// -*- mode: C++; c-file-style: "cc-mode" -*- //************************************************************************* // // Copyright 2009-2020 by Wilson Snyder. This program is free software; you can // redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License // Version 2.0. // SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0 // //========================================================================= /// /// \file /// \brief Verilator: Implementation Header, only for verilated.cpp internals. /// /// Code available from: https://verilator.org /// //========================================================================= #ifndef _VERILATED_IMP_H_ #define _VERILATED_IMP_H_ 1 ///< Header Guard // clang-format off #if !defined(_VERILATED_CPP_) && !defined(_VERILATED_DPI_CPP_) && !defined(_VERILATED_VPI_CPP_) # error "verilated_imp.h only to be included by verilated*.cpp internals" #endif #include "verilatedos.h" #include "verilated.h" #include "verilated_heavy.h" #include "verilated_syms.h" #include #include #include #include #ifdef VL_THREADED # include # include #endif // clang-format on class VerilatedScope; //====================================================================== // Threaded message passing #ifdef VL_THREADED /// Message, enqueued on an mtask, and consumed on the main eval thread class VerilatedMsg { public: // TYPES struct Cmp { bool operator()(const VerilatedMsg& a, const VerilatedMsg& b) const { return a.mtaskId() < b.mtaskId(); } }; private: // MEMBERS vluint32_t m_mtaskId; ///< MTask that did enqueue std::function m_cb; ///< Lambda to execute when message received public: // CONSTRUCTORS VerilatedMsg(const std::function& cb) : m_mtaskId(Verilated::mtaskId()) , m_cb(cb) {} ~VerilatedMsg() {} // METHODS vluint32_t mtaskId() const { return m_mtaskId; } /// Execute the lambda function void run() const { m_cb(); } }; /// Each thread has a queue it pushes to /// This assumes no thread starts pushing the next tick until the previous has drained. /// If more aggressiveness is needed, a double-buffered scheme might work well. class VerilatedEvalMsgQueue { typedef std::multiset VerilatedThreadQueue; std::atomic m_depth; ///< Current depth of queue (see comments below) VerilatedMutex m_mutex; ///< Mutex protecting queue VerilatedThreadQueue m_queue VL_GUARDED_BY(m_mutex); ///< Message queue public: // CONSTRUCTORS VerilatedEvalMsgQueue() : m_depth(0) { assert(atomic_is_lock_free(&m_depth)); } ~VerilatedEvalMsgQueue() {} private: VL_UNCOPYABLE(VerilatedEvalMsgQueue); public: // METHODS //// Add message to queue (called by producer) void post(const VerilatedMsg& msg) VL_EXCLUDES(m_mutex) { const VerilatedLockGuard lock(m_mutex); m_queue.insert(msg); // Pass by value to copy the message into queue ++m_depth; } /// Service queue until completion (called by consumer) void process() VL_EXCLUDES(m_mutex) { // Tracking m_depth is redundant to e.g. getting the mutex and looking at queue size, // but on the reader side it's 4x faster to test an atomic then getting a mutex while (m_depth) { // Wait for a message to be added to the queue // We don't use unique_lock as want to unlock with the message copy still in scope m_mutex.lock(); assert(!m_queue.empty()); // Otherwise m_depth is wrong // Unfortunately to release the lock we need to copy the message // (Or have the message be a pointer, but then new/delete cost on each message) // We assume messages are small, so copy auto it = m_queue.begin(); const VerilatedMsg msg = *(it); m_queue.erase(it); m_mutex.unlock(); m_depth--; // Ok if outside critical section as only this code checks the value { VL_DEBUG_IF(VL_DBG_MSGF("Executing callback from mtaskId=%d\n", msg.mtaskId());); msg.run(); } } } }; /// Each thread has a local queue to build up messages until the end of the eval() call class VerilatedThreadMsgQueue { std::queue m_queue; public: // CONSTRUCTORS VerilatedThreadMsgQueue() {} ~VerilatedThreadMsgQueue() { // The only call of this with a non-empty queue is a fatal error. // So this does not flush the queue, as the destination queue is not known to this class. } private: VL_UNCOPYABLE(VerilatedThreadMsgQueue); // METHODS static VerilatedThreadMsgQueue& threadton() { static VL_THREAD_LOCAL VerilatedThreadMsgQueue t_s; return t_s; } public: /// Add message to queue, called by producer static void post(const VerilatedMsg& msg) VL_MT_SAFE { // Handle calls to threaded routines outside // of any mtask -- if an initial block calls $finish, say. if (Verilated::mtaskId() == 0) { // No queueing, just do the action immediately msg.run(); } else { Verilated::endOfEvalReqdInc(); threadton().m_queue.push(msg); // Pass by value to copy the message into queue } } /// Push all messages to the eval's queue static void flush(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE { while (!threadton().m_queue.empty()) { evalMsgQp->post(threadton().m_queue.front()); threadton().m_queue.pop(); Verilated::endOfEvalReqdDec(); } } }; #endif // VL_THREADED // FILE* list constructed from a file-descriptor class VerilatedFpList { FILE* m_fp[31]; std::size_t m_sz; public: typedef FILE* const* const_iterator; explicit VerilatedFpList() : m_sz(0) {} const_iterator begin() const { return m_fp; } const_iterator end() const { return m_fp + m_sz; } std::size_t size() const { return m_sz; } std::size_t capacity() const { return 31; } void push_back(FILE* fd) { if (VL_LIKELY(size() < capacity())) m_fp[m_sz++] = fd; } }; //====================================================================== // VerilatedImp class VerilatedImp { // Whole class is internal use only - Global information shared between verilated*.cpp files. protected: friend class Verilated; // TYPES typedef std::vector ArgVec; typedef std::map, void*> UserMap; typedef std::map ExportNameMap; // MEMBERS static VerilatedImp s_s; ///< Static Singleton; One and only static this struct Serialized { // All these members serialized/deserialized int m_timeFormatUnits; // $timeformat units int m_timeFormatPrecision; // $timeformat number of decimal places int m_timeFormatWidth; // $timeformat character width enum { UNITS_NONE = 99 }; // Default based on precision Serialized() : m_timeFormatUnits(UNITS_NONE) , m_timeFormatPrecision(0) , m_timeFormatWidth(20) {} ~Serialized() {} } m_ser; VerilatedMutex m_sergMutex; ///< Protect m_ser struct SerializedG { // All these members serialized/deserialized and guarded std::string m_timeFormatSuffix; // $timeformat printf format } m_serg VL_GUARDED_BY(m_sergMutex); // Nothing below here is save-restored; users expected to re-register appropriately VerilatedMutex m_argMutex; ///< Protect m_argVec, m_argVecLoaded /// Argument list (NOT save-restored, may want different results) ArgVec m_argVec VL_GUARDED_BY(m_argMutex); bool m_argVecLoaded VL_GUARDED_BY(m_argMutex); ///< Ever loaded argument list VerilatedMutex m_userMapMutex; ///< Protect m_userMap UserMap m_userMap VL_GUARDED_BY(m_userMapMutex); ///< Map of <(scope,userkey), userData> VerilatedMutex m_nameMutex; ///< Protect m_nameMap /// Map of VerilatedScopeNameMap m_nameMap VL_GUARDED_BY(m_nameMutex); VerilatedMutex m_hierMapMutex; ///< Protect m_hierMap /// Map the represents scope hierarchy VerilatedHierarchyMap m_hierMap VL_GUARDED_BY(m_hierMapMutex); // Slow - somewhat static: VerilatedMutex m_exportMutex; ///< Protect m_nameMap /// Map of ExportNameMap m_exportMap VL_GUARDED_BY(m_exportMutex); int m_exportNext VL_GUARDED_BY(m_exportMutex); ///< Next export funcnum // File I/O VerilatedMutex m_fdMutex; ///< Protect m_fdps, m_fdFree std::vector m_fdps VL_GUARDED_BY(m_fdMutex); ///< File descriptors /// List of free descriptors (SLOW - FOPEN/CLOSE only) std::vector m_fdFree VL_GUARDED_BY(m_fdMutex); // List of free descriptors in the MCT region [4, 32) std::vector m_fdFreeMct VL_GUARDED_BY(m_fdMutex); public: // But only for verilated*.cpp // CONSTRUCTORS VerilatedImp() : m_argVecLoaded(false) , m_exportNext(0) { s_s.m_fdps.resize(31); std::fill(s_s.m_fdps.begin(), s_s.m_fdps.end(), (FILE*)0); s_s.m_fdFreeMct.resize(30); for (std::size_t i = 0, id = 1; i < s_s.m_fdFreeMct.size(); ++i, ++id) { s_s.m_fdFreeMct[i] = id; } } ~VerilatedImp() {} private: VL_UNCOPYABLE(VerilatedImp); public: // METHODS - debug static void internalsDump() VL_MT_SAFE; static void versionDump() VL_MT_SAFE; // METHODS - arguments public: static void commandArgs(int argc, const char** argv) VL_EXCLUDES(s_s.m_argMutex); static void commandArgsAdd(int argc, const char** argv) VL_EXCLUDES(s_s.m_argMutex); static std::string argPlusMatch(const char* prefixp) VL_EXCLUDES(s_s.m_argMutex) { const VerilatedLockGuard lock(s_s.m_argMutex); // Note prefixp does not include the leading "+" size_t len = strlen(prefixp); if (VL_UNLIKELY(!s_s.m_argVecLoaded)) { s_s.m_argVecLoaded = true; // Complain only once VL_FATAL_MT("unknown", 0, "", "%Error: Verilog called $test$plusargs or $value$plusargs without" " testbench C first calling Verilated::commandArgs(argc,argv)."); } for (ArgVec::const_iterator it = s_s.m_argVec.begin(); it != s_s.m_argVec.end(); ++it) { if ((*it)[0] == '+') { if (0 == strncmp(prefixp, it->c_str() + 1, len)) return *it; } } return ""; } private: static void commandArgsAddGuts(int argc, const char** argv) VL_REQUIRES(s_s.m_argMutex); static void commandArgVl(const std::string& arg); static bool commandArgVlValue(const std::string& arg, const std::string& prefix, std::string& valuer); public: // METHODS - user scope tracking // We implement this as a single large map instead of one map per scope // There's often many more scopes than userdata's and thus having a ~48byte // per map overhead * N scopes would take much more space and cache thrashing. static inline void userInsert(const void* scopep, void* userKey, void* userData) VL_MT_SAFE { const VerilatedLockGuard lock(s_s.m_userMapMutex); UserMap::iterator it = s_s.m_userMap.find(std::make_pair(scopep, userKey)); if (it != s_s.m_userMap.end()) { it->second = userData; } else { s_s.m_userMap.insert(it, std::make_pair(std::make_pair(scopep, userKey), userData)); } } static inline void* userFind(const void* scopep, void* userKey) VL_MT_SAFE { const VerilatedLockGuard lock(s_s.m_userMapMutex); UserMap::const_iterator it = s_s.m_userMap.find(std::make_pair(scopep, userKey)); if (VL_UNLIKELY(it == s_s.m_userMap.end())) return NULL; return it->second; } private: /// Symbol table destruction cleans up the entries for each scope. static void userEraseScope(const VerilatedScope* scopep) VL_MT_SAFE { // Slow ok - called once/scope on destruction, so we simply iterate. const VerilatedLockGuard lock(s_s.m_userMapMutex); for (UserMap::iterator it = s_s.m_userMap.begin(); it != s_s.m_userMap.end();) { if (it->first.first == scopep) { s_s.m_userMap.erase(it++); } else { ++it; } } } static void userDump() VL_MT_SAFE { const VerilatedLockGuard lock(s_s.m_userMapMutex); // Avoid it changing in middle of dump bool first = true; for (UserMap::const_iterator it = s_s.m_userMap.begin(); it != s_s.m_userMap.end(); ++it) { if (first) { VL_PRINTF_MT(" userDump:\n"); first = false; } VL_PRINTF_MT(" DPI_USER_DATA scope %p key %p: %p\n", it->first.first, it->first.second, it->second); } } public: // But only for verilated*.cpp // METHODS - scope name static void scopeInsert(const VerilatedScope* scopep) VL_MT_SAFE { // Slow ok - called once/scope at construction const VerilatedLockGuard lock(s_s.m_nameMutex); VerilatedScopeNameMap::iterator it = s_s.m_nameMap.find(scopep->name()); if (it == s_s.m_nameMap.end()) { s_s.m_nameMap.insert(it, std::make_pair(scopep->name(), scopep)); } } static inline const VerilatedScope* scopeFind(const char* namep) VL_MT_SAFE { const VerilatedLockGuard lock(s_s.m_nameMutex); // If too slow, can assume this is only VL_MT_SAFE_POSINIT VerilatedScopeNameMap::const_iterator it = s_s.m_nameMap.find(namep); if (VL_UNLIKELY(it == s_s.m_nameMap.end())) return NULL; return it->second; } static void scopeErase(const VerilatedScope* scopep) VL_MT_SAFE { // Slow ok - called once/scope at destruction const VerilatedLockGuard lock(s_s.m_nameMutex); userEraseScope(scopep); VerilatedScopeNameMap::iterator it = s_s.m_nameMap.find(scopep->name()); if (it != s_s.m_nameMap.end()) s_s.m_nameMap.erase(it); } static void scopesDump() VL_MT_SAFE { const VerilatedLockGuard lock(s_s.m_nameMutex); VL_PRINTF_MT(" scopesDump:\n"); for (VerilatedScopeNameMap::const_iterator it = s_s.m_nameMap.begin(); it != s_s.m_nameMap.end(); ++it) { const VerilatedScope* scopep = it->second; scopep->scopeDump(); } VL_PRINTF_MT("\n"); } static const VerilatedScopeNameMap* scopeNameMap() VL_MT_SAFE_POSTINIT { // Thread save only assuming this is called only after model construction completed return &s_s.m_nameMap; } public: // But only for verilated*.cpp // METHODS - hierarchy static void hierarchyAdd(const VerilatedScope* fromp, const VerilatedScope* top) VL_MT_SAFE { // Slow ok - called at construction for VPI accessible elements const VerilatedLockGuard lock(s_s.m_hierMapMutex); s_s.m_hierMap[fromp].push_back(top); } static const VerilatedHierarchyMap* hierarchyMap() VL_MT_SAFE_POSTINIT { // Thread save only assuming this is called only after model construction completed return &s_s.m_hierMap; } public: // But only for verilated*.cpp // METHODS - export names // Each function prototype is converted to a function number which we // then use to index a 2D table also indexed by scope number, because we // can't know at Verilation time what scopes will exist in other modules // in the design that also happen to have our same callback function. // Rather than a 2D map, the integer scheme saves 500ish ns on a likely // miss at the cost of a multiply, and all lookups move to slowpath. static int exportInsert(const char* namep) VL_MT_SAFE { // Slow ok - called once/function at creation const VerilatedLockGuard lock(s_s.m_exportMutex); ExportNameMap::iterator it = s_s.m_exportMap.find(namep); if (it == s_s.m_exportMap.end()) { s_s.m_exportMap.insert(it, std::make_pair(namep, s_s.m_exportNext++)); return s_s.m_exportNext++; } else { return it->second; } } static int exportFind(const char* namep) VL_MT_SAFE { const VerilatedLockGuard lock(s_s.m_exportMutex); ExportNameMap::const_iterator it = s_s.m_exportMap.find(namep); if (VL_LIKELY(it != s_s.m_exportMap.end())) return it->second; std::string msg = (std::string("%Error: Testbench C called ") + namep + " but no such DPI export function name exists in ANY model"); VL_FATAL_MT("unknown", 0, "", msg.c_str()); return -1; } static const char* exportName(int funcnum) VL_MT_SAFE { // Slowpath; find name for given export; errors only so no map to reverse-map it const VerilatedLockGuard lock(s_s.m_exportMutex); for (ExportNameMap::const_iterator it = s_s.m_exportMap.begin(); it != s_s.m_exportMap.end(); ++it) { if (it->second == funcnum) return it->first; } return "*UNKNOWN*"; } static void exportsDump() VL_MT_SAFE { const VerilatedLockGuard lock(s_s.m_exportMutex); bool first = true; for (ExportNameMap::const_iterator it = s_s.m_exportMap.begin(); it != s_s.m_exportMap.end(); ++it) { if (first) { VL_PRINTF_MT(" exportDump:\n"); first = false; } VL_PRINTF_MT(" DPI_EXPORT_NAME %05d: %s\n", it->second, it->first); } } // We don't free up m_exportMap until the end, because we can't be sure // what other models are using the assigned funcnum's. public: // But only for verilated*.cpp // METHODS - timeformat static std::string timeFormatSuffix() VL_MT_SAFE; static void timeFormatSuffix(const std::string& value) VL_MT_SAFE; static int timeFormatUnits() VL_MT_SAFE { if (s_s.m_ser.m_timeFormatUnits == Serialized::UNITS_NONE) { return Verilated::timeprecision(); } return s_s.m_ser.m_timeFormatUnits; } static int timeFormatPrecision() VL_MT_SAFE { return s_s.m_ser.m_timeFormatPrecision; } static int timeFormatWidth() VL_MT_SAFE { return s_s.m_ser.m_timeFormatWidth; } static void timeFormatUnits(int value) VL_MT_SAFE; static void timeFormatPrecision(int value) VL_MT_SAFE; static void timeFormatWidth(int value) VL_MT_SAFE; public: // But only for verilated*.cpp // METHODS - file IO static IData fdNewMcd(const char* filenamep) VL_MT_SAFE { const VerilatedLockGuard lock(s_s.m_fdMutex); if (s_s.m_fdFreeMct.empty()) return 0; IData idx = s_s.m_fdFreeMct.back(); s_s.m_fdFreeMct.pop_back(); s_s.m_fdps[idx] = fopen(filenamep, "w"); if (VL_UNLIKELY(!s_s.m_fdps[idx])) return 0; return (1 << idx); } static IData fdNew(const char* filenamep, const char* modep) VL_MT_SAFE { FILE* fp = fopen(filenamep, modep); if (VL_UNLIKELY(!fp)) return 0; // Bit 31 indicates it's a descriptor not a MCD const VerilatedLockGuard lock(s_s.m_fdMutex); if (s_s.m_fdFree.empty()) { // Need to create more space in m_fdps and m_fdFree const size_t start = std::max(31ul + 1ul + 3ul, s_s.m_fdps.size()); const size_t excess = 10; s_s.m_fdps.resize(start + excess); std::fill(s_s.m_fdps.begin() + start, s_s.m_fdps.end(), (FILE*)0); s_s.m_fdFree.resize(excess); for (std::size_t i = 0, id = start; i < s_s.m_fdFree.size(); ++i, ++id) { s_s.m_fdFree[i] = id; } } IData idx = s_s.m_fdFree.back(); s_s.m_fdFree.pop_back(); s_s.m_fdps[idx] = fp; return (idx | (1UL << 31)); // bit 31 indicates not MCD } static void fdFlush(IData fdi) VL_MT_SAFE { const VerilatedLockGuard lock(s_s.m_fdMutex); const VerilatedFpList fdlist = fdToFpList(fdi); for (VerilatedFpList::const_iterator it = fdlist.begin(); it != fdlist.end(); ++it) { fflush(*it); } } static IData fdSeek(IData fdi, IData offset, IData origin) VL_MT_SAFE { const VerilatedLockGuard lock(s_s.m_fdMutex); const VerilatedFpList fdlist = fdToFpList(fdi); if (VL_UNLIKELY(fdlist.size() != 1)) return 0; return static_cast( fseek(*fdlist.begin(), static_cast(offset), static_cast(origin))); } static IData fdTell(IData fdi) VL_MT_SAFE { const VerilatedLockGuard lock(s_s.m_fdMutex); const VerilatedFpList fdlist = fdToFpList(fdi); if (VL_UNLIKELY(fdlist.size() != 1)) return 0; return static_cast(ftell(*fdlist.begin())); } static void fdWrite(IData fdi, const std::string& output) VL_MT_SAFE { const VerilatedLockGuard lock(s_s.m_fdMutex); const VerilatedFpList fdlist = fdToFpList(fdi); for (VerilatedFpList::const_iterator it = fdlist.begin(); it != fdlist.end(); ++it) { if (VL_UNLIKELY(!*it)) continue; fwrite(output.c_str(), 1, output.size(), *it); } } static void fdClose(IData fdi) VL_MT_SAFE { const VerilatedLockGuard lock(s_s.m_fdMutex); if ((fdi & (1 << 31)) != 0) { // Non-MCD case IData idx = VL_MASK_I(31) & fdi; if (VL_UNLIKELY(idx >= s_s.m_fdps.size())) return; if (VL_UNLIKELY(!s_s.m_fdps[idx])) return; // Already free fclose(s_s.m_fdps[idx]); s_s.m_fdps[idx] = (FILE*)0; s_s.m_fdFree.push_back(idx); } else { // MCD case for (int i = 0; (fdi != 0) && (i < 31); i++, fdi >>= 1) { if (fdi & VL_MASK_I(1)) { fclose(s_s.m_fdps[i]); s_s.m_fdps[i] = NULL; s_s.m_fdFreeMct.push_back(i); } } } } static inline FILE* fdToFp(IData fdi) VL_MT_SAFE { const VerilatedLockGuard lock(s_s.m_fdMutex); const VerilatedFpList fdlist = fdToFpList(fdi); if (VL_UNLIKELY(fdlist.size() != 1)) return NULL; return *fdlist.begin(); } private: static inline VerilatedFpList fdToFpList(IData fdi) VL_REQUIRES(s_s.m_fdMutex) { VerilatedFpList fp; if ((fdi & (1 << 31)) != 0) { // Non-MCD case const IData idx = fdi & VL_MASK_I(31); switch (idx) { case 0: fp.push_back(stdin); break; case 1: fp.push_back(stdout); break; case 2: fp.push_back(stderr); break; default: if (VL_LIKELY(idx < s_s.m_fdps.size())) fp.push_back(s_s.m_fdps[idx]); break; } } else { // MCD Case for (int i = 0; (fdi != 0) && (i < fp.capacity()); ++i, fdi >>= 1) { if (fdi & VL_MASK_I(1)) fp.push_back(s_s.m_fdps[i]); } } return fp; } }; //====================================================================== #endif // Guard