// -*- mode: C++; c-file-style: "cc-mode" -*- //============================================================================= // // Code available from: https://verilator.org // // Copyright 2001-2022 by Wilson Snyder. This program is free software; you // can redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License // Version 2.0. // SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0 // //============================================================================= /// /// \file /// \brief Verilated C++ tracing in VCD format implementation code /// /// This file must be compiled and linked against all Verilated objects /// that use --trace. /// /// Use "verilator --trace" to add this to the Makefile for the linker. /// //============================================================================= // clang-format off #include "verilatedos.h" #include "verilated.h" #include "verilated_vcd_c.h" #include #include #include #include #if defined(_WIN32) && !defined(__MINGW32__) && !defined(__CYGWIN__) # include #else # include #endif #ifndef O_LARGEFILE // For example on WIN32 # define O_LARGEFILE 0 #endif #ifndef O_NONBLOCK # define O_NONBLOCK 0 #endif #ifndef O_CLOEXEC # define O_CLOEXEC 0 #endif // clang-format on // This size comes form VCD allowing use of printable ASCII characters between // '!' and '~' inclusive, which are a total of 94 different values. Encoding a // 32 bit code hence needs a maximum of std::ceil(log94(2**32-1)) == 5 bytes. constexpr unsigned VL_TRACE_MAX_VCD_CODE_SIZE = 5; // Maximum length of a VCD string code // We use 8 bytes per code in a suffix buffer array. // 1 byte optional separator + VL_TRACE_MAX_VCD_CODE_SIZE bytes for code // + 1 byte '\n' + 1 byte suffix size. This luckily comes out to a power of 2, // meaning the array can be aligned such that entries never straddle multiple // cache-lines. constexpr unsigned VL_TRACE_SUFFIX_ENTRY_SIZE = 8; // Size of a suffix entry //============================================================================= // Specialization of the generics for this trace format #define VL_DERIVED_T VerilatedVcd #include "verilated_trace_imp.cpp" #undef VL_DERIVED_T //============================================================================= //============================================================================= //============================================================================= // VerilatedVcdFile bool VerilatedVcdFile::open(const std::string& name) VL_MT_UNSAFE { m_fd = ::open(name.c_str(), O_CREAT | O_WRONLY | O_TRUNC | O_LARGEFILE | O_NONBLOCK | O_CLOEXEC, 0666); return m_fd >= 0; } void VerilatedVcdFile::close() VL_MT_UNSAFE { ::close(m_fd); } ssize_t VerilatedVcdFile::write(const char* bufp, ssize_t len) VL_MT_UNSAFE { return ::write(m_fd, bufp, len); } //============================================================================= //============================================================================= //============================================================================= // Opening/Closing VerilatedVcd::VerilatedVcd(VerilatedVcdFile* filep) { // Not in header to avoid link issue if header is included without this .cpp file m_fileNewed = (filep == nullptr); m_filep = m_fileNewed ? new VerilatedVcdFile : filep; m_wrChunkSize = 8 * 1024; m_wrBufp = new char[m_wrChunkSize * 8]; m_wrFlushp = m_wrBufp + m_wrChunkSize * 6; m_writep = m_wrBufp; } void VerilatedVcd::open(const char* filename) VL_MT_SAFE_EXCLUDES(m_mutex) { const VerilatedLockGuard lock{m_mutex}; if (isOpen()) return; // Set member variables m_filename = filename; // "" is ok, as someone may overload open openNextImp(m_rolloverMB != 0); if (!isOpen()) return; dumpHeader(); // When using rollover, the first chunk contains the header only. if (m_rolloverMB) openNextImp(true); } void VerilatedVcd::openNext(bool incFilename) VL_MT_SAFE_EXCLUDES(m_mutex) { // Open next filename in concat sequence, mangle filename if // incFilename is true. const VerilatedLockGuard lock{m_mutex}; openNextImp(incFilename); } void VerilatedVcd::openNextImp(bool incFilename) { closePrev(); // Close existing if (incFilename) { // Find _0000.{ext} in filename std::string name = m_filename; const size_t pos = name.rfind('.'); if (pos > 8 && 0 == std::strncmp("_cat", name.c_str() + pos - 8, 4) && std::isdigit(name.c_str()[pos - 4]) && std::isdigit(name.c_str()[pos - 3]) && std::isdigit(name.c_str()[pos - 2]) && std::isdigit(name.c_str()[pos - 1])) { // Increment code. if ((++(name[pos - 1])) > '9') { name[pos - 1] = '0'; if ((++(name[pos - 2])) > '9') { name[pos - 2] = '0'; if ((++(name[pos - 3])) > '9') { name[pos - 3] = '0'; if ((++(name[pos - 4])) > '9') { // name[pos - 4] = '0'; } } } } } else { // Append _cat0000 name.insert(pos, "_cat0000"); } m_filename = name; } if (VL_UNCOVERABLE(m_filename[0] == '|')) { assert(0); // LCOV_EXCL_LINE // Not supported yet. } else { // cppcheck-suppress duplicateExpression if (!m_filep->open(m_filename)) { // User code can check isOpen() m_isOpen = false; return; } } m_isOpen = true; fullDump(true); // First dump must be full m_wroteBytes = 0; } bool VerilatedVcd::preChangeDump() { if (VL_UNLIKELY(m_rolloverMB && m_wroteBytes > m_rolloverMB)) openNextImp(true); return isOpen(); } void VerilatedVcd::emitTimeChange(uint64_t timeui) { printStr("#"); printQuad(timeui); printStr("\n"); } void VerilatedVcd::makeNameMap() { // Take signal information from each module and build m_namemapp deleteNameMap(); m_namemapp = new NameMap; VerilatedTrace::traceInit(); // Though not speced, it's illegal to generate a vcd with signals // not under any module - it crashes at least two viewers. // If no scope was specified, prefix everything with a "top" // This comes from user instantiations with no name - IE Vtop(""). bool nullScope = false; for (const auto& i : *m_namemapp) { const std::string& hiername = i.first; if (!hiername.empty() && hiername[0] == '\t') nullScope = true; } if (nullScope) { NameMap* const newmapp = new NameMap; for (const auto& i : *m_namemapp) { const std::string& hiername = i.first; const std::string& decl = i.second; std::string newname{"top"}; if (hiername[0] != '\t') newname += ' '; newname += hiername; newmapp->emplace(newname, decl); } deleteNameMap(); m_namemapp = newmapp; } } void VerilatedVcd::deleteNameMap() { if (m_namemapp) VL_DO_CLEAR(delete m_namemapp, m_namemapp = nullptr); } VerilatedVcd::~VerilatedVcd() { close(); if (m_wrBufp) VL_DO_CLEAR(delete[] m_wrBufp, m_wrBufp = nullptr); deleteNameMap(); if (m_filep && m_fileNewed) VL_DO_CLEAR(delete m_filep, m_filep = nullptr); } void VerilatedVcd::closePrev() { // This function is on the flush() call path if (!isOpen()) return; VerilatedTrace::flushBase(); bufferFlush(); m_isOpen = false; m_filep->close(); } void VerilatedVcd::closeErr() { // This function is on the flush() call path // Close due to an error. We might abort before even getting here, // depending on the definition of vl_fatal. if (!isOpen()) return; // No buffer flush, just fclose m_isOpen = false; m_filep->close(); // May get error, just ignore it } void VerilatedVcd::close() VL_MT_SAFE_EXCLUDES(m_mutex) { // This function is on the flush() call path const VerilatedLockGuard lock{m_mutex}; if (!isOpen()) return; if (m_evcd) { printStr("$vcdclose "); printQuad(timeLastDump()); printStr(" $end\n"); } closePrev(); // closePrev() called VerilatedTrace::flush(), so we just // need to shut down the tracing thread here. VerilatedTrace::closeBase(); } void VerilatedVcd::flush() VL_MT_SAFE_EXCLUDES(m_mutex) { const VerilatedLockGuard lock{m_mutex}; VerilatedTrace::flushBase(); bufferFlush(); } void VerilatedVcd::printStr(const char* str) { // Not fast... while (*str) { *m_writep++ = *str++; bufferCheck(); } } void VerilatedVcd::printQuad(uint64_t n) { constexpr size_t LEN_STR_QUAD = 40; char buf[LEN_STR_QUAD]; VL_SNPRINTF(buf, LEN_STR_QUAD, "%" PRIu64, n); printStr(buf); } void VerilatedVcd::bufferResize(uint64_t minsize) { // minsize is size of largest write. We buffer at least 8 times as much data, // writing when we are 3/4 full (with thus 2*minsize remaining free) if (VL_UNLIKELY(minsize > m_wrChunkSize)) { const char* oldbufp = m_wrBufp; m_wrChunkSize = minsize * 2; m_wrBufp = new char[m_wrChunkSize * 8]; std::memcpy(m_wrBufp, oldbufp, m_writep - oldbufp); m_writep = m_wrBufp + (m_writep - oldbufp); m_wrFlushp = m_wrBufp + m_wrChunkSize * 6; VL_DO_CLEAR(delete[] oldbufp, oldbufp = nullptr); } } void VerilatedVcd::bufferFlush() VL_MT_UNSAFE_ONE { // This function can be called from the trace offload thread // This function is on the flush() call path // We add output data to m_writep. // When it gets nearly full we dump it using this routine which calls write() // This is much faster than using buffered I/O if (VL_UNLIKELY(!isOpen())) return; const char* wp = m_wrBufp; while (true) { const ssize_t remaining = (m_writep - wp); if (remaining == 0) break; errno = 0; const ssize_t got = m_filep->write(wp, remaining); if (got > 0) { wp += got; m_wroteBytes += got; } else if (VL_UNCOVERABLE(got < 0)) { if (VL_UNCOVERABLE(errno != EAGAIN && errno != EINTR)) { // LCOV_EXCL_START // write failed, presume error (perhaps out of disk space) const std::string msg = std::string{"VerilatedVcd::bufferFlush: "} + std::strerror(errno); VL_FATAL_MT("", 0, "", msg.c_str()); closeErr(); break; // LCOV_EXCL_STOP } } } // Reset buffer m_writep = m_wrBufp; } //============================================================================= // VCD string code char* VerilatedVcd::writeCode(char* writep, uint32_t code) { *writep++ = static_cast('!' + code % 94); code /= 94; while (code) { --code; *writep++ = static_cast('!' + code % 94); code /= 94; } return writep; } //============================================================================= // Definitions void VerilatedVcd::printIndent(int level_change) { if (level_change < 0) m_modDepth += level_change; assert(m_modDepth >= 0); for (int i = 0; i < m_modDepth; i++) printStr(" "); if (level_change > 0) m_modDepth += level_change; } void VerilatedVcd::dumpHeader() { printStr("$version Generated by VerilatedVcd $end\n"); printStr("$date "); { const time_t tick = time(nullptr); tm ticktm; VL_LOCALTIME_R(&tick, &ticktm); constexpr size_t LEN_BUF = 50; char buf[LEN_BUF]; std::strftime(buf, LEN_BUF, "%c", &ticktm); printStr(buf); } printStr(" $end\n"); printStr("$timescale "); printStr(timeResStr().c_str()); // lintok-begin-on-ref printStr(" $end\n"); makeNameMap(); // Signal header assert(m_modDepth == 0); printIndent(1); printStr("\n"); // We detect the spaces in module names to determine hierarchy. This // allows signals to be declared without fixed ordering, which is // required as Verilog signals might be separately declared from // SC module signals. // Print the signal names const char* lastName = ""; for (const auto& i : *m_namemapp) { const std::string& hiernamestr = i.first; const std::string& decl = i.second; // Determine difference between the old and new names const char* const hiername = hiernamestr.c_str(); const char* lp = lastName; const char* np = hiername; lastName = hiername; // Skip common prefix, it must break at a space or tab for (; *np && (*np == *lp); np++, lp++) {} while (np != hiername && *np && *np != ' ' && *np != '\t') { --np; --lp; } // printf("hier %s\n lp=%s\n np=%s\n",hiername,lp,np); // Any extra spaces in last name are scope ups we need to do bool first = true; for (; *lp; lp++) { if (*lp == ' ' || (first && *lp != '\t')) { printIndent(-1); printStr("$upscope $end\n"); } first = false; } // Any new spaces are scope downs we need to do while (*np) { if (*np == ' ') np++; if (*np == '\t') break; // tab means signal name starts printIndent(1); // Find character after name end const char* sp = np; while (*sp && *sp != ' ' && *sp != '\t' && !(*sp & '\x80')) sp++; printStr("$scope "); if (*sp & '\x80') { switch (*sp & 0x7f) { case VLT_TRACE_SCOPE_STRUCT: printStr("struct "); break; case VLT_TRACE_SCOPE_INTERFACE: printStr("interface "); break; case VLT_TRACE_SCOPE_UNION: printStr("union "); break; default: printStr("module "); } } else { printStr("module "); } for (; *np && *np != ' ' && *np != '\t'; np++) { if (*np == '[') { printStr("["); } else if (*np == ']') { printStr("]"); } else if (!(*np & '\x80')) { *m_writep++ = *np; } } printStr(" $end\n"); } printIndent(0); printStr(decl.c_str()); } while (m_modDepth > 1) { printIndent(-1); printStr("$upscope $end\n"); } printIndent(-1); printStr("$enddefinitions $end\n\n\n"); assert(m_modDepth == 0); // Reclaim storage deleteNameMap(); } void VerilatedVcd::declare(uint32_t code, const char* name, const char* wirep, bool array, int arraynum, bool tri, bool bussed, int msb, int lsb) { const int bits = ((msb > lsb) ? (msb - lsb) : (lsb - msb)) + 1; const bool enabled = VerilatedTrace::declCode(code, name, bits, tri); if (m_suffixes.size() <= nextCode() * VL_TRACE_SUFFIX_ENTRY_SIZE) { m_suffixes.resize(nextCode() * VL_TRACE_SUFFIX_ENTRY_SIZE * 2, 0); } // Make sure write buffer is large enough (one character per bit), plus header bufferResize(bits + 1024); if (!enabled) return; // Split name into basename // Spaces and tabs aren't legal in VCD signal names, so: // Space separates each level of scope // Tab separates final scope from signal name // Tab sorts before spaces, so signals nicely will print before scopes // Note the hiername may be nothing, if so we'll add "\t{name}" std::string nameasstr = namePrefix() + name; std::string hiername; std::string basename; for (const char* cp = nameasstr.c_str(); *cp; cp++) { if (isScopeEscape(*cp)) { // Ahh, we've just read a scope, not a basename if (!hiername.empty()) hiername += " "; hiername += basename; basename = ""; } else { basename += *cp; } } hiername += "\t" + basename; // Print reference std::string decl = "$var "; if (m_evcd) { decl += "port"; } else { decl += wirep; // usually "wire" } constexpr size_t bufsize = 1000; char buf[bufsize]; VL_SNPRINTF(buf, bufsize, " %2d ", bits); decl += buf; if (m_evcd) { VL_SNPRINTF(buf, bufsize, "<%u", code); decl += buf; } else { // Add string code to decl char* const endp = writeCode(buf, code); *endp = '\0'; decl += buf; // Build suffix array entry char* const entryp = &m_suffixes[code * VL_TRACE_SUFFIX_ENTRY_SIZE]; const size_t length = endp - buf; assert(length <= VL_TRACE_MAX_VCD_CODE_SIZE); // 1 bit values don't have a ' ' separator between value and string code const bool isBit = bits == 1; entryp[0] = ' '; // Separator // Use memcpy as we checked size above, and strcpy is flagged unsafe std::memcpy(entryp + !isBit, buf, std::strlen(buf)); // Code (overwrite separator if isBit) entryp[length + !isBit] = '\n'; // Replace '\0' with line termination '\n' // Set length of suffix (used to increment write pointer) entryp[VL_TRACE_SUFFIX_ENTRY_SIZE - 1] = !isBit + length + 1; } decl += " "; decl += basename; if (array) { VL_SNPRINTF(buf, bufsize, "[%d]", arraynum); decl += buf; hiername += buf; } if (bussed) { VL_SNPRINTF(buf, bufsize, " [%d:%d]", msb, lsb); decl += buf; } decl += " $end\n"; m_namemapp->emplace(hiername, decl); } void VerilatedVcd::declBit(uint32_t code, const char* name, bool array, int arraynum) { declare(code, name, "wire", array, arraynum, false, false, 0, 0); } void VerilatedVcd::declBus(uint32_t code, const char* name, bool array, int arraynum, int msb, int lsb) { declare(code, name, "wire", array, arraynum, false, true, msb, lsb); } void VerilatedVcd::declQuad(uint32_t code, const char* name, bool array, int arraynum, int msb, int lsb) { declare(code, name, "wire", array, arraynum, false, true, msb, lsb); } void VerilatedVcd::declArray(uint32_t code, const char* name, bool array, int arraynum, int msb, int lsb) { declare(code, name, "wire", array, arraynum, false, true, msb, lsb); } void VerilatedVcd::declDouble(uint32_t code, const char* name, bool array, int arraynum) { declare(code, name, "real", array, arraynum, false, false, 63, 0); } #ifdef VL_TRACE_VCD_OLD_API void VerilatedVcd::declTriBit(uint32_t code, const char* name, bool array, int arraynum) { declare(code, name, "wire", array, arraynum, true, false, 0, 0); } void VerilatedVcd::declTriBus(uint32_t code, const char* name, bool array, int arraynum, int msb, int lsb) { declare(code, name, "wire", array, arraynum, true, true, msb, lsb); } void VerilatedVcd::declTriQuad(uint32_t code, const char* name, bool array, int arraynum, int msb, int lsb) { declare(code, name, "wire", array, arraynum, true, true, msb, lsb); } void VerilatedVcd::declTriArray(uint32_t code, const char* name, bool array, int arraynum, int msb, int lsb) { declare(code, name, "wire", array, arraynum, true, true, msb, lsb); } #endif // VL_TRACE_VCD_OLD_API //============================================================================= // Trace rendering prinitives static inline void VerilatedVcdCCopyAndAppendNewLine(char* writep, const char* suffixp) VL_ATTR_NO_SANITIZE_ALIGN; static inline void VerilatedVcdCCopyAndAppendNewLine(char* writep, const char* suffixp) { // Copy the whole suffix (this avoid having hard to predict branches which // helps a lot). Note: The maximum length of the suffix is // VL_TRACE_MAX_VCD_CODE_SIZE + 2 == 7, but we unroll this here for speed. #ifdef VL_X86_64 // Copy the whole 8 bytes in one go, this works on little-endian machines // supporting unaligned stores. *reinterpret_cast(writep) = *reinterpret_cast(suffixp); #else // Portable variant writep[0] = suffixp[0]; writep[1] = suffixp[1]; writep[2] = suffixp[2]; writep[3] = suffixp[3]; writep[4] = suffixp[4]; writep[5] = suffixp[5]; writep[6] = '\n'; // The 6th index is always '\n' if it's relevant, no need to fetch it. #endif } void VerilatedVcd::finishLine(uint32_t code, char* writep) { const char* const suffixp = m_suffixes.data() + code * VL_TRACE_SUFFIX_ENTRY_SIZE; VL_DEBUG_IFDEF(assert(suffixp[0]);); VerilatedVcdCCopyAndAppendNewLine(writep, suffixp); // Now write back the write pointer incremented by the actual size of the // suffix, which was stored in the last byte of the suffix buffer entry. m_writep = writep + suffixp[VL_TRACE_SUFFIX_ENTRY_SIZE - 1]; bufferCheck(); } //============================================================================= // emit* trace routines // Note: emit* are only ever called from one place (full* in // verilated_trace_imp.cpp, which is included in this file at the top), // so always inline them. VL_ATTR_ALWINLINE void VerilatedVcd::emitBit(uint32_t code, CData newval) { // Don't prefetch suffix as it's a bit too late; char* wp = m_writep; *wp++ = '0' | static_cast(newval); finishLine(code, wp); } VL_ATTR_ALWINLINE void VerilatedVcd::emitCData(uint32_t code, CData newval, int bits) { char* wp = m_writep; *wp++ = 'b'; cvtCDataToStr(wp, newval << (VL_BYTESIZE - bits)); finishLine(code, wp + bits); } VL_ATTR_ALWINLINE void VerilatedVcd::emitSData(uint32_t code, SData newval, int bits) { char* wp = m_writep; *wp++ = 'b'; cvtSDataToStr(wp, newval << (VL_SHORTSIZE - bits)); finishLine(code, wp + bits); } VL_ATTR_ALWINLINE void VerilatedVcd::emitIData(uint32_t code, IData newval, int bits) { char* wp = m_writep; *wp++ = 'b'; cvtIDataToStr(wp, newval << (VL_IDATASIZE - bits)); finishLine(code, wp + bits); } VL_ATTR_ALWINLINE void VerilatedVcd::emitQData(uint32_t code, QData newval, int bits) { char* wp = m_writep; *wp++ = 'b'; cvtQDataToStr(wp, newval << (VL_QUADSIZE - bits)); finishLine(code, wp + bits); } VL_ATTR_ALWINLINE void VerilatedVcd::emitWData(uint32_t code, const WData* newvalp, int bits) { int words = VL_WORDS_I(bits); char* wp = m_writep; *wp++ = 'b'; // Handle the most significant word const int bitsInMSW = VL_BITBIT_E(bits) ? VL_BITBIT_E(bits) : VL_EDATASIZE; cvtEDataToStr(wp, newvalp[--words] << (VL_EDATASIZE - bitsInMSW)); wp += bitsInMSW; // Handle the remaining words while (words > 0) { cvtEDataToStr(wp, newvalp[--words]); wp += VL_EDATASIZE; } finishLine(code, wp); } VL_ATTR_ALWINLINE void VerilatedVcd::emitDouble(uint32_t code, double newval) { char* wp = m_writep; // Buffer can't overflow before VL_SNPRINTF; we sized during declaration VL_SNPRINTF(wp, m_wrChunkSize, "r%.16g", newval); wp += std::strlen(wp); finishLine(code, wp); } #ifdef VL_TRACE_VCD_OLD_API void VerilatedVcd::fullBit(uint32_t code, const uint32_t newval) { // Note the &1, so we don't require clean input -- makes more common no change case faster *oldp(code) = newval; *m_writep++ = ('0' + static_cast(newval & 1)); m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullBus(uint32_t code, const uint32_t newval, int bits) { *oldp(code) = newval; *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { *m_writep++ = ((newval & (1L << bit)) ? '1' : '0'); } *m_writep++ = ' '; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullQuad(uint32_t code, const uint64_t newval, int bits) { (*(reinterpret_cast(oldp(code)))) = newval; *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { *m_writep++ = ((newval & (1ULL << bit)) ? '1' : '0'); } *m_writep++ = ' '; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullArray(uint32_t code, const uint32_t* newval, int bits) { for (int word = 0; word < (((bits - 1) / 32) + 1); ++word) { oldp(code)[word] = newval[word]; } *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { *m_writep++ = ((newval[(bit / 32)] & (1L << (bit & 0x1f))) ? '1' : '0'); } *m_writep++ = ' '; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullArray(uint32_t code, const uint64_t* newval, int bits) { for (int word = 0; word < (((bits - 1) / 64) + 1); ++word) { oldp(code)[word] = newval[word]; } *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { *m_writep++ = ((newval[(bit / 64)] & (1ULL << (bit & 0x3f))) ? '1' : '0'); } *m_writep++ = ' '; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullTriBit(uint32_t code, const uint32_t newval, const uint32_t newtri) { oldp(code)[0] = newval; oldp(code)[1] = newtri; *m_writep++ = "01zz"[newval | (newtri << 1)]; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullTriBus(uint32_t code, const uint32_t newval, const uint32_t newtri, int bits) { oldp(code)[0] = newval; oldp(code)[1] = newtri; *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { *m_writep++ = "01zz"[((newval >> bit) & 1) | (((newtri >> bit) & 1) << 1)]; } *m_writep++ = ' '; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullTriQuad(uint32_t code, const uint64_t newval, const uint64_t newtri, int bits) { (*(reinterpret_cast(oldp(code)))) = newval; (*(reinterpret_cast(oldp(code + 1)))) = newtri; *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { *m_writep++ = "01zz"[((newval >> bit) & 1ULL) | (((newtri >> bit) & 1ULL) << 1ULL)]; } *m_writep++ = ' '; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullTriArray(uint32_t code, const uint32_t* newvalp, const uint32_t* newtrip, int bits) { for (int word = 0; word < (((bits - 1) / 32) + 1); ++word) { oldp(code)[word * 2] = newvalp[word]; oldp(code)[word * 2 + 1] = newtrip[word]; } *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { uint32_t valbit = (newvalp[(bit / 32)] >> (bit & 0x1f)) & 1; uint32_t tribit = (newtrip[(bit / 32)] >> (bit & 0x1f)) & 1; *m_writep++ = "01zz"[valbit | (tribit << 1)]; } *m_writep++ = ' '; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullDouble(uint32_t code, const double newval) { // cppcheck-suppress invalidPointerCast (*(reinterpret_cast(oldp(code)))) = newval; // Buffer can't overflow before VL_SNPRINTF; we sized during declaration VL_SNPRINTF(m_writep, m_wrChunkSize, "r%.16g", newval); m_writep += std::strlen(m_writep); *m_writep++ = ' '; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } #endif // VL_TRACE_VCD_OLD_API //====================================================================== //====================================================================== //====================================================================== #ifdef VERILATED_VCD_TEST #include extern void verilated_trace_imp_selftest(); uint32_t v1, v2, s1, s2[3]; uint32_t tri96[3]; uint32_t tri96__tri[3]; uint64_t quad96[2]; uint64_t tquad; uint64_t tquad__tri; uint8_t ch; uint64_t timestamp = 1; double doub = 0.0; float flo = 0.0f; void vcdInit(void*, VerilatedVcd* vcdp, uint32_t) { vcdp->scopeEscape('.'); vcdp->pushNamePrefix("top."); /**/ vcdp->declBus(0x2, "v1", -1, 0, 5, 1); /**/ vcdp->declBus(0x3, "v2", -1, 0, 6, 1); /**/ vcdp->pushNamePrefix("sub1."); /***/ vcdp->declBit(0x4, "s1", -1, 0); /***/ vcdp->declBit(0x5, "ch", -1, 0); /**/ vcdp->popNamePrefix(); /**/ vcdp->pushNamePrefix("sub2."); /***/ vcdp->declArray(0x6, "s2", -1, 0, 40, 3); /**/ vcdp->popNamePrefix(); vcdp->popNamePrefix(); // Note need to add 3 for next code. vcdp->pushNamePrefix("top2."); /**/ vcdp->declBus(0x2, "t2v1", -1, 0, 4, 1); /**/ vcdp->declTriBit(0x10, "io1", -1, 0); /**/ vcdp->declTriBus(0x12, "io5", -1, 0, 4, 0); /**/ vcdp->declTriArray(0x16, "io96", -1, 0, 95, 0); /**/ // Note need to add 6 for next code. /**/ vcdp->declDouble(0x1c, "doub", -1, 0); /**/ // Note need to add 2 for next code. /**/ vcdp->declArray(0x20, "q2", -1, 0, 95, 0); /**/ // Note need to add 4 for next code. /**/ vcdp->declTriQuad(0x24, "tq", -1, 0, 63, 0); /**/ // Note need to add 4 for next code. vcdp->popNamePrefix(); } void vcdFull(void*, VerilatedVcd* vcdp) { vcdp->fullBus(0x2, v1, 5); vcdp->fullBus(0x3, v2, 7); vcdp->fullBit(0x4, s1); vcdp->fullBus(0x5, ch, 2); vcdp->fullArray(0x6, &s2[0], 38); vcdp->fullTriBit(0x10, tri96[0] & 1, tri96__tri[0] & 1); vcdp->fullTriBus(0x12, tri96[0] & 0x1f, tri96__tri[0] & 0x1f, 5); vcdp->fullTriArray(0x16, tri96, tri96__tri, 96); vcdp->fullDouble(0x1c, doub); vcdp->fullArray(0x20, &quad96[0], 96); vcdp->fullTriQuad(0x24, tquad, tquad__tri, 64); } void vcdChange(void*, VerilatedVcd* vcdp) { vcdp->chgBus(0x2, v1, 5); vcdp->chgBus(0x3, v2, 7); vcdp->chgBit(0x4, s1); vcdp->chgBus(0x5, ch, 2); vcdp->chgArray(0x6, &s2[0], 38); vcdp->chgTriBit(0x10, tri96[0] & 1, tri96__tri[0] & 1); vcdp->chgTriBus(0x12, tri96[0] & 0x1f, tri96__tri[0] & 0x1f, 5); vcdp->chgTriArray(0x16, tri96, tri96__tri, 96); vcdp->chgDouble(0x1c, doub); vcdp->chgArray(0x20, &quad96[0], 96); vcdp->chgTriQuad(0x24, tquad, tquad__tri, 64); } // clang-format off void vcdTestMain(const char* filenamep) { verilated_trace_imp_selftest(); v1 = v2 = s1 = 0; s2[0] = s2[1] = s2[2] = 0; tri96[2] = tri96[1] = tri96[0] = 0; tri96__tri[2] = tri96__tri[1] = tri96__tri[0] = ~0; quad96[1] = quad96[0] = 0; ch = 0; doub = 0; tquad = tquad__tri = 0; { VerilatedVcdC* vcdp = new VerilatedVcdC; vcdp->evcd(true); vcdp->set_time_unit("1ms"); vcdp->set_time_unit(std::string{"1ms"}); vcdp->set_time_resolution("1ns"); vcdp->set_time_resolution(std::string{"1ns"}); vcdp->spTrace()->addInitCb(&vcdInit, 0); vcdp->spTrace()->addFullCb(&vcdFull, 0); vcdp->spTrace()->addChgCb(&vcdChange, 0); vcdp->open(filenamep); // Dumping vcdp->dump(++timestamp); v1 = 0xfff; tri96[2] = 4; tri96[1] = 2; tri96[0] = 1; tri96__tri[2] = tri96__tri[1] = tri96__tri[0] = ~0; // Still tri quad96[1] = 0xffffffff; quad96[0] = 0; doub = 1.5; flo = 1.4f; vcdp->dump(++timestamp); v2 = 0x1; s2[1] = 2; tri96__tri[2] = tri96__tri[1] = tri96__tri[0] = 0; // enable w/o data change quad96[1] = 0; quad96[0] = ~0; doub = -1.66e13; flo = 0.123f; tquad = 0x00ff00ff00ff00ffULL; tquad__tri = 0x0000fffff0000ffffULL; vcdp->dump(++timestamp); ch = 2; tri96[2] = ~4; tri96[1] = ~2; tri96[0] = ~1; doub = -3.33e-13; vcdp->dump(++timestamp); vcdp->dump(++timestamp); # ifdef VERILATED_VCD_TEST_64BIT const uint64_t bytesPerDump = 15ULL; for (uint64_t i = 0; i < ((1ULL << 32) / bytesPerDump); i++) { v1 = i; vcdp->dump(++timestamp); } # endif vcdp->close(); VL_DO_CLEAR(delete vcdp, vcdp = nullptr); } } #endif // clang-format on //******************************************************************** // ;compile-command: "v4make test_regress/t/t_trace_c_api.pl" // // Local Variables: // End: