#!/usr/bin/env python3 # pylint: disable=C0103,C0114,C0116,C0209,C0301,R0914,R0912,R0915,W0511,W0603,eval-used ###################################################################### import argparse import bisect import collections import math import re import statistics # from pprint import pprint Sections = [] LongestVcdStrValueLength = 0 Threads = collections.defaultdict(lambda: []) # List of records per thread id Mtasks = collections.defaultdict(lambda: {'elapsed': 0, 'end': 0}) Cpus = collections.defaultdict(lambda: {'mtask_time': 0}) Global = {'args': {}, 'cpuinfo': collections.defaultdict(lambda: {}), 'stats': {}} ElapsedTime = None # total elapsed time ExecGraphTime = 0 # total elapsed time excuting an exec graph ExecGraphIntervals = [] # list of (start, end) pairs ###################################################################### def read_data(filename): with open(filename, "r", encoding="utf8") as fh: re_thread = re.compile(r'^VLPROFTHREAD (\d+)$') re_record = re.compile(r'^VLPROFEXEC (\S+) (\d+)(.*)$') re_payload_mtaskBegin = re.compile(r'id (\d+) predictStart (\d+) cpu (\d+)') re_payload_mtaskEnd = re.compile(r'id (\d+) predictCost (\d+)') re_arg1 = re.compile(r'VLPROF arg\s+(\S+)\+([0-9.]*)\s*') re_arg2 = re.compile(r'VLPROF arg\s+(\S+)\s+([0-9.]*)\s*$') re_stat = re.compile(r'VLPROF stat\s+(\S+)\s+([0-9.]+)') re_proc_cpu = re.compile(r'VLPROFPROC processor\s*:\s*(\d+)\s*$') re_proc_dat = re.compile(r'VLPROFPROC ([a-z_ ]+)\s*:\s*(.*)$') cpu = None thread = None execGraphStart = None global LongestVcdStrValueLength global ExecGraphTime SectionStack = [] mTaskThread = {} for line in fh: recordMatch = re_record.match(line) if recordMatch: kind, tick, payload = recordMatch.groups() tick = int(tick) payload = payload.strip() if kind == "SECTION_PUSH": LongestVcdStrValueLength = max(LongestVcdStrValueLength, len(payload)) SectionStack.append(payload) Sections.append((tick, tuple(SectionStack))) elif kind == "SECTION_POP": assert SectionStack, "SECTION_POP without SECTION_PUSH" SectionStack.pop() Sections.append((tick, tuple(SectionStack))) elif kind == "MTASK_BEGIN": mtask, predict_start, ecpu = re_payload_mtaskBegin.match(payload).groups() mtask = int(mtask) predict_start = int(predict_start) ecpu = int(ecpu) mTaskThread[mtask] = thread records = Threads[thread] assert not records or records[-1]['start'] <= records[-1]['end'] <= tick records.append({ 'start': tick, 'mtask': mtask, 'predict_start': predict_start, 'cpu': ecpu }) Mtasks[mtask]['begin'] = tick Mtasks[mtask]['thread'] = thread Mtasks[mtask]['predict_start'] = predict_start elif kind == "MTASK_END": mtask, predict_cost = re_payload_mtaskEnd.match(payload).groups() mtask = int(mtask) predict_cost = int(predict_cost) begin = Mtasks[mtask]['begin'] record = Threads[mTaskThread[mtask]][-1] record['end'] = tick record['predict_cost'] = predict_cost Mtasks[mtask]['elapsed'] += tick - begin Mtasks[mtask]['predict_cost'] = predict_cost Mtasks[mtask]['end'] = max(Mtasks[mtask]['end'], tick) elif kind == "EXEC_GRAPH_BEGIN": execGraphStart = tick elif kind == "EXEC_GRAPH_END": ExecGraphTime += tick - execGraphStart ExecGraphIntervals.append((execGraphStart, tick)) execGraphStart = None elif Args.debug: print("-Unknown execution trace record: %s" % line) elif re_thread.match(line): thread = int(re_thread.match(line).group(1)) elif re.match(r'^VLPROF(THREAD|VERSION)', line): pass elif re_arg1.match(line): match = re_arg1.match(line) Global['args'][match.group(1)] = match.group(2) elif re_arg2.match(line): match = re_arg2.match(line) Global['args'][match.group(1)] = match.group(2) elif re_stat.match(line): match = re_stat.match(line) Global['stats'][match.group(1)] = match.group(2) elif re_proc_cpu.match(line): match = re_proc_cpu.match(line) cpu = int(match.group(1)) elif cpu is not None and re_proc_dat.match(line): match = re_proc_dat.match(line) term = match.group(1) value = match.group(2) term = re.sub(r'\s+$', '', term) term = re.sub(r'\s+', '_', term) value = re.sub(r'\s+$', '', value) Global['cpuinfo'][cpu][term] = value elif re.match(r'^#', line): pass elif Args.debug: print("-Unk: %s" % line) def re_match_result(regexp, line, result_to): result_to = re.match(regexp, line) return result_to ###################################################################### def report(): print("Verilator Gantt report") print("\nArgument settings:") for arg in sorted(Global['args'].keys()): plus = "+" if re.match(r'^\+', arg) else " " print(" %s%s%s" % (arg, plus, Global['args'][arg])) for records in Threads.values(): for record in records: cpu = record['cpu'] elapsed = record['end'] - record['start'] Cpus[cpu]['mtask_time'] += elapsed global ElapsedTime ElapsedTime = int(Global['stats']['ticks']) nthreads = int(Global['stats']['threads']) ncpus = max(len(Cpus), 1) print("\nSummary:") print(" Total elapsed time = {} rdtsc ticks".format(ElapsedTime)) print(" Parallelized code = {:.2%} of elapsed time".format(ExecGraphTime / ElapsedTime)) print(" Total threads = %d" % nthreads) print(" Total CPUs used = %d" % ncpus) print(" Total mtasks = %d" % len(Mtasks)) print(" Total yields = %d" % int(Global['stats'].get('yields', 0))) report_mtasks() report_cpus() report_sections() if nthreads > ncpus: print() print("%%Warning: There were fewer CPUs (%d) than threads (%d)." % (ncpus, nthreads)) print(" : See docs on use of numactl.") else: if 'cpu_socket_cores_warning' in Global: print() print("%Warning: Multiple threads scheduled on same hyperthreaded core.") print(" : See docs on use of numactl.") if 'cpu_sockets_warning' in Global: print() print("%Warning: Threads scheduled on multiple sockets.") print(" : See docs on use of numactl.") print() def report_mtasks(): if not Mtasks: return nthreads = int(Global['stats']['threads']) # If we know cycle time in the same (rdtsc) units, # this will give us an actual utilization number, # (how effectively we keep the cores busy.) # # It also gives us a number we can compare against # serial mode, to estimate the overhead of data sharing, # which will show up in the total elapsed time. (Overhead # of synchronization and scheduling should not.) total_mtask_time = 0 thread_mtask_time = collections.defaultdict(lambda: 0) long_mtask_time = 0 long_mtask = None predict_mtask_time = 0 predict_elapsed = 0 for mtaskId in Mtasks: record = Mtasks[mtaskId] predict_mtask_time += record['predict_cost'] total_mtask_time += record['elapsed'] thread_mtask_time[record['thread']] += record['elapsed'] predict_end = record['predict_start'] + record['predict_cost'] predict_elapsed = max(predict_elapsed, predict_end) if record['elapsed'] > long_mtask_time: long_mtask_time = record['elapsed'] long_mtask = mtaskId Global['predict_last_end'] = predict_elapsed serialTime = ElapsedTime - ExecGraphTime def subReport(elapsed, work): print(" Thread utilization = {:7.2%}".format(work / (elapsed * nthreads))) print(" Speedup = {:6.3}x".format(work / elapsed)) print("\nParallelized code, measured:") subReport(ExecGraphTime, total_mtask_time) print("\nParallelized code, predicted during static scheduling:") subReport(predict_elapsed, predict_mtask_time) print("\nAll code, measured:") subReport(ElapsedTime, serialTime + total_mtask_time) print("\nAll code, measured, scaled by predicted speedup:") expectedParallelSpeedup = predict_mtask_time / predict_elapsed scaledElapsed = serialTime + total_mtask_time / expectedParallelSpeedup subReport(scaledElapsed, serialTime + total_mtask_time) p2e_ratios = [] min_p2e = 1000000 min_mtask = None max_p2e = -1000000 max_mtask = None for mtask in sorted(Mtasks.keys()): if Mtasks[mtask]['elapsed'] > 0: if Mtasks[mtask]['predict_cost'] == 0: Mtasks[mtask]['predict_cost'] = 1 # don't log(0) below p2e_ratio = math.log(Mtasks[mtask]['predict_cost'] / Mtasks[mtask]['elapsed']) p2e_ratios.append(p2e_ratio) if p2e_ratio > max_p2e: max_p2e = p2e_ratio max_mtask = mtask if p2e_ratio < min_p2e: min_p2e = p2e_ratio min_mtask = mtask print("\nMTask statistics:") print(" Longest mtask id = {}".format(long_mtask)) print(" Longest mtask time = {:.2%} of time elapsed in parallelized code".format( long_mtask_time / ExecGraphTime)) print(" min log(p2e) = %0.3f" % min_p2e, end="") print(" from mtask %d (predict %d," % (min_mtask, Mtasks[min_mtask]['predict_cost']), end="") print(" elapsed %d)" % Mtasks[min_mtask]['elapsed']) print(" max log(p2e) = %0.3f" % max_p2e, end="") print(" from mtask %d (predict %d," % (max_mtask, Mtasks[max_mtask]['predict_cost']), end="") print(" elapsed %d)" % Mtasks[max_mtask]['elapsed']) stddev = statistics.pstdev(p2e_ratios) mean = statistics.mean(p2e_ratios) print(" mean = %0.3f" % mean) print(" stddev = %0.3f" % stddev) print(" e ^ stddev = %0.3f" % math.exp(stddev)) def report_cpus(): print("\nCPU info:") Global['cpu_sockets'] = collections.defaultdict(lambda: 0) Global['cpu_socket_cores'] = collections.defaultdict(lambda: 0) print(" Id | Time spent executing MTask | Socket | Core | Model") print(" | % of elapsed ticks / ticks | | |") print(" ====|============================|========|======|======") for cpu in sorted(Cpus): socket = "" core = "" model = "" if cpu in Global['cpuinfo']: cpuinfo = Global['cpuinfo'][cpu] if 'physical_id' in cpuinfo and 'core_id' in cpuinfo: socket = cpuinfo['physical_id'] Global['cpu_sockets'][socket] += 1 core = cpuinfo['core_id'] Global['cpu_socket_cores'][socket + "__" + core] += 1 if 'model_name' in cpuinfo: model = cpuinfo['model_name'] print(" {:3d} | {:7.2%} / {:16d} | {:>6s} | {:>4s} | {}".format( cpu, Cpus[cpu]['mtask_time'] / ElapsedTime, Cpus[cpu]['mtask_time'], socket, core, model)) if len(Global['cpu_sockets']) > 1: Global['cpu_sockets_warning'] = True for scn in Global['cpu_socket_cores'].values(): if scn > 1: Global['cpu_socket_cores_warning'] = True def report_sections(): if not Sections: return print("\nSection profile:") totalTime = collections.defaultdict(lambda: 0) selfTime = collections.defaultdict(lambda: 0) sectionTree = [0, {}, 1] # [selfTime, childTrees, numberOfTimesEntered] prevTime = 0 prevStack = () for time, stack in Sections: if len(stack) > len(prevStack): scope = sectionTree for item in stack: scope = scope[1].setdefault(item, [0, {}, 0]) scope[2] += 1 dt = time - prevTime scope = sectionTree for item in prevStack: scope = scope[1].setdefault(item, [0, {}, 0]) scope[0] += dt if prevStack: for name in prevStack: totalTime[name] += dt selfTime[prevStack[-1]] += dt prevTime = time prevStack = stack def treeSum(tree): n = tree[0] for subTree in tree[1].values(): n += treeSum(subTree) return n # Make sure the tree sums to the elapsed time sectionTree[0] += ElapsedTime - treeSum(sectionTree) def printTree(prefix, name, entries, tree): print(" {:7.2%} | {:7.2%} | {:8} | {:10.2f} | {}".format( treeSum(tree) / ElapsedTime, tree[0] / ElapsedTime, tree[2], tree[2] / entries, prefix + name)) for k in sorted(tree[1], key=lambda _: -treeSum(tree[1][_])): printTree(prefix + " ", k, tree[2], tree[1][k]) print(" Total | Self | Total | Relative | Section") print(" time | time | entries | entries | name ") print("==========|=========|==========|============|========") printTree("", "*TOTAL*", 1, sectionTree) ###################################################################### def write_vcd(filename): print("Writing %s" % filename) with open(filename, "w", encoding="utf8") as fh: # dict of dicts of hierarchy elements/signal name -> (code, width) scopeSigs = {} # map from time -> code -> value values = collections.defaultdict(lambda: {}) parallelism = { 'measured': collections.defaultdict(lambda: 0), 'predicted': collections.defaultdict(lambda: 0) } parallelism['measured'][0] = 0 parallelism['predicted'][0] = 0 nextFreeCode = 0 def getCode(width, *names): nonlocal nextFreeCode scope = scopeSigs *path, name = names for item in path: scope = scope.setdefault(item, {}) code, oldWidth = scope.setdefault(name, (nextFreeCode, width)) assert oldWidth == width if code == nextFreeCode: nextFreeCode += 1 return code def addValue(code, time, val): if isinstance(val, str): buf = "" for c in val: buf += bin(ord(c))[2:].rjust(8, "0") val = buf.ljust(LongestVcdStrValueLength * 8, "0") values[time][code] = val # Measured graph for thread in sorted(Threads): mcode = getCode(32, 'measured', 't%d_mtask' % thread) for record in Threads[thread]: start = record['start'] mtask = record['mtask'] end = record['end'] cpu = record['cpu'] addValue(mcode, start, mtask) addValue(mcode, end, None) parallelism['measured'][start] += 1 parallelism['measured'][end] -= 1 code = getCode(32, 'measured', 'cpu%d_thread' % cpu) addValue(code, start, thread) addValue(code, end, None) code = getCode(32, 'measured', 'cpu%d_mtask' % cpu) addValue(code, start, mtask) addValue(code, end, None) tStart = sorted(_['start'] for records in Threads.values() for _ in records) tEnd = sorted(_['end'] for records in Threads.values() for _ in records) # Predicted graph for start, end in ExecGraphIntervals: # Find the earliest MTask start after the start point, and the # latest MTask end before the end point, so we can scale to the # same range start = tStart[bisect.bisect_left(tStart, start)] end = tEnd[bisect.bisect_right(tEnd, end) - 1] # Compute scale so predicted graph is of same width as interval measured_scaling = (end - start) / Global['predict_last_end'] # Predict mtasks that fill the time the execution occupied for mtask in Mtasks: thread = Mtasks[mtask]['thread'] pred_scaled_start = start + int(Mtasks[mtask]['predict_start'] * measured_scaling) pred_scaled_end = start + int( (Mtasks[mtask]['predict_start'] + Mtasks[mtask]['predict_cost']) * measured_scaling) if pred_scaled_start == pred_scaled_end: continue mcode = getCode(32, 'predicted', 't%d_mtask' % thread) addValue(mcode, pred_scaled_start, mtask) addValue(mcode, pred_scaled_end, None) parallelism['predicted'][pred_scaled_start] += 1 parallelism['predicted'][pred_scaled_end] -= 1 # Parallelism graph for measpred in ('measured', 'predicted'): pcode = getCode(32, 'stats', '%s_parallelism' % measpred) value = 0 for time in sorted(parallelism[measpred].keys()): value += parallelism[measpred][time] addValue(pcode, time, value) # Section graph if Sections: scode = getCode(LongestVcdStrValueLength * 8, "section", "trace") dcode = getCode(32, "section", "depth") for time, stack in Sections: addValue(scode, time, stack[-1] if stack else None) addValue(dcode, time, len(stack)) # Create output file fh.write("$version Generated by verilator_gantt $end\n") fh.write("$timescale 1ns $end\n") fh.write("\n") all_codes = set() def writeScope(scope): assert isinstance(scope, dict) for key in sorted(scope): val = scope[key] if isinstance(val, dict): fh.write(" $scope module %s $end\n" % key) writeScope(val) fh.write(" $upscope $end\n") else: (code, width) = val all_codes.add(code) fh.write(" $var wire %d v%x %s [%d:0] $end\n" % (width, code, key, width - 1)) fh.write(" $scope module gantt $end\n") writeScope(scopeSigs) fh.write(" $upscope $end\n") fh.write("$enddefinitions $end\n") fh.write("\n") first = True for time in sorted(values): if first: first = False # Start with Z for any signals without time zero data for code in sorted(all_codes): if code not in values[time]: addValue(code, time, None) fh.write("#%d\n" % time) for code in sorted(values[time]): value = values[time][code] if value is None: fh.write("bz v%x\n" % code) elif isinstance(value, str): fh.write("b%s v%x\n" % (value, code)) else: fh.write("b%s v%x\n" % (format(value, 'b'), code)) ###################################################################### parser = argparse.ArgumentParser( allow_abbrev=False, formatter_class=argparse.RawDescriptionHelpFormatter, description="""Create Gantt chart of multi-threaded execution. Verilator_gantt creates a visual representation to help analyze Verilator #xmultithreaded simulation performance, by showing when each macro-task #xstarts and ends, and showing when each thread is busy or idle. For documentation see https://verilator.org/guide/latest/exe_verilator_gantt.html""", epilog="""Copyright 2018-2024 by Wilson Snyder. This program is free software; you can redistribute it and/or modify it under the terms of either the GNU Lesser General Public License Version 3 or the Perl Artistic License Version 2.0. SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0""") parser.add_argument('--debug', action='store_true', help='enable debug') parser.add_argument('--no-vcd', help='disable creating vcd', action='store_true') parser.add_argument('--vcd', help='filename for vcd outpue', default='profile_exec.vcd') parser.add_argument('filename', help='input profile_exec.dat filename to process', default='profile_exec.dat') Args = parser.parse_args() read_data(Args.filename) report() if not Args.no_vcd: write_vcd(Args.vcd) ###################################################################### # Local Variables: # compile-command: "./verilator_gantt ../test_regress/t/t_gantt_io.dat" # End: