE__, __LINE__, "", "vpi_get_value with more than VL_MULS_MAX_WORDS; increase and recompile"); } WDataInP datap = (reinterpret_cast(vop->varDatap())); for (int i=0; i(vop->varDatap())); out[1].aval = static_cast(data>>VL_ULL(32)); out[1].bval = 0; out[0].aval = static_cast(data); out[0].bval = 0; return; } default: { _VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname()); return; } } } else if (value_p->format == vpiBinStrVal) { value_p->value.str = outStr; switch (vop->varp()->vltype()) { case VLVT_UINT8: case VLVT_UINT16: case VLVT_UINT32: case VLVT_UINT64: case VLVT_WDATA: { int bits = vop->varp()->packed().elements(); CData* datap = (reinterpret_cast(vop->varDatap())); int i; if (bits > outStrSz) { // limit maximum size of output to size of buffer to prevent overrun. bits = outStrSz; _VL_VPI_WARNING(__FILE__, __LINE__, "%s: Truncating string value of %s for %s" " as buffer size (%d, VL_MULS_MAX_WORDS=%d) is less than required (%d)", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname(), outStrSz, VL_MULS_MAX_WORDS, bits); } for (i=0; i>3]>>(i&7))&1; outStr[bits-i-1] = val?'1':'0'; } outStr[i] = '\0'; return; } default: _VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname()); return; } } else if (value_p->format == vpiOctStrVal) { value_p->value.str = outStr; switch (vop->varp()->vltype()) { case VLVT_UINT8: case VLVT_UINT16: case VLVT_UINT32: case VLVT_UINT64: case VLVT_WDATA: { int chars = (vop->varp()->packed().elements()+2)/3; int bytes = VL_BYTES_I(vop->varp()->packed().elements()); CData* datap = (reinterpret_cast(vop->varDatap())); int i; if (chars > outStrSz) { // limit maximum size of output to size of buffer to prevent overrun. _VL_VPI_WARNING(__FILE__, __LINE__, "%s: Truncating string value of %s for %s" " as buffer size (%d, VL_MULS_MAX_WORDS=%d) is less than required (%d)", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname(), outStrSz, VL_MULS_MAX_WORDS, chars); chars = outStrSz; } for (i=0; i>= idx.rem; if (i==(chars-1)) { // most signifcant char, mask off non existant bits when vector // size is not a multiple of 3 unsigned int rem = vop->varp()->packed().elements() % 3; if (rem) { // generate bit mask & zero non existant bits val &= (1<format), vop->fullname()); return; } } else if (value_p->format == vpiDecStrVal) { value_p->value.str = outStr; switch (vop->varp()->vltype()) { // outStrSz does not include NULL termination so add one case VLVT_UINT8: VL_SNPRINTF(outStr, outStrSz+1, "%hhu", static_cast(*(reinterpret_cast(vop->varDatap())))); return; case VLVT_UINT16: VL_SNPRINTF(outStr, outStrSz+1, "%hu", static_cast(*(reinterpret_cast(vop->varDatap())))); return; case VLVT_UINT32: VL_SNPRINTF(outStr, outStrSz+1, "%u", static_cast(*(reinterpret_cast(vop->varDatap())))); return; case VLVT_UINT64: VL_SNPRINTF(outStr, outStrSz+1, "%llu", static_cast(*(reinterpret_cast(vop->varDatap())))); return; default: strcpy(outStr, "-1"); _VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s, maximum limit is 64 bits", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname()); return; } } else if (value_p->format == vpiHexStrVal) { value_p->value.str = outStr; switch (vop->varp()->vltype()) { case VLVT_UINT8: case VLVT_UINT16: case VLVT_UINT32: case VLVT_UINT64: case VLVT_WDATA: { int chars = (vop->varp()->packed().elements()+3)>>2; CData* datap = (reinterpret_cast(vop->varDatap())); int i; if (chars > outStrSz) { // limit maximum size of output to size of buffer to prevent overrun. _VL_VPI_WARNING(__FILE__, __LINE__, "%s: Truncating string value of %s for %s" " as buffer size (%d, VL_MULS_MAX_WORDS=%d) is less than required (%d)", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname(), outStrSz, VL_MULS_MAX_WORDS, chars); chars = outStrSz; } for (i=0; i>1]>>((i&1)<<2))&15; if (i==(chars-1)) { // most signifcant char, mask off non existant bits when vector // size is not a multiple of 4 unsigned int rem = vop->varp()->packed().elements() & 3; if (rem) { // generate bit mask & zero non existant bits val &= (1<(val)]; } outStr[i] = '\0'; return; } default: _VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname()); return; } } else if (value_p->format == vpiStringVal) { value_p->value.str = outStr; switch (vop->varp()->vltype()) { case VLVT_UINT8: case VLVT_UINT16: case VLVT_UINT32: case VLVT_UINT64: case VLVT_WDATA: { int bytes = VL_BYTES_I(vop->varp()->packed().elements()); CData* datap = (reinterpret_cast(vop->varDatap())); int i; if (bytes > outStrSz) { // limit maximum size of output to size of buffer to prevent overrun. _VL_VPI_WARNING(__FILE__, __LINE__, "%s: Truncating string value of %s for %s" " as buffer size (%d, VL_MULS_MAX_WORDS=%d) is less than required (%d)", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname(), outStrSz, VL_MULS_MAX_WORDS, bytes); bytes = outStrSz; } for (i=0; iformat), vop->fullname()); return; } } else if (value_p->format == vpiIntVal) { switch (vop->varp()->vltype()) { case VLVT_UINT8: value_p->value.integer = *(reinterpret_cast(vop->varDatap())); return; case VLVT_UINT16: value_p->value.integer = *(reinterpret_cast(vop->varDatap())); return; case VLVT_UINT32: value_p->value.integer = *(reinterpret_cast(vop->varDatap())); return; case VLVT_WDATA: // FALLTHRU case VLVT_UINT64: // FALLTHRU default: value_p->value.integer = 0; _VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname()); return; } } else if (value_p->format == vpiSuppressVal) { return; } _VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) as requested for %s", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname()); return; } else if (VerilatedVpioConst* vop = VerilatedVpioConst::castp(object)) { if (value_p->format == vpiIntVal) { value_p->value.integer = vop->num(); return; } _VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname()); return; } _VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format %s", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format)); } vpiHandle vpi_put_value(vpiHandle object, p_vpi_value value_p, p_vpi_time time_p, PLI_INT32 flags) { VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_put_value %p %p\n", object, value_p);); VerilatedVpiImp::assertOneCheck(); _VL_VPI_ERROR_RESET(); if (VL_UNLIKELY(!value_p)) { _VL_VPI_WARNING(__FILE__, __LINE__, "Ignoring vpi_put_value with NULL value pointer"); return 0; } if (VerilatedVpioVar* vop = VerilatedVpioVar::castp(object)) { VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_put_value name=%s fmt=%d vali=%d\n", vop->fullname(), value_p->format, value_p->value.integer); VL_DBG_MSGF("- vpi: varp=%p putatp=%p\n", vop->varp()->datap(), vop->varDatap());); if (VL_UNLIKELY(!vop->varp()->isPublicRW())) { _VL_VPI_WARNING(__FILE__, __LINE__, "Ignoring vpi_put_value to signal marked read-only," " use public_flat_rw instead: ", vop->fullname()); return 0; } if (value_p->format == vpiVectorVal) { if (VL_UNLIKELY(!value_p->value.vector)) return NULL; switch (vop->varp()->vltype()) { case VLVT_UINT8: *(reinterpret_cast(vop->varDatap())) = value_p->value.vector[0].aval & vop->mask(); return object; case VLVT_UINT16: *(reinterpret_cast(vop->varDatap())) = value_p->value.vector[0].aval & vop->mask(); return object; case VLVT_UINT32: *(reinterpret_cast(vop->varDatap())) = value_p->value.vector[0].aval & vop->mask(); return object; case VLVT_WDATA: { int words = VL_WORDS_I(vop->varp()->packed().elements()); WDataOutP datap = (reinterpret_cast(vop->varDatap())); for (int i=0; ivalue.vector[i].aval; if (i==(words-1)) { datap[i] &= vop->mask(); } } return object; } case VLVT_UINT64: { *(reinterpret_cast(vop->varDatap())) = _VL_SET_QII( value_p->value.vector[1].aval & vop->mask(), value_p->value.vector[0].aval); return object; } default: { _VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname()); return NULL; } } } else if (value_p->format == vpiBinStrVal) { switch (vop->varp()->vltype()) { case VLVT_UINT8: case VLVT_UINT16: case VLVT_UINT32: case VLVT_UINT64: case VLVT_WDATA: { int bits = vop->varp()->packed().elements(); int len = strlen(value_p->value.str); CData* datap = (reinterpret_cast(vop->varDatap())); for (int i=0; ivalue.str[len-i-1]=='1'):0; // zero bits 7:1 of byte when assigning to bit 0, else // or in 1 if bit set if (i&7) { datap[i>>3] |= set<<(i&7); } else { datap[i>>3] = set; } } return object; } default: _VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname()); return 0; } } else if (value_p->format == vpiOctStrVal) { switch (vop->varp()->vltype()) { case VLVT_UINT8: case VLVT_UINT16: case VLVT_UINT32: case VLVT_UINT64: case VLVT_WDATA: { int chars = (vop->varp()->packed().elements()+2)/3; int bytes = VL_BYTES_I(vop->varp()->packed().elements()); int len = strlen(value_p->value.str); CData* datap = (reinterpret_cast(vop->varDatap())); div_t idx; datap[0] = 0; // reset zero'th byte for (int i=0; ivalue.str[len-i-1]; if (digit >= '0' && digit <= '7') { val.half = digit-'0'; } else { _VL_VPI_WARNING(__FILE__, __LINE__, "%s: Non octal character '%c' in '%s' as value %s for %s", VL_FUNC, digit, value_p->value.str, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname()); val.half = 0; } } else { val.half = 0; } // align octal character to position within vector, note that // the three bits may straddle a byte bounday so two byte wide // assignments are made to adjacent bytes - but not if the least // signifcant byte of the aligned value is the most significant // byte of the destination. val.half <<= idx.rem; datap[idx.quot] |= val.byte[0]; // or in value if ((idx.quot+1) < bytes) { datap[idx.quot+1] = val.byte[1]; // this also resets // all bits to 0 prior to or'ing above } } // mask off non existant bits in the most significant byte if (idx.quot == (bytes-1)) { datap[idx.quot] &= vop->mask_byte(idx.quot); } else if (idx.quot+1 == (bytes-1)) { datap[idx.quot+1] &= vop->mask_byte(idx.quot+1); } // zero off remaining top bytes for (int i=idx.quot+2; iformat), vop->fullname()); return 0; } } else if (value_p->format == vpiDecStrVal) { char remainder[16]; unsigned long long val; int success = sscanf(value_p->value.str, "%30llu%15s", &val, remainder); if (success < 1) { _VL_VPI_ERROR(__FILE__, __LINE__, "%s: Parsing failed for '%s' as value %s for %s", VL_FUNC, value_p->value.str, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname()); return 0; } if (success > 1) { _VL_VPI_WARNING(__FILE__, __LINE__, "%s: Trailing garbage '%s' in '%s' as value %s for %s", VL_FUNC, remainder, value_p->value.str, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname()); } switch (vop->varp()->vltype()) { case VLVT_UINT8: *(reinterpret_cast(vop->varDatap())) = val & vop->mask(); break; case VLVT_UINT16: *(reinterpret_cast(vop->varDatap())) = val & vop->mask(); break; case VLVT_UINT32: *(reinterpret_cast(vop->varDatap())) = val & vop->mask(); break; case VLVT_UINT64: *(reinterpret_cast(vop->varDatap())) = val; (reinterpret_cast(vop->varDatap()))[1] &= vop->mask(); break; case VLVT_WDATA: default: _VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s, maximum limit is 64 bits", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname()); return 0; } return object; } else if (value_p->format == vpiHexStrVal) { switch (vop->varp()->vltype()) { case VLVT_UINT8: case VLVT_UINT16: case VLVT_UINT32: case VLVT_UINT64: case VLVT_WDATA: { int chars = (vop->varp()->packed().elements()+3)>>2; CData* datap = (reinterpret_cast(vop->varDatap())); char* val = value_p->value.str; // skip hex ident if one is detected at the start of the string if (val[0] == '0' && (val[1] == 'x' || val[1] == 'X')) { val += 2; } int len = strlen(val); for (int i=0; i= '0' && digit <= '9') hex = digit - '0'; else if (digit >= 'a' && digit <= 'f') hex = digit - 'a' + 10; else if (digit >= 'A' && digit <= 'F') hex = digit - 'A' + 10; else { _VL_VPI_WARNING(__FILE__, __LINE__, "%s: Non hex character '%c' in '%s' as value %s for %s", VL_FUNC, digit, value_p->value.str, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname()); hex = 0; } } else { hex = 0; } // assign hex digit value to destination if (i&1) { datap[i>>1] |= hex<<4; } else { datap[i>>1] = hex; // this also resets all // bits to 0 prior to or'ing above of the msb } } // apply bit mask to most significant byte datap[(chars-1)>>1] &= vop->mask_byte((chars-1)>>1); return object; } default: _VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname()); return 0; } } else if (value_p->format == vpiStringVal) { switch (vop->varp()->vltype()) { case VLVT_UINT8: case VLVT_UINT16: case VLVT_UINT32: case VLVT_UINT64: case VLVT_WDATA: { int bytes = VL_BYTES_I(vop->varp()->packed().elements()); int len = strlen(value_p->value.str); CData* datap = (reinterpret_cast(vop->varDatap())); for (int i=0; ivalue.str[len-i-1]:0; } return object; } default: _VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname()); return 0; } } else if (value_p->format == vpiIntVal) { switch (vop->varp()->vltype()) { case VLVT_UINT8: *(reinterpret_cast(vop->varDatap())) = vop->mask() & value_p->value.integer; return object; case VLVT_UINT16: *(reinterpret_cast(vop->varDatap())) = vop->mask() & value_p->value.integer; return object; case VLVT_UINT32: *(reinterpret_cast(vop->varDatap())) = vop->mask() & value_p->value.integer; return object; case VLVT_WDATA: // FALLTHRU case VLVT_UINT64: // FALLTHRU default: _VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname()); return 0; } } _VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) as requested for %s", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname()); return NULL; } _VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for ??", VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format)); return NULL; } void vpi_get_value_array(vpiHandle object, p_vpi_arrayvalue arrayvalue_p, PLI_INT32 *index_p, PLI_UINT32 num) { _VL_VPI_UNIMP(); return; } void vpi_put_value_array(vpiHandle object, p_vpi_arrayvalue arrayvalue_p, PLI_INT32 *index_p, PLI_UINT32 num) { _VL_VPI_UNIMP(); return; } // time processing void vpi_get_time(vpiHandle object, p_vpi_time time_p) { VerilatedVpiImp::assertOneCheck(); // cppcheck-suppress nullPointer if (VL_UNLIKELY(!time_p)) { _VL_VPI_WARNING(__FILE__, __LINE__, "Ignoring vpi_get_time with NULL value pointer"); return; } if (time_p->type == vpiSimTime) { QData qtime = VL_TIME_Q(); WData itime[2]; VL_SET_WQ(itime, qtime); time_p->low = itime[0]; time_p->high = itime[1]; return; } _VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported type (%d)", VL_FUNC, time_p->type); return; } // I/O routines PLI_UINT32 vpi_mcd_open(PLI_BYTE8 *filenamep) { VerilatedVpiImp::assertOneCheck(); _VL_VPI_ERROR_RESET(); return VL_FOPEN_S(filenamep, "wb"); } PLI_UINT32 vpi_mcd_close(PLI_UINT32 mcd) { VerilatedVpiImp::assertOneCheck(); _VL_VPI_ERROR_RESET(); VL_FCLOSE_I(mcd); return 0; } PLI_BYTE8 *vpi_mcd_name(PLI_UINT32 mcd) { _VL_VPI_UNIMP(); return 0; } PLI_INT32 vpi_mcd_printf(PLI_UINT32 mcd, PLI_BYTE8 *formatp, ...) { VerilatedVpiImp::assertOneCheck(); _VL_VPI_ERROR_RESET(); va_list ap; va_start(ap, formatp); int chars = vpi_mcd_vprintf(mcd, formatp, ap); va_end(ap); return chars; } PLI_INT32 vpi_printf(PLI_BYTE8 *formatp, ...) { VerilatedVpiImp::assertOneCheck(); _VL_VPI_ERROR_RESET(); va_list ap; va_start(ap, formatp); int chars = vpi_vprintf(formatp, ap); va_end(ap); return chars; } PLI_INT32 vpi_vprintf(PLI_BYTE8* formatp, va_list ap) { VerilatedVpiImp::assertOneCheck(); _VL_VPI_ERROR_RESET(); return VL_VPRINTF(formatp, ap); } PLI_INT32 vpi_mcd_vprintf(PLI_UINT32 mcd, PLI_BYTE8 *format, va_list ap) { VerilatedVpiImp::assertOneCheck(); FILE* fp = VL_CVT_I_FP(mcd); _VL_VPI_ERROR_RESET(); // cppcheck-suppress nullPointer if (VL_UNLIKELY(!fp)) return 0; int chars = vfprintf(fp, format, ap); return chars; } PLI_INT32 vpi_flush(void) { VerilatedVpiImp::assertOneCheck(); _VL_VPI_ERROR_RESET(); Verilated::flushCall(); return 0; } PLI_INT32 vpi_mcd_flush(PLI_UINT32 mcd) { VerilatedVpiImp::assertOneCheck(); FILE* fp = VL_CVT_I_FP(mcd); _VL_VPI_ERROR_RESET(); if (VL_UNLIKELY(!fp)) return 1; fflush(fp); return 0; } // utility routines PLI_INT32 vpi_compare_objects(vpiHandle object1, vpiHandle object2) { _VL_VPI_UNIMP(); return 0; } PLI_INT32 vpi_chk_error(p_vpi_error_info error_info_p) { // executing vpi_chk_error does not reset error // error_info_p can be NULL, so only return level in that case VerilatedVpiImp::assertOneCheck(); p_vpi_error_info _error_info_p = VerilatedVpiImp::error_info()->getError(); if (error_info_p && _error_info_p) { *error_info_p = *_error_info_p; } if (!_error_info_p) return 0; // no error occured return _error_info_p->level; // return error severity level }; PLI_INT32 vpi_free_object(vpiHandle object) { VerilatedVpiImp::assertOneCheck(); _VL_VPI_ERROR_RESET(); return vpi_release_handle(object); // Deprecated } PLI_INT32 vpi_release_handle(vpiHandle object) { VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_release_handle %p\n", object);); VerilatedVpiImp::assertOneCheck(); VerilatedVpio* vop = VerilatedVpio::castp(object); _VL_VPI_ERROR_RESET(); if (VL_UNLIKELY(!vop)) return 0; vpi_remove_cb(object); // May not be a callback, but that's ok delete vop; return 1; } PLI_INT32 vpi_get_vlog_info(p_vpi_vlog_info vlog_info_p) VL_MT_SAFE { VerilatedVpiImp::assertOneCheck(); _VL_VPI_ERROR_RESET(); vlog_info_p->argc = Verilated::getCommandArgs()->argc; vlog_info_p->argv = (PLI_BYTE8**)Verilated::getCommandArgs()->argv; vlog_info_p->product = (PLI_BYTE8*)Verilated::productName(); vlog_info_p->version = (PLI_BYTE8*)Verilated::productVersion(); return 1; } // routines added with 1364-2001 PLI_INT32 vpi_get_data(PLI_INT32 id, PLI_BYTE8 *dataLoc, PLI_INT32 numOfBytes) { _VL_VPI_UNIMP(); return 0; } PLI_INT32 vpi_put_data(PLI_INT32 id, PLI_BYTE8 *dataLoc, PLI_INT32 numOfBytes) { _VL_VPI_UNIMP(); return 0; } void *vpi_get_userdata(vpiHandle obj) { _VL_VPI_UNIMP(); return 0; } PLI_INT32 vpi_put_userdata(vpiHandle obj, void *userdata) { _VL_VPI_UNIMP(); return 0; } PLI_INT32 vpi_control(PLI_INT32 operation, ...) { VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_control %d\n", operation);); VerilatedVpiImp::assertOneCheck(); _VL_VPI_ERROR_RESET(); switch (operation) { case vpiFinish: { VL_FINISH_MT(__FILE__, __LINE__, "*VPI*"); return 1; } case vpiStop: { VL_STOP_MT(__FILE__, __LINE__, "*VPI*"); return 1; } } _VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, ignoring", VL_FUNC, VerilatedVpiError::strFromVpiProp(operation)); return 0; } vpiHandle vpi_handle_by_multi_index(vpiHandle obj, PLI_INT32 num_index, PLI_INT32 *index_array) { _VL_VPI_UNIMP(); return 0; }