// -*- mode: C++; c-file-style: "cc-mode" -*- //============================================================================= // // Code available from: https://verilator.org // // Copyright 2012-2021 by Wilson Snyder. This program is free software; you // can redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License // Version 2.0. // SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0 // //============================================================================= /// /// \file /// \brief Verilated thread pool and profiling header /// /// This file is not part of the Verilated public-facing API. /// It is only for internal use by Verilated library multithreaded /// routines. /// //============================================================================= #ifndef VERILATOR_VERILATED_THREADS_H_ #define VERILATOR_VERILATED_THREADS_H_ #include "verilatedos.h" #include "verilated.h" // for VerilatedMutex and clang annotations #ifndef VL_THREADED // Hitting this likely means verilated_threads.cpp is being compiled when // 'verilator --threads' was not used. 'verilator --threads' sets // VL_THREADED. // Alternatively it is always safe but may harm performance to always // define VL_THREADED for all compiles. #error "verilated_threads.h/cpp expected VL_THREADED (from verilator --threads)" #endif #include #include #include // clang-format off #if defined(__linux) # include // For sched_getcpu() #endif #if defined(__APPLE__) # include // For __cpuid_count() #endif // clang-format on // VlMTaskVertex and VlThreadpool will work with multiple model class types. // Since the type is opaque to VlMTaskVertex and VlThreadPool, represent it // as a void* here. using VlSelfP = void*; using VlExecFnp = void (*)(VlSelfP, bool); // Track dependencies for a single MTask. class VlMTaskVertex final { // MEMBERS static std::atomic s_yields; // Statistics // On even cycles, _upstreamDepsDone increases as upstream // dependencies complete. When it reaches _upstreamDepCount, // this MTaskVertex is ready. // // On odd cycles, _upstreamDepsDone decreases as upstream // dependencies complete, and when it reaches zero this MTaskVertex // is ready. // // An atomic is smaller than a mutex, and lock-free. // // (Why does the size of this class matter? If an mtask has many // downstream mtasks to notify, we hope these will pack into a // small number of cache lines to reduce the cost of pointer chasing // during done-notification. Nobody's quantified that cost though. // If we were really serious about shrinking this class, we could // use 16-bit types here...) std::atomic m_upstreamDepsDone; const vluint32_t m_upstreamDepCount; public: // CONSTRUCTORS // 'upstreamDepCount' is the number of upstream MTaskVertex's // that must notify this MTaskVertex before it will become ready // to run. explicit VlMTaskVertex(vluint32_t upstreamDepCount); ~VlMTaskVertex() = default; static vluint64_t yields() { return s_yields; } static void yieldThread() { ++s_yields; // Statistics std::this_thread::yield(); } // Upstream mtasks must call this when they complete. // Returns true when the current MTaskVertex becomes ready to execute, // false while it's still waiting on more dependencies. inline bool signalUpstreamDone(bool evenCycle) { if (evenCycle) { const vluint32_t upstreamDepsDone = 1 + m_upstreamDepsDone.fetch_add(1, std::memory_order_release); assert(upstreamDepsDone <= m_upstreamDepCount); return (upstreamDepsDone == m_upstreamDepCount); } else { const vluint32_t upstreamDepsDone_prev = m_upstreamDepsDone.fetch_sub(1, std::memory_order_release); assert(upstreamDepsDone_prev > 0); return (upstreamDepsDone_prev == 1); } } inline bool areUpstreamDepsDone(bool evenCycle) const { const vluint32_t target = evenCycle ? m_upstreamDepCount : 0; return m_upstreamDepsDone.load(std::memory_order_acquire) == target; } inline void waitUntilUpstreamDone(bool evenCycle) const { unsigned ct = 0; while (VL_UNLIKELY(!areUpstreamDepsDone(evenCycle))) { VL_CPU_RELAX(); ++ct; if (VL_UNLIKELY(ct > VL_LOCK_SPINS)) { ct = 0; yieldThread(); } } } }; // Profiling support class VlProfileRec final { protected: friend class VlThreadPool; enum VlProfileE { TYPE_MTASK_RUN, TYPE_EVAL, TYPE_EVAL_LOOP, TYPE_BARRIER }; // Layout below allows efficient packing. // Leave endTime first, so no math needed to calculate address in endRecord vluint64_t m_endTime = 0; // Tick at end of execution vluint64_t m_startTime = 0; // Tick at start of execution vluint32_t m_mtaskId = 0; // Mtask we're logging vluint32_t m_predictStart = 0; // Time scheduler predicted would start vluint32_t m_predictCost = 0; // How long scheduler predicted would take VlProfileE m_type = TYPE_BARRIER; // Record type unsigned m_cpu; // Execution CPU number (at start anyways) public: class Barrier {}; VlProfileRec() = default; explicit VlProfileRec(Barrier) { m_cpu = getcpu(); } void startEval(vluint64_t time) { m_type = VlProfileRec::TYPE_EVAL; m_startTime = time; m_cpu = getcpu(); } void startEvalLoop(vluint64_t time) { m_type = VlProfileRec::TYPE_EVAL_LOOP; m_startTime = time; m_cpu = getcpu(); } void startRecord(vluint64_t time, vluint32_t mtask, vluint32_t predictStart, vluint32_t predictCost) { m_type = VlProfileRec::TYPE_MTASK_RUN; m_mtaskId = mtask; m_predictStart = predictStart; m_predictCost = predictCost; m_startTime = time; m_cpu = getcpu(); } void endRecord(vluint64_t time) { m_endTime = time; } static int getcpu() { // Return current executing CPU #if defined(__linux) return sched_getcpu(); #elif defined(__APPLE__) vluint32_t info[4]; __cpuid_count(1, 0, info[0], info[1], info[2], info[3]); // info[1] is EBX, bits 24-31 are APIC ID if ((info[3] & (1 << 9)) == 0) { return -1; // no APIC on chip } else { return (unsigned)info[1] >> 24; } #elif defined(_WIN32) return GetCurrentProcessorNumber(); #else return 0; #endif } }; class VlThreadPool; class VlWorkerThread final { private: // TYPES struct ExecRec { VlExecFnp m_fnp; // Function to execute VlSelfP m_selfp; // Symbol table to execute bool m_evenCycle; // Even/odd for flag alternation ExecRec() : m_fnp{nullptr} , m_selfp{nullptr} , m_evenCycle{false} {} ExecRec(VlExecFnp fnp, VlSelfP selfp, bool evenCycle) : m_fnp{fnp} , m_selfp{selfp} , m_evenCycle{evenCycle} {} }; // MEMBERS VerilatedMutex m_mutex; std::condition_variable_any m_cv; // Only notify the condition_variable if the worker is waiting bool m_waiting VL_GUARDED_BY(m_mutex) = false; // Why a vector? We expect the pending list to be very short, typically // 0 or 1 or 2, so popping from the front shouldn't be // expensive. Revisit if we ever have longer queues... std::vector m_ready VL_GUARDED_BY(m_mutex); // Store the size atomically, so we can spin wait std::atomic m_ready_size; VlThreadPool* const m_poolp; // Our associated thread pool const bool m_profiling; // Is profiling enabled? std::atomic m_exiting; // Worker thread should exit std::thread m_cthread; // Underlying C++ thread record VerilatedContext* const m_contextp; // Context for spawned thread VL_UNCOPYABLE(VlWorkerThread); public: // CONSTRUCTORS explicit VlWorkerThread(VlThreadPool* poolp, VerilatedContext* contextp, bool profiling); ~VlWorkerThread(); // METHODS inline void dequeWork(ExecRec* workp) VL_MT_SAFE_EXCLUDES(m_mutex) { // Spin for a while, waiting for new data for (int i = 0; i < VL_LOCK_SPINS; ++i) { if (VL_LIKELY(m_ready_size.load(std::memory_order_relaxed))) { // break; } VL_CPU_RELAX(); } VerilatedLockGuard lock{m_mutex}; while (m_ready.empty()) { m_waiting = true; m_cv.wait(lock); } m_waiting = false; // As noted above this is inefficient if our ready list is ever // long (but it shouldn't be) *workp = m_ready.front(); m_ready.erase(m_ready.begin()); m_ready_size.fetch_sub(1, std::memory_order_relaxed); } inline void wakeUp() { addTask(nullptr, nullptr, false); } inline void addTask(VlExecFnp fnp, VlSelfP selfp, bool evenCycle) VL_MT_SAFE_EXCLUDES(m_mutex) { bool notify; { const VerilatedLockGuard lock{m_mutex}; m_ready.emplace_back(fnp, selfp, evenCycle); m_ready_size.fetch_add(1, std::memory_order_relaxed); notify = m_waiting; } if (notify) m_cv.notify_one(); } void workerLoop(); static void startWorker(VlWorkerThread* workerp); }; class VlThreadPool final { // TYPES using ProfileTrace = std::vector; // MEMBERS std::vector m_workers; // our workers const bool m_profiling; // is profiling enabled? // Support profiling -- we can append records of profiling events // to this vector with very low overhead, and then dump them out // later. This prevents the overhead of printf/malloc/IO from // corrupting the profiling data. It's super cheap to append // a VlProfileRec struct on the end of a pre-allocated vector; // this is the only cost we pay in real-time during a profiling cycle. // Internal note: Globals may multi-construct, see verilated.cpp top. static VL_THREAD_LOCAL ProfileTrace* t_profilep; std::set m_allProfiles VL_GUARDED_BY(m_mutex); VerilatedMutex m_mutex; public: // CONSTRUCTORS // Construct a thread pool with 'nThreads' dedicated threads. The thread // pool will create these threads and make them available to execute tasks // via this->workerp(index)->addTask(...) VlThreadPool(VerilatedContext* contextp, int nThreads, bool profiling); ~VlThreadPool(); // METHODS inline int numThreads() const { return m_workers.size(); } inline VlWorkerThread* workerp(int index) { assert(index >= 0); assert(index < m_workers.size()); return m_workers[index]; } inline VlProfileRec* profileAppend() { t_profilep->emplace_back(); return &(t_profilep->back()); } void profileAppendAll(const VlProfileRec& rec) VL_MT_SAFE_EXCLUDES(m_mutex); void profileDump(const char* filenamep, vluint64_t tickStart, vluint64_t tickEnd) VL_MT_SAFE_EXCLUDES(m_mutex); // In profiling mode, each executing thread must call // this once to setup profiling state: void setupProfilingClientThread() VL_MT_SAFE_EXCLUDES(m_mutex); void tearDownProfilingClientThread(); private: VL_UNCOPYABLE(VlThreadPool); }; #endif