// -*- mode: C++; c-file-style: "cc-mode" -*- //============================================================================= // // Code available from: https://verilator.org // // Copyright 2001-2022 by Wilson Snyder. This program is free software; you // can redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License // Version 2.0. // SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0 // //============================================================================= /// /// \file /// \brief Verilated common-format tracing implementation code /// /// This file must be compiled and linked against all Verilated objects /// that use --trace. /// /// Use "verilator --trace" to add this to the Makefile for the linker. /// //============================================================================= // clang-format off #ifndef VL_CPPCHECK #ifndef VL_DERIVED_T # error "This file should be included in trace format implementations" #endif #include "verilated_intrinsics.h" #include "verilated_trace.h" #if 0 # include # define VL_TRACE_THREAD_DEBUG(msg) std::cout << "TRACE THREAD: " << msg << std::endl #else # define VL_TRACE_THREAD_DEBUG(msg) #endif // clang-format on //============================================================================= // Static utility functions static double timescaleToDouble(const char* unitp) { char* endp = nullptr; double value = std::strtod(unitp, &endp); // On error so we allow just "ns" to return 1e-9. if (value == 0.0 && endp == unitp) value = 1; unitp = endp; for (; *unitp && std::isspace(*unitp); unitp++) {} switch (*unitp) { case 's': value *= 1e0; break; case 'm': value *= 1e-3; break; case 'u': value *= 1e-6; break; case 'n': value *= 1e-9; break; case 'p': value *= 1e-12; break; case 'f': value *= 1e-15; break; case 'a': value *= 1e-18; break; } return value; } static std::string doubleToTimescale(double value) { const char* suffixp = "s"; // clang-format off if (value >= 1e0) { suffixp = "s"; value *= 1e0; } else if (value >= 1e-3 ) { suffixp = "ms"; value *= 1e3; } else if (value >= 1e-6 ) { suffixp = "us"; value *= 1e6; } else if (value >= 1e-9 ) { suffixp = "ns"; value *= 1e9; } else if (value >= 1e-12) { suffixp = "ps"; value *= 1e12; } else if (value >= 1e-15) { suffixp = "fs"; value *= 1e15; } else if (value >= 1e-18) { suffixp = "as"; value *= 1e18; } // clang-format on char valuestr[100]; VL_SNPRINTF(valuestr, 100, "%0.0f%s", value, suffixp); return valuestr; // Gets converted to string, so no ref to stack } #ifdef VL_TRACE_THREADED //========================================================================= // Buffer management template <> vluint32_t* VerilatedTrace::getTraceBuffer() { vluint32_t* bufferp; // Some jitter is expected, so some number of alternative trace buffers are // required, but don't allocate more than 8 buffers. if (m_numTraceBuffers < 8) { // Allocate a new buffer if none is available if (!m_buffersFromWorker.tryGet(bufferp)) { ++m_numTraceBuffers; // Note: over allocate a bit so pointer comparison is well defined // if we overflow only by a small amount bufferp = new vluint32_t[m_traceBufferSize + 16]; } } else { // Block until a buffer becomes available bufferp = m_buffersFromWorker.get(); } return bufferp; } template <> void VerilatedTrace::waitForBuffer(const vluint32_t* buffp) { // Slow path code only called on flush/shutdown, so use a simple algorithm. // Collect buffers from worker and stash them until we get the one we want. std::deque stash; do { stash.push_back(m_buffersFromWorker.get()); } while (stash.back() != buffp); // Now put them back in the queue, in the original order. while (!stash.empty()) { m_buffersFromWorker.put_front(stash.back()); stash.pop_back(); } } //========================================================================= // Worker thread template <> void VerilatedTrace::workerThreadMain() { bool shutdown = false; do { vluint32_t* const bufferp = m_buffersToWorker.get(); VL_TRACE_THREAD_DEBUG(""); VL_TRACE_THREAD_DEBUG("Got buffer: " << bufferp); const vluint32_t* readp = bufferp; while (true) { const vluint32_t cmd = readp[0]; const vluint32_t top = cmd >> 4; // Always set this up, as it is almost always needed vluint32_t* const oldp = m_sigs_oldvalp + readp[1]; // Note this increment needs to be undone on commands which do not // actually contain a code, but those are the rare cases. readp += 2; switch (cmd & 0xF) { //=== // CHG_* commands case VerilatedTraceCommand::CHG_BIT_0: VL_TRACE_THREAD_DEBUG("Command CHG_BIT_0 " << top); chgBitImpl(oldp, 0); continue; case VerilatedTraceCommand::CHG_BIT_1: VL_TRACE_THREAD_DEBUG("Command CHG_BIT_1 " << top); chgBitImpl(oldp, 1); continue; case VerilatedTraceCommand::CHG_CDATA: VL_TRACE_THREAD_DEBUG("Command CHG_CDATA " << top); // Bits stored in bottom byte of command chgCDataImpl(oldp, *readp, top); readp += 1; continue; case VerilatedTraceCommand::CHG_SDATA: VL_TRACE_THREAD_DEBUG("Command CHG_SDATA " << top); // Bits stored in bottom byte of command chgSDataImpl(oldp, *readp, top); readp += 1; continue; case VerilatedTraceCommand::CHG_IDATA: VL_TRACE_THREAD_DEBUG("Command CHG_IDATA " << top); // Bits stored in bottom byte of command chgIDataImpl(oldp, *readp, top); readp += 1; continue; case VerilatedTraceCommand::CHG_QDATA: VL_TRACE_THREAD_DEBUG("Command CHG_QDATA " << top); // Bits stored in bottom byte of command chgQDataImpl(oldp, *reinterpret_cast(readp), top); readp += 2; continue; case VerilatedTraceCommand::CHG_WDATA: VL_TRACE_THREAD_DEBUG("Command CHG_WDATA " << top); chgWDataImpl(oldp, readp, top); readp += VL_WORDS_I(top); continue; case VerilatedTraceCommand::CHG_DOUBLE: VL_TRACE_THREAD_DEBUG("Command CHG_DOUBLE " << top); chgDoubleImpl(oldp, *reinterpret_cast(readp)); readp += 2; continue; //=== // Rare commands case VerilatedTraceCommand::TIME_CHANGE: VL_TRACE_THREAD_DEBUG("Command TIME_CHANGE " << top); readp -= 1; // No code in this command, undo increment emitTimeChange(*reinterpret_cast(readp)); readp += 2; continue; //=== // Commands ending this buffer case VerilatedTraceCommand::END: VL_TRACE_THREAD_DEBUG("Command END"); break; case VerilatedTraceCommand::SHUTDOWN: VL_TRACE_THREAD_DEBUG("Command SHUTDOWN"); shutdown = true; break; //=== // Unknown command default: { // LCOV_EXCL_START VL_TRACE_THREAD_DEBUG("Command UNKNOWN"); VL_PRINTF_MT("Trace command: 0x%08x\n", cmd); VL_FATAL_MT(__FILE__, __LINE__, "", "Unknown trace command"); break; } // LCOV_EXCL_STOP } // The above switch will execute 'continue' when necessary, // so if we ever reach here, we are done with the buffer. break; } VL_TRACE_THREAD_DEBUG("Returning buffer"); // Return buffer m_buffersFromWorker.put(bufferp); } while (VL_LIKELY(!shutdown)); } template <> void VerilatedTrace::shutdownWorker() { // If the worker thread is not running, done.. if (!m_workerThread) return; // Hand an buffer with a shutdown command to the worker thread vluint32_t* const bufferp = getTraceBuffer(); bufferp[0] = VerilatedTraceCommand::SHUTDOWN; m_buffersToWorker.put(bufferp); // Wait for it to return waitForBuffer(bufferp); // Join the thread and delete it m_workerThread->join(); m_workerThread.reset(nullptr); } #endif //============================================================================= // Life cycle template <> void VerilatedTrace::closeBase() { #ifdef VL_TRACE_THREADED shutdownWorker(); while (m_numTraceBuffers) { delete[] m_buffersFromWorker.get(); --m_numTraceBuffers; } #endif } template <> void VerilatedTrace::flushBase() { #ifdef VL_TRACE_THREADED // Hand an empty buffer to the worker thread vluint32_t* const bufferp = getTraceBuffer(); *bufferp = VerilatedTraceCommand::END; m_buffersToWorker.put(bufferp); // Wait for it to be returned. As the processing is in-order, // this ensures all previous buffers have been processed. waitForBuffer(bufferp); #endif } //============================================================================= // Callbacks to run on global events template <> void VerilatedTrace::onFlush(void* selfp) { // This calls 'flush' on the derived class (which must then get any mutex) reinterpret_cast(selfp)->flush(); } template <> void VerilatedTrace::onExit(void* selfp) { // This calls 'close' on the derived class (which must then get any mutex) reinterpret_cast(selfp)->close(); } //============================================================================= // VerilatedTrace template <> VerilatedTrace::VerilatedTrace() : m_sigs_oldvalp{nullptr} , m_timeLastDump{0} , m_fullDump{true} , m_nextCode{0} , m_numSignals{0} , m_maxBits{0} , m_scopeEscape{'.'} , m_timeRes{1e-9} , m_timeUnit { 1e-9 } #ifdef VL_TRACE_THREADED , m_numTraceBuffers { 0 } #endif { set_time_unit(Verilated::threadContextp()->timeunitString()); set_time_resolution(Verilated::threadContextp()->timeprecisionString()); } template <> VerilatedTrace::~VerilatedTrace() { if (m_sigs_oldvalp) VL_DO_CLEAR(delete[] m_sigs_oldvalp, m_sigs_oldvalp = nullptr); Verilated::removeFlushCb(VerilatedTrace::onFlush, this); Verilated::removeExitCb(VerilatedTrace::onExit, this); #ifdef VL_TRACE_THREADED closeBase(); #endif } //========================================================================= // Internals available to format specific implementations template <> void VerilatedTrace::traceInit() VL_MT_UNSAFE { // Note: It is possible to re-open a trace file (VCD in particular), // so we must reset the next code here, but it must have the same number // of codes on re-open const vluint32_t expectedCodes = nextCode(); m_nextCode = 1; m_numSignals = 0; m_maxBits = 0; // Call all initialize callbacks, which will: // - Call decl* for each signal // - Store the base code for (vluint32_t i = 0; i < m_initCbs.size(); ++i) { const CallbackRecord& cbr = m_initCbs[i]; cbr.m_initCb(cbr.m_userp, self(), nextCode()); } if (expectedCodes && nextCode() != expectedCodes) { VL_FATAL_MT(__FILE__, __LINE__, "", "Reopening trace file with different number of signals"); } // Now that we know the number of codes, allocate space for the buffer // holding previous signal values. if (!m_sigs_oldvalp) m_sigs_oldvalp = new vluint32_t[nextCode()]; // Set callback so flush/abort will flush this file Verilated::addFlushCb(VerilatedTrace::onFlush, this); Verilated::addExitCb(VerilatedTrace::onExit, this); #ifdef VL_TRACE_THREADED // Compute trace buffer size. we need to be able to store a new value for // each signal, which is 'nextCode()' entries after the init callbacks // above have been run, plus up to 2 more words of metadata per signal, // plus fixed overhead of 1 for a termination flag and 3 for a time stamp // update. m_traceBufferSize = nextCode() + numSignals() * 2 + 4; // Start the worker thread m_workerThread.reset(new std::thread{&VerilatedTrace::workerThreadMain, this}); #endif } template <> void VerilatedTrace::declCode(vluint32_t code, vluint32_t bits, bool tri) { if (VL_UNCOVERABLE(!code)) { VL_FATAL_MT(__FILE__, __LINE__, "", "Internal: internal trace problem, code 0 is illegal"); } // Note: The tri-state flag is not used by Verilator, but is here for // compatibility with some foreign code. int codesNeeded = VL_WORDS_I(bits); if (tri) codesNeeded *= 2; m_nextCode = std::max(m_nextCode, code + codesNeeded); ++m_numSignals; m_maxBits = std::max(m_maxBits, bits); } //========================================================================= // Internals available to format specific implementations template <> std::string VerilatedTrace::timeResStr() const { return doubleToTimescale(m_timeRes); } //========================================================================= // External interface to client code template <> void VerilatedTrace::set_time_unit(const char* unitp) VL_MT_SAFE { m_timeUnit = timescaleToDouble(unitp); } template <> void VerilatedTrace::set_time_unit(const std::string& unit) VL_MT_SAFE { set_time_unit(unit.c_str()); } template <> void VerilatedTrace::set_time_resolution(const char* unitp) VL_MT_SAFE { m_timeRes = timescaleToDouble(unitp); } template <> void VerilatedTrace::set_time_resolution(const std::string& unit) VL_MT_SAFE { set_time_resolution(unit.c_str()); } template <> void VerilatedTrace::dump(vluint64_t timeui) VL_MT_SAFE_EXCLUDES(m_mutex) { // Not really VL_MT_SAFE but more VL_MT_UNSAFE_ONE. // This does get the mutex, but if multiple threads are trying to dump // chances are the data being dumped will have other problems const VerilatedLockGuard lock{m_mutex}; if (VL_UNCOVERABLE(m_timeLastDump && timeui <= m_timeLastDump)) { // LCOV_EXCL_START VL_PRINTF_MT("%%Warning: previous dump at t=%" PRIu64 ", requesting t=%" PRIu64 ", dump call ignored\n", m_timeLastDump, timeui); return; } // LCOV_EXCL_STOP m_timeLastDump = timeui; Verilated::quiesce(); // Call hook for format specific behaviour if (VL_UNLIKELY(m_fullDump)) { if (!preFullDump()) return; } else { if (!preChangeDump()) return; } #ifdef VL_TRACE_THREADED // Currently only incremental dumps run on the worker thread vluint32_t* bufferp = nullptr; if (VL_LIKELY(!m_fullDump)) { // Get the trace buffer we are about to fill bufferp = getTraceBuffer(); m_traceBufferWritep = bufferp; m_traceBufferEndp = bufferp + m_traceBufferSize; // Tell worker to update time point m_traceBufferWritep[0] = VerilatedTraceCommand::TIME_CHANGE; *reinterpret_cast(m_traceBufferWritep + 1) = timeui; m_traceBufferWritep += 3; } else { // Update time point flushBase(); emitTimeChange(timeui); } #else // Update time point emitTimeChange(timeui); #endif // Run the callbacks if (VL_UNLIKELY(m_fullDump)) { m_fullDump = false; // No more need for next dump to be full for (vluint32_t i = 0; i < m_fullCbs.size(); ++i) { const CallbackRecord& cbr = m_fullCbs[i]; cbr.m_dumpCb(cbr.m_userp, self()); } } else { for (vluint32_t i = 0; i < m_chgCbs.size(); ++i) { const CallbackRecord& cbr = m_chgCbs[i]; cbr.m_dumpCb(cbr.m_userp, self()); } } for (vluint32_t i = 0; i < m_cleanupCbs.size(); ++i) { const CallbackRecord& cbr = m_cleanupCbs[i]; cbr.m_dumpCb(cbr.m_userp, self()); } #ifdef VL_TRACE_THREADED if (VL_LIKELY(bufferp)) { // Mark end of the trace buffer we just filled *m_traceBufferWritep++ = VerilatedTraceCommand::END; // Assert no buffer overflow assert(m_traceBufferWritep - bufferp <= m_traceBufferSize); // Pass it to the worker thread m_buffersToWorker.put(bufferp); } #endif } //============================================================================= // Non-hot path internal interface to Verilator generated code template <> void VerilatedTrace::addCallbackRecord(std::vector& cbVec, CallbackRecord& cbRec) VL_MT_SAFE_EXCLUDES(m_mutex) { const VerilatedLockGuard lock{m_mutex}; if (VL_UNCOVERABLE(timeLastDump() != 0)) { // LCOV_EXCL_START const std::string msg = (std::string{"Internal: "} + __FILE__ + "::" + __FUNCTION__ + " called with already open file"); VL_FATAL_MT(__FILE__, __LINE__, "", msg.c_str()); } // LCOV_EXCL_STOP cbVec.push_back(cbRec); } template <> void VerilatedTrace::addInitCb(initCb_t cb, void* userp) VL_MT_SAFE { CallbackRecord cbr{cb, userp}; addCallbackRecord(m_initCbs, cbr); } template <> void VerilatedTrace::addFullCb(dumpCb_t cb, void* userp) VL_MT_SAFE { CallbackRecord cbr{cb, userp}; addCallbackRecord(m_fullCbs, cbr); } template <> void VerilatedTrace::addChgCb(dumpCb_t cb, void* userp) VL_MT_SAFE { CallbackRecord cbr{cb, userp}; addCallbackRecord(m_chgCbs, cbr); } template <> void VerilatedTrace::addCleanupCb(dumpCb_t cb, void* userp) VL_MT_SAFE { CallbackRecord cbr{cb, userp}; addCallbackRecord(m_cleanupCbs, cbr); } template <> void VerilatedTrace::pushNamePrefix(const std::string& prefix) { m_namePrefixStack.push_back(m_namePrefixStack.back() + prefix); } template <> void VerilatedTrace::popNamePrefix(unsigned count) { while (count--) m_namePrefixStack.pop_back(); assert(!m_namePrefixStack.empty()); } //========================================================================= // Hot path internal interface to Verilator generated code // These functions must write the new value back into the old value store, // and subsequently call the format specific emit* implementations. Note // that this file must be included in the format specific implementation, so // the emit* functions can be inlined for performance. template <> void VerilatedTrace::fullBit(vluint32_t* oldp, CData newval) { *oldp = newval; self()->emitBit(oldp - m_sigs_oldvalp, newval); } template <> void VerilatedTrace::fullCData(vluint32_t* oldp, CData newval, int bits) { *oldp = newval; self()->emitCData(oldp - m_sigs_oldvalp, newval, bits); } template <> void VerilatedTrace::fullSData(vluint32_t* oldp, SData newval, int bits) { *oldp = newval; self()->emitSData(oldp - m_sigs_oldvalp, newval, bits); } template <> void VerilatedTrace::fullIData(vluint32_t* oldp, IData newval, int bits) { *oldp = newval; self()->emitIData(oldp - m_sigs_oldvalp, newval, bits); } template <> void VerilatedTrace::fullQData(vluint32_t* oldp, QData newval, int bits) { *reinterpret_cast(oldp) = newval; self()->emitQData(oldp - m_sigs_oldvalp, newval, bits); } template <> void VerilatedTrace::fullWData(vluint32_t* oldp, const WData* newvalp, int bits) { for (int i = 0; i < VL_WORDS_I(bits); ++i) oldp[i] = newvalp[i]; self()->emitWData(oldp - m_sigs_oldvalp, newvalp, bits); } template <> void VerilatedTrace::fullDouble(vluint32_t* oldp, double newval) { // cppcheck-suppress invalidPointerCast *reinterpret_cast(oldp) = newval; self()->emitDouble(oldp - m_sigs_oldvalp, newval); } //========================================================================= // Primitives converting binary values to strings... // All of these take a destination pointer where the string will be emitted, // and a value to convert. There are a couple of variants for efficiency. static inline void cvtCDataToStr(char* dstp, CData value) { #ifdef VL_HAVE_SSE2 // Similar to cvtSDataToStr but only the bottom 8 byte lanes are used const __m128i a = _mm_cvtsi32_si128(value); const __m128i b = _mm_unpacklo_epi8(a, a); const __m128i c = _mm_shufflelo_epi16(b, 0); const __m128i m = _mm_set1_epi64x(0x0102040810204080); const __m128i d = _mm_cmpeq_epi8(_mm_and_si128(c, m), m); const __m128i result = _mm_sub_epi8(_mm_set1_epi8('0'), d); _mm_storel_epi64(reinterpret_cast<__m128i*>(dstp), result); #else dstp[0] = '0' | static_cast((value >> 7) & 1); dstp[1] = '0' | static_cast((value >> 6) & 1); dstp[2] = '0' | static_cast((value >> 5) & 1); dstp[3] = '0' | static_cast((value >> 4) & 1); dstp[4] = '0' | static_cast((value >> 3) & 1); dstp[5] = '0' | static_cast((value >> 2) & 1); dstp[6] = '0' | static_cast((value >> 1) & 1); dstp[7] = '0' | static_cast(value & 1); #endif } static inline void cvtSDataToStr(char* dstp, SData value) { #ifdef VL_HAVE_SSE2 // We want each bit in the 16-bit input value to end up in a byte lane // within the 128-bit XMM register. Note that x86 is little-endian and we // want the MSB of the input at the low address, so we will bit-reverse // at the same time. // Put value in bottom of 128-bit register a[15:0] = value const __m128i a = _mm_cvtsi32_si128(value); // Interleave bytes with themselves // b[15: 0] = {2{a[ 7:0]}} == {2{value[ 7:0]}} // b[31:16] = {2{a[15:8]}} == {2{value[15:8]}} const __m128i b = _mm_unpacklo_epi8(a, a); // Shuffle bottom 64 bits, note swapping high bytes with low bytes // c[31: 0] = {2{b[31:16]}} == {4{value[15:8}} // c[63:32] = {2{b[15: 0]}} == {4{value[ 7:0}} const __m128i c = _mm_shufflelo_epi16(b, 0x05); // Shuffle whole register // d[ 63: 0] = {2{c[31: 0]}} == {8{value[15:8}} // d[126:54] = {2{c[63:32]}} == {8{value[ 7:0}} const __m128i d = _mm_shuffle_epi32(c, 0x50); // Test each bit within the bytes, this sets each byte lane to 0 // if the bit for that lane is 0 and to 0xff if the bit is 1. const __m128i m = _mm_set1_epi64x(0x0102040810204080); const __m128i e = _mm_cmpeq_epi8(_mm_and_si128(d, m), m); // Convert to ASCII by subtracting the masks from ASCII '0': // '0' - 0 is '0', '0' - -1 is '1' const __m128i result = _mm_sub_epi8(_mm_set1_epi8('0'), e); // Store the 16 characters to the un-aligned buffer _mm_storeu_si128(reinterpret_cast<__m128i*>(dstp), result); #else cvtCDataToStr(dstp, value >> 8); cvtCDataToStr(dstp + 8, value); #endif } static inline void cvtIDataToStr(char* dstp, IData value) { #ifdef VL_HAVE_AVX2 // Similar to cvtSDataToStr but the bottom 16-bits are processed in the // top half of the YMM registerss const __m256i a = _mm256_insert_epi32(_mm256_undefined_si256(), value, 0); const __m256i b = _mm256_permute4x64_epi64(a, 0); const __m256i s = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3); const __m256i c = _mm256_shuffle_epi8(b, s); const __m256i m = _mm256_set1_epi64x(0x0102040810204080); const __m256i d = _mm256_cmpeq_epi8(_mm256_and_si256(c, m), m); const __m256i result = _mm256_sub_epi8(_mm256_set1_epi8('0'), d); _mm256_storeu_si256(reinterpret_cast<__m256i*>(dstp), result); #else cvtSDataToStr(dstp, value >> 16); cvtSDataToStr(dstp + 16, value); #endif } static inline void cvtQDataToStr(char* dstp, QData value) { cvtIDataToStr(dstp, value >> 32); cvtIDataToStr(dstp + 32, value); } #define cvtEDataToStr cvtIDataToStr //============================================================================= #ifdef VERILATED_VCD_TEST void verilated_trace_imp_selftest() { #define SELF_CHECK(got, exp) \ do { \ if ((got) != (exp)) VL_FATAL_MT(__FILE__, __LINE__, "", "%Error: selftest"); \ } while (0) #define SELF_CHECK_TS(scale) \ SELF_CHECK(doubleToTimescale(timescaleToDouble(scale)), std::string{scale}); SELF_CHECK_TS("100s"); SELF_CHECK_TS("10s"); SELF_CHECK_TS("1s"); SELF_CHECK_TS("100ms"); SELF_CHECK_TS("10ms"); SELF_CHECK_TS("1ms"); SELF_CHECK_TS("100us"); SELF_CHECK_TS("10us"); SELF_CHECK_TS("1us"); SELF_CHECK_TS("100ns"); SELF_CHECK_TS("10ns"); SELF_CHECK_TS("1ns"); SELF_CHECK_TS("100ps"); SELF_CHECK_TS("10ps"); SELF_CHECK_TS("1ps"); SELF_CHECK_TS("100fs"); SELF_CHECK_TS("10fs"); SELF_CHECK_TS("1fs"); SELF_CHECK_TS("100as"); SELF_CHECK_TS("10as"); SELF_CHECK_TS("1as"); } #endif #endif // VL_CPPCHECK