verilator/include/verilated_heavy.h

336 lines
12 KiB
C
Raw Normal View History

// -*- mode: C++; c-file-style: "cc-mode" -*-
2010-01-17 20:10:37 +00:00
//*************************************************************************
//
2019-01-04 00:17:22 +00:00
// Copyright 2010-2019 by Wilson Snyder. This program is free software; you can
2010-01-17 20:10:37 +00:00
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License.
// Version 2.0.
//
// Verilator is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
//*************************************************************************
///
/// \file
/// \brief Verilator: String include for all Verilated C files
///
/// This file is included automatically by Verilator at the top of
/// all C++ files it generates. It is used when strings or other
/// heavyweight types are required; these contents are not part of
/// verilated.h to save compile time when such types aren't used.
2010-01-17 20:10:37 +00:00
///
2019-11-08 03:33:59 +00:00
/// Code available from: https://verilator.org
2010-01-17 20:10:37 +00:00
///
//*************************************************************************
#ifndef _VERILATED_HEAVY_H_
#define _VERILATED_HEAVY_H_ 1 ///< Header Guard
2010-01-17 20:10:37 +00:00
#include "verilated.h"
#include <deque>
2019-12-01 16:52:48 +00:00
#include <map>
2010-01-17 20:10:37 +00:00
#include <string>
2019-12-01 16:52:48 +00:00
//===================================================================
// String formatters (required by below containers)
extern std::string VL_TO_STRING(CData obj);
extern std::string VL_TO_STRING(SData obj);
extern std::string VL_TO_STRING(IData obj);
extern std::string VL_TO_STRING(QData obj);
inline std::string VL_TO_STRING(const std::string& obj) { return "\""+obj+"\""; }
//===================================================================
// Verilog array container
// Similar to std::array<WData, N>, but:
// 1. Doesn't require C++11
// 2. Lighter weight, only methods needed by Verilator, to help compile time.
//
// This is only used when we need an upper-level container and so can't
// simply use a C style array (which is just a pointer).
template <std::size_t T_Words> class VlWide {
WData m_storage[T_Words];
public:
// Default constructor/destructor/copy are fine
const WData& at(size_t index) const { return m_storage[index]; }
WData& at(size_t index) { return m_storage[index]; }
WData* data() { return &m_storage[0]; }
const WData* data() const { return &m_storage[0]; }
bool operator<(const VlWide<T_Words>& rhs) const {
return VL_LT_W(T_Words, data(), rhs.data());
}
};
// Convert a C array to std::array reference by pointer magic, without copy.
// Data type (second argument) is so the function template can automatically generate.
template <std::size_t T_Words>
VlWide<T_Words>& VL_CVT_W_A(WDataInP inp, const VlWide<T_Words>&) {
return *((VlWide<T_Words>*)inp);
}
//===================================================================
// Verilog associative array container
// There are no multithreaded locks on this; the base variable must
// be protected by other means
//
template <class T_Key, class T_Value> class VlAssocArray {
private:
// TYPES
typedef std::map<T_Key, T_Value> Map;
public:
typedef typename Map::const_iterator const_iterator;
private:
// MEMBERS
Map m_map; // State of the assoc array
T_Value m_defaultValue; // Default value
public:
// CONSTRUCTORS
VlAssocArray() {
// m_defaultValue isn't defaulted. Caller's constructor must do it.
}
~VlAssocArray() {}
// Standard copy constructor works. Verilog: assoca = assocb
// METHODS
T_Value& atDefault() { return m_defaultValue; }
// Size of array. Verilog: function int size(), or int num()
int size() const { return m_map.size(); }
// Clear array. Verilog: function void delete([input index])
void clear() { m_map.clear(); }
void erase(const T_Key& index) { m_map.erase(index); }
// Return 0/1 if element exists. Verilog: function int exists(input index)
int exists(const T_Key& index) const { return m_map.find(index) != m_map.end(); }
// Return first element. Verilog: function int first(ref index);
int first(T_Key& indexr) const {
typename Map::const_iterator it = m_map.begin();
if (it == m_map.end()) return 0;
indexr = it->first;
return 1;
}
// Return last element. Verilog: function int last(ref index)
int last(T_Key& indexr) const {
typename Map::const_reverse_iterator it = m_map.rbegin();
if (it == m_map.rend()) return 0;
indexr = it->first;
return 1;
}
// Return next element. Verilog: function int next(ref index)
int next(T_Key& indexr) const {
typename Map::const_iterator it = m_map.find(indexr);
if (VL_UNLIKELY(it == m_map.end())) return 0;
it++;
if (VL_UNLIKELY(it == m_map.end())) return 0;
indexr = it->first;
return 1;
}
// Return prev element. Verilog: function int prev(ref index)
int prev(T_Key& indexr) const {
typename Map::const_iterator it = m_map.find(indexr);
if (VL_UNLIKELY(it == m_map.end())) return 0;
if (VL_UNLIKELY(it == m_map.begin())) return 0;
--it;
indexr = it->first;
return 1;
}
// Setting. Verilog: assoc[index] = v
// Can't just overload operator[] or provide a "at" reference to set,
// because we need to be able to insert only when the value is set
T_Value& at(const T_Key& index) {
typename Map::iterator it = m_map.find(index);
if (it == m_map.end()) {
std::pair<typename Map::iterator, bool> pit
= m_map.insert(std::make_pair(index, m_defaultValue));
return pit.first->second;
}
return it->second;
}
// Accessing. Verilog: v = assoc[index]
const T_Value& at(const T_Key& index) const {
typename Map::iterator it = m_map.find(index);
if (it == m_map.end()) return m_defaultValue;
else return it->second;
}
// For save/restore
const_iterator begin() const { return m_map.begin(); }
const_iterator end() const { return m_map.end(); }
// Dumping. Verilog: str = $sformatf("%p", assoc)
std::string to_string() const {
std::string out = "'{";
std::string comma;
for (typename Map::const_iterator it = m_map.begin(); it != m_map.end(); ++it) {
out += comma + VL_TO_STRING(it->first) + ":" + VL_TO_STRING(it->second);
comma = ", ";
}
// Default not printed - maybe random init data
return out + "} ";
}
};
template <class T_Key, class T_Value>
std::string VL_TO_STRING(const VlAssocArray<T_Key, T_Value>& obj) {
return obj.to_string();
}
//===================================================================
// Verilog queue container
// There are no multithreaded locks on this; the base variable must
// be protected by other means
//
template <class T_Value> class VlQueue {
private:
// TYPES
typedef std::deque<T_Value> Deque;
public:
typedef typename Deque::const_iterator const_iterator;
private:
// MEMBERS
Deque m_deque; // State of the assoc array
T_Value m_defaultValue; // Default value
public:
// CONSTRUCTORS
VlQueue() {
// m_defaultValue isn't defaulted. Caller's constructor must do it.
}
~VlQueue() {}
// Standard copy constructor works. Verilog: assoca = assocb
// METHODS
T_Value& atDefault() { return m_defaultValue; }
// Size. Verilog: function int size(), or int num()
int size() const { return m_deque.size(); }
// Clear array. Verilog: function void delete([input index])
void clear() { m_deque.clear(); }
void erase(size_t index) { if (VL_LIKELY(index < m_deque.size())) m_deque.erase(index); }
// function void q.push_front(value)
void push_front(const T_Value& value) { m_deque.push_front(value); }
// function void q.push_back(value)
void push_back(const T_Value& value) { m_deque.push_back(value); }
// function value_t q.pop_front();
const T_Value& pop_front() {
if (m_deque.empty()) return m_defaultValue;
const T_Value& v = m_deque.front(); m_deque.pop_front(); return v;
}
// function value_t q.pop_back();
const T_Value& pop_back() {
if (m_deque.empty()) return m_defaultValue;
const T_Value& v = m_deque.back(); m_deque.pop_back(); return v;
}
// Setting. Verilog: assoc[index] = v
// Can't just overload operator[] or provide a "at" reference to set,
// because we need to be able to insert only when the value is set
T_Value& at(size_t index) {
static T_Value s_throwAway;
if (VL_UNLIKELY(index >= m_deque.size())) {
s_throwAway = atDefault();
return s_throwAway;
}
else return m_deque[index];
}
// Accessing. Verilog: v = assoc[index]
const T_Value& at(size_t index) const {
static T_Value s_throwAway;
if (VL_UNLIKELY(index >= m_deque.size())) return atDefault();
else return m_deque[index];
}
// function void q.insert(index, value);
void insert(size_t index, const T_Value& value) {
if (VL_UNLIKELY(index >= m_deque.size())) return;
m_deque[index] = value;
}
// For save/restore
const_iterator begin() const { return m_deque.begin(); }
const_iterator end() const { return m_deque.end(); }
// Dumping. Verilog: str = $sformatf("%p", assoc)
std::string to_string() const {
std::string out = "'{";
std::string comma;
for (typename Deque::const_iterator it = m_deque.begin(); it != m_deque.end(); ++it) {
out += comma + VL_TO_STRING(*it);
comma = ", ";
}
return out + "} ";
}
};
template <class T_Value>
std::string VL_TO_STRING(const VlQueue<T_Value>& obj) {
return obj.to_string();
}
2010-01-17 20:10:37 +00:00
//======================================================================
// Conversion functions
2010-01-17 20:10:37 +00:00
extern std::string VL_CVT_PACK_STR_NW(int lwords, WDataInP lwp) VL_MT_SAFE;
inline std::string VL_CVT_PACK_STR_NQ(QData lhs) VL_PURE {
WData lw[2]; VL_SET_WQ(lw, lhs);
2010-01-17 20:10:37 +00:00
return VL_CVT_PACK_STR_NW(2, lw);
}
inline std::string VL_CVT_PACK_STR_NN(const std::string& lhs) VL_PURE {
return lhs;
}
inline std::string VL_CVT_PACK_STR_NI(IData lhs) VL_PURE {
WData lw[1]; lw[0] = lhs;
2010-01-17 20:10:37 +00:00
return VL_CVT_PACK_STR_NW(1, lw);
}
inline std::string VL_CONCATN_NNN(const std::string& lhs, const std::string& rhs) VL_PURE {
return lhs + rhs;
}
inline std::string VL_REPLICATEN_NNQ(int,int,int, const std::string& lhs, IData rep) VL_PURE {
std::string out; out.reserve(lhs.length() * rep);
for (unsigned times=0; times<rep; ++times) out += lhs;
return out;
}
inline std::string VL_REPLICATEN_NNI(int obits,int lbits,int rbits,
const std::string& lhs, IData rep) VL_PURE {
return VL_REPLICATEN_NNQ(obits,lbits,rbits,lhs,rep);
}
2010-01-17 20:10:37 +00:00
2017-12-08 00:57:11 +00:00
inline IData VL_LEN_IN(const std::string& ld) { return ld.length(); }
extern std::string VL_TOLOWER_NN(const std::string& ld);
extern std::string VL_TOUPPER_NN(const std::string& ld);
2017-12-08 00:57:11 +00:00
extern IData VL_FOPEN_NI(const std::string& filename, IData mode) VL_MT_SAFE;
2018-03-12 20:44:01 +00:00
extern void VL_READMEM_N(bool hex, int width, int depth, int array_lsb,
const std::string& filename,
2018-03-12 20:44:01 +00:00
void* memp, IData start, IData end) VL_MT_SAFE;
extern void VL_WRITEMEM_N(bool hex, int width, int depth, int array_lsb,
const std::string& filename,
2018-03-12 20:44:01 +00:00
const void* memp, IData start, IData end) VL_MT_SAFE;
extern IData VL_SSCANF_INX(int lbits, const std::string& ld,
const char* formatp, ...) VL_MT_SAFE;
extern void VL_SFORMAT_X(int obits_ignored, std::string& output,
const char* formatp, ...) VL_MT_SAFE;
extern std::string VL_SFORMATF_NX(const char* formatp, ...) VL_MT_SAFE;
extern IData VL_VALUEPLUSARGS_INW(int rbits, const std::string& ld, WDataOutP rwp) VL_MT_SAFE;
inline IData VL_VALUEPLUSARGS_INI(int rbits, const std::string& ld, IData& rdr) VL_MT_SAFE {
2017-07-06 23:01:35 +00:00
WData rwp[2]; // WData must always be at least 2
IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
if (got) rdr = rwp[0];
return got;
}
inline IData VL_VALUEPLUSARGS_INQ(int rbits, const std::string& ld, QData& rdr) VL_MT_SAFE {
WData rwp[2];
IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
if (got) rdr = VL_SET_QW(rwp);
return got;
}
extern IData VL_VALUEPLUSARGS_INN(int, const std::string& ld, std::string& rdr) VL_MT_SAFE;
#endif // Guard