// -*- mode: C++; c-file-style: "cc-mode" -*- //============================================================================= // // THIS MODULE IS PUBLICLY LICENSED // // Copyright 2001-2013 by Wilson Snyder. This program is free software; // you can redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License Version 2.0. // // This is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // //============================================================================= /// /// \file /// \brief C++ Tracing in VCD Format /// /// AUTHOR: Wilson Snyder /// //============================================================================= // SPDIFF_OFF #ifndef _VERILATED_VCD_C_H_ #define _VERILATED_VCD_C_H_ 1 #include "verilatedos.h" #include #include #include using namespace std; class VerilatedVcd; class VerilatedVcdCallInfo; // SPDIFF_ON //============================================================================= // VerilatedVcdSig /// Internal data on one signal being traced. class VerilatedVcdSig { protected: friend class VerilatedVcd; vluint32_t m_code; ///< VCD file code number int m_bits; ///< Size of value in bits VerilatedVcdSig (vluint32_t code, int bits) : m_code(code), m_bits(bits) {} public: ~VerilatedVcdSig() {} }; //============================================================================= typedef void (*VerilatedVcdCallback_t)(VerilatedVcd* vcdp, void* userthis, vluint32_t code); //============================================================================= // VerilatedVcd /// Create a SystemPerl VCD dump class VerilatedVcd { private: bool m_isOpen; ///< True indicates open file bool m_evcd; ///< True for evcd format int m_fd; ///< File descriptor we're writing to string m_filename; ///< Filename we're writing to (if open) vluint64_t m_rolloverMB; ///< MB of file size to rollover at char m_scopeEscape; ///< Character to separate scope components int m_modDepth; ///< Depth of module hierarchy bool m_fullDump; ///< True indicates dump ignoring if changed vluint32_t m_nextCode; ///< Next code number to assign string m_modName; ///< Module name being traced now double m_timeRes; ///< Time resolution (ns/ms etc) double m_timeUnit; ///< Time units (ns/ms etc) vluint64_t m_timeLastDump; ///< Last time we did a dump char* m_wrBufp; ///< Output buffer char* m_writep; ///< Write pointer into output buffer vluint64_t m_wroteBytes; ///< Number of bytes written to this file vluint32_t* m_sigs_oldvalp; ///< Pointer to old signal values vector m_sigs; ///< Pointer to signal information vector m_callbacks; ///< Routines to perform dumping typedef map NameMap; NameMap* m_namemapp; ///< List of names for the header static vector s_vcdVecp; ///< List of all created traces inline static size_t bufferSize() { return 256*1024; } // See below for slack calculation inline static size_t bufferInsertSize() { return 16*1024; } void bufferFlush(); void bufferCheck() { // Flush the write buffer if there's not enough space left for new information // We only call this once per vector, so we need enough slop for a very wide "b###" line if (VL_UNLIKELY(m_writep > (m_wrBufp+(bufferSize()-bufferInsertSize())))) { bufferFlush(); } } void closePrev(); void closeErr(); void openNext(); void makeNameMap(); void printIndent (int levelchange); void printStr (const char* str); void printQuad (vluint64_t n); void printTime (vluint64_t timeui); void declare (vluint32_t code, const char* name, const char* wirep, int arraynum, bool tri, bool bussed, int msb, int lsb); void dumpHeader(); void dumpPrep (vluint64_t timeui); void dumpFull (vluint64_t timeui); // cppcheck-suppress functionConst void dumpDone (); inline void printCode (vluint32_t code) { if (code>=(94*94*94)) *m_writep++ = ((char)((code/94/94/94)%94+33)); if (code>=(94*94)) *m_writep++ = ((char)((code/94/94)%94+33)); if (code>=(94)) *m_writep++ = ((char)((code/94)%94+33)); *m_writep++ = ((char)((code)%94+33)); } static string stringCode (vluint32_t code) { string out; if (code>=(94*94*94)) out += ((char)((code/94/94/94)%94+33)); if (code>=(94*94)) out += ((char)((code/94/94)%94+33)); if (code>=(94)) out += ((char)((code/94)%94+33)); return out + ((char)((code)%94+33)); } protected: // METHODS void evcd(bool flag) { m_evcd = flag; } public: // CREATORS VerilatedVcd () : m_isOpen(false), m_rolloverMB(0), m_modDepth(0), m_nextCode(1) { m_wrBufp = new char [bufferSize()]; m_writep = m_wrBufp; m_namemapp = NULL; m_timeRes = m_timeUnit = 1e-9; m_timeLastDump = 0; m_sigs_oldvalp = NULL; m_evcd = false; m_scopeEscape = '.'; // Backward compatibility m_wroteBytes = 0; m_fd = 0; m_fullDump = true; } ~VerilatedVcd(); // ACCESSORS /// Inside dumping routines, return next VCD signal code vluint32_t nextCode() const {return m_nextCode;} /// Set size in megabytes after which new file should be created void rolloverMB(vluint64_t rolloverMB) { m_rolloverMB=rolloverMB; }; /// Is file open? bool isOpen() const { return m_isOpen; } /// Change character that splits scopes. Note whitespace are ALWAYS escapes. void scopeEscape(char flag) { m_scopeEscape = flag; } /// Is this an escape? inline bool isScopeEscape(char c) { return isspace(c) || c==m_scopeEscape; } // METHODS void open (const char* filename); ///< Open the file; call isOpen() to see if errors void openNext (bool incFilename); ///< Open next data-only file void flush() { bufferFlush(); } ///< Flush any remaining data static void flush_all(); ///< Flush any remaining data from all files void close (); ///< Close the file void set_time_unit (const char* unit); ///< Set time units (s/ms, defaults to ns) void set_time_unit (const string& unit) { set_time_unit(unit.c_str()); } void set_time_resolution (const char* unit); ///< Set time resolution (s/ms, defaults to ns) void set_time_resolution (const string& unit) { set_time_resolution(unit.c_str()); } double timescaleToDouble (const char* unitp); string doubleToTimescale (double value); /// Inside dumping routines, called each cycle to make the dump void dump (vluint64_t timeui); /// Call dump with a absolute unscaled time in seconds void dumpSeconds (double secs) { dump((vluint64_t)(secs * m_timeRes)); } /// Inside dumping routines, declare callbacks for tracings void addCallback (VerilatedVcdCallback_t init, VerilatedVcdCallback_t full, VerilatedVcdCallback_t change, void* userthis); /// Inside dumping routines, declare a module void module (const string name); /// Inside dumping routines, declare a signal void declBit (vluint32_t code, const char* name, int arraynum); void declBus (vluint32_t code, const char* name, int arraynum, int msb, int lsb); void declQuad (vluint32_t code, const char* name, int arraynum, int msb, int lsb); void declArray (vluint32_t code, const char* name, int arraynum, int msb, int lsb); void declTriBit (vluint32_t code, const char* name, int arraynum); void declTriBus (vluint32_t code, const char* name, int arraynum, int msb, int lsb); void declTriQuad (vluint32_t code, const char* name, int arraynum, int msb, int lsb); void declTriArray (vluint32_t code, const char* name, int arraynum, int msb, int lsb); void declDouble (vluint32_t code, const char* name, int arraynum); void declFloat (vluint32_t code, const char* name, int arraynum); // ... other module_start for submodules (based on cell name) /// Inside dumping routines, dump one signal void fullBit (vluint32_t code, const vluint32_t newval) { // Note the &1, so we don't require clean input -- makes more common no change case faster m_sigs_oldvalp[code] = newval; *m_writep++=('0'+(char)(newval&1)); printCode(code); *m_writep++='\n'; bufferCheck(); } void fullBus (vluint32_t code, const vluint32_t newval, int bits) { m_sigs_oldvalp[code] = newval; *m_writep++='b'; for (int bit=bits-1; bit>=0; --bit) { *m_writep++=((newval&(1L<=0; --bit) { *m_writep++=((newval&(1ULL<=0; --bit) { *m_writep++=((newval[(bit/32)]&(1L<<(bit&0x1f)))?'1':'0'); } *m_writep++=' '; printCode(code); *m_writep++='\n'; bufferCheck(); } void fullTriBit (vluint32_t code, const vluint32_t newval, const vluint32_t newtri) { m_sigs_oldvalp[code] = newval; m_sigs_oldvalp[code+1] = newtri; *m_writep++ = "01zz"[m_sigs_oldvalp[code] | (m_sigs_oldvalp[code+1]<<1)]; printCode(code); *m_writep++='\n'; bufferCheck(); } void fullTriBus (vluint32_t code, const vluint32_t newval, const vluint32_t newtri, int bits) { m_sigs_oldvalp[code] = newval; m_sigs_oldvalp[code+1] = newtri; *m_writep++='b'; for (int bit=bits-1; bit>=0; --bit) { *m_writep++ = "01zz"[((newval >> bit)&1) | (((newtri >> bit)&1)<<1)]; } *m_writep++=' '; printCode(code); *m_writep++='\n'; bufferCheck(); } void fullTriQuad (vluint32_t code, const vluint64_t newval, const vluint32_t newtri, int bits) { (*((vluint64_t*)&m_sigs_oldvalp[code])) = newval; (*((vluint64_t*)&m_sigs_oldvalp[code+1])) = newtri; *m_writep++='b'; for (int bit=bits-1; bit>=0; --bit) { *m_writep++ = "01zz"[((newval >> bit)&1ULL) | (((newtri >> bit)&1ULL)<<1ULL)]; } *m_writep++=' '; printCode(code); *m_writep++='\n'; bufferCheck(); } void fullTriArray (vluint32_t code, const vluint32_t* newvalp, const vluint32_t* newtrip, int bits) { for (int word=0; word<(((bits-1)/32)+1); ++word) { m_sigs_oldvalp[code+word*2] = newvalp[word]; m_sigs_oldvalp[code+word*2+1] = newtrip[word]; } *m_writep++='b'; for (int bit=bits-1; bit>=0; --bit) { vluint32_t valbit = (newvalp[(bit/32)]>>(bit&0x1f)) & 1; vluint32_t tribit = (newtrip[(bit/32)]>>(bit&0x1f)) & 1; *m_writep++ = "01zz"[valbit | (tribit<<1)]; } *m_writep++=' '; printCode(code); *m_writep++='\n'; bufferCheck(); } void fullDouble (vluint32_t code, const double newval); void fullFloat (vluint32_t code, const float newval); /// Inside dumping routines, dump one signal as unknowns /// Presently this code doesn't change the oldval vector. /// Thus this is for special standalone applications that after calling /// fullBitX, must when then value goes non-X call fullBit. inline void fullBitX (vluint32_t code) { *m_writep++='x'; printCode(code); *m_writep++='\n'; bufferCheck(); } inline void fullBusX (vluint32_t code, int bits) { *m_writep++='b'; for (int bit=bits-1; bit>=0; --bit) { *m_writep++='x'; } *m_writep++=' '; printCode(code); *m_writep++='\n'; bufferCheck(); } inline void fullQuadX (vluint32_t code, int bits) { fullBusX (code, bits); } inline void fullArrayX (vluint32_t code, int bits) { fullBusX (code, bits); } /// Inside dumping routines, dump one signal if it has changed inline void chgBit (vluint32_t code, const vluint32_t newval) { vluint32_t diff = m_sigs_oldvalp[code] ^ newval; if (VL_UNLIKELY(diff)) { // Verilator 3.510 and newer provide clean input, so the below is only for back compatibility if (VL_UNLIKELY(diff & 1)) { // Change after clean? fullBit (code, newval); } } } inline void chgBus (vluint32_t code, const vluint32_t newval, int bits) { vluint32_t diff = m_sigs_oldvalp[code] ^ newval; if (VL_UNLIKELY(diff)) { if (VL_UNLIKELY(bits==32 || (diff & ((1U<