verilator/bin/verilator_gantt

561 lines
18 KiB
Plaintext
Raw Normal View History

: # -*-Mode: perl;-*- use perl, wherever it is
eval 'exec perl -wS $0 ${1+"$@"}'
if 0;
# See copyright, etc in below POD section.
######################################################################
use strict;
use warnings;
use Getopt::Long;
2018-08-24 22:47:38 +00:00
use IO::File;
use Pod::Usage;
use vars qw($Debug);
$Debug = 0;
my $Opt_File;
my $Opt_Time_Per_Char = 0; # rdtsc ticks per char in gantt chart, 0=auto
my $opt_vcd = "profile_threads.vcd";
our %Threads;
our %Mtasks;
our %Global;
autoflush STDOUT 1;
autoflush STDERR 1;
Getopt::Long::config("no_auto_abbrev");
if (! GetOptions(
"help" => \&usage,
"scale=i" => \$Opt_Time_Per_Char,
"debug" => sub { $Debug = 1; },
"vcd=s" => \$opt_vcd,
"no-vcd!" => sub { $opt_vcd = undef; },
"<>" => \&parameter,
)) {
die "%Error: Bad usage, try 'verilator_gantt --help'\n";
}
$Opt_File = "profile_threads.dat" if !defined $Opt_File;
process($Opt_File);
write_vcd($opt_vcd) if defined $opt_vcd;
exit(0);
#######################################################################
sub usage {
pod2usage(-verbose=>2, -exitval=>2, -output=>\*STDOUT);
exit(1);
}
sub parameter {
my $param = shift;
if (!defined $Opt_File) {
$Opt_File = $param;
} else {
die "%Error: Unknown parameter: $param\n";
}
}
#######################################################################
sub process {
my $filename = shift;
read_data($filename);
report();
}
#######################################################################
sub read_data {
my $filename = shift;
%Global = (rdtsc_cycle_time => 0);
my $fh = IO::File->new ($filename) or die "%Error: $! $filename,";
while (my $line = $fh->getline) {
if ($line =~ m/VLPROF mtask\s(\d+)\sstart\s(\d+)\send\s(\d+)\selapsed\s(\d+)\spredict_time\s(\d+)\scpu\s(\d+)\son thread (\d+)/) {
my $mtask = $1;
my $start = $2;
my $end = $3;
my $elapsed_time = $4;
my $predict_time = $5;
my $cpu = $6;
my $thread = $7;
$Threads{$thread}{$start}{mtask} = $mtask;
$Threads{$thread}{$start}{end} = $end;
$Threads{$thread}{$start}{cpu} = $cpu;
if (!exists $Mtasks{$mtask}{elapsed}) {
$Mtasks{$mtask}{elapsed} = 0;
}
$Mtasks{$mtask}{elapsed} += $elapsed_time;
$Mtasks{$mtask}{predict} = $predict_time;
$Mtasks{$mtask}{end} = max($Mtasks{$mtask}{end}, $end);
}
elsif ($line =~ /^VLPROFTHREAD/) {}
elsif ($line =~ m/VLPROF arg\s+(\S+)\+([0-9.])\s*$/
|| $line =~ m/VLPROF arg\s+(\S+)\s+([0-9.])\s*$/) {
$Global{args}{$1} = $2;
}
elsif ($line =~ m/VLPROF stat\s+(\S+)\s+([0-9.]+)/) {
$Global{stats}{$1} = $2;
}
elsif ($line =~ /^#/) {}
elsif ($Debug) {
chomp $line;
print "Unk: $line\n";
}
# TODO -- this is parsing text printed by a client.
# Really, verilator proper should generate this
# if it's useful...
if ($line =~ m/rdtsc time = (\d+) ticks/) {
$Global{rdtsc_cycle_time} = $1;
}
}
}
sub report {
print "Verilator Gantt report\n";
print "\nArgument settings:\n";
foreach my $arg (sort keys %{$Global{args}}) {
my $plus = ($arg =~ /^\+/) ? "+" : " ";
printf " %s%s%d\n", $arg, $plus, $Global{args}{$arg};
}
my $nthreads = scalar keys %Threads;
$Global{cpus}{cpu_time} = {};
foreach my $thread (keys %Threads) {
# Make potentially multiple characters per column
foreach my $start (keys %{$Threads{$thread}}) {
my $cpu = $Threads{$thread}{$start}{cpu};
my $elapsed = $Threads{$thread}{$start}{end} - $start;
$Global{cpus}{cpu_time}{$cpu} += $elapsed;
}
}
my $mt_mtask_time = 0;
my $long_mtask_time = 0;
my $last_end = 0;
foreach my $mtask (keys %Mtasks) {
$mt_mtask_time += $Mtasks{$mtask}{elapsed};
$last_end = max($last_end, $Mtasks{$mtask}{end});
$long_mtask_time = max($long_mtask_time, $Mtasks{$mtask}{elapsed});
}
$Global{last_end} = $last_end;
report_graph();
# If we know cycle time in the same (rdtsc) units,
# this will give us an actual utilization number,
# (how effectively we keep the cores busy.)
#
# It also gives us a number we can compare against
# serial mode, to estimate the overhead of data sharing,
# which will show up in the total elapsed time. (Overhead
# of synchronization and scheduling should not.)
print "\nAnalysis:\n";
printf " Total threads = %d\n", $nthreads;
printf " Total mtasks = %d\n", scalar(keys %Mtasks);
printf " Total cpus used = %d\n", scalar(keys %{$Global{cpus}});
printf " Total yields = %d\n", $Global{stats}{yields};
printf " Total eval time = %d rdtsc ticks\n", $Global{last_end};
printf " Longest mtask time = %d rdtsc ticks\n", $long_mtask_time;
printf " All-thread mtask time = %d rdtsc ticks\n", $mt_mtask_time;
my $long_efficiency = $long_mtask_time/($Global{last_end});
printf " Longest-thread efficiency = %0.1f%%\n", $long_efficiency*100;
my $mt_efficiency = $mt_mtask_time/($Global{last_end}*$nthreads);
printf " All-thread efficiency = %0.1f%%\n", $mt_efficiency*100;
printf " All-thread speedup = %0.1f\n", $mt_efficiency*$nthreads;
if ($Global{rdtsc_cycle_time} > 0) {
my $ut = $mt_mtask_time / $Global{rdtsc_cycle_time};
print "tot_mtask_cpu=$mt_mtask_time cyc=$Global{rdtsc_cycle_time} ut=$ut\n";
}
my @p2e_ratios;
my $min_p2e = 1000000;
my $min_mtask;
my $max_p2e = -1000000;
my $max_mtask;
foreach my $mtask (sort keys %Mtasks) {
if ($Mtasks{$mtask}{elapsed} > 0) {
if ($Mtasks{$mtask}{predict} == 0) {
$Mtasks{$mtask}{predict} = 1; # don't log(0) below
}
my $p2e_ratio = log( $Mtasks{$mtask}{predict} / $Mtasks{$mtask}{elapsed} );
#print "log(p2e $mtask) = $p2e_ratio (predict $Mtasks{$mtask}{predict}, elapsed $Mtasks{$mtask}{elapsed})\n";
push @p2e_ratios, $p2e_ratio;
if ($p2e_ratio > $max_p2e) {
$max_p2e = $p2e_ratio;
$max_mtask = $mtask;
}
if ($p2e_ratio < $min_p2e) {
$min_p2e = $p2e_ratio;
$min_mtask = $mtask;
}
}
}
print "\nStatistics:\n";
print " min log(p2e) = $min_p2e from mtask $min_mtask (predict $Mtasks{$min_mtask}{predict}, elapsed $Mtasks{$min_mtask}{elapsed})\n";
print " max log(p2e) = $max_p2e from mtask $max_mtask (predict $Mtasks{$max_mtask}{predict}, elapsed $Mtasks{$max_mtask}{elapsed})\n";
my $stddev = stddev(\@p2e_ratios);
my $mean = mean(\@p2e_ratios);
print " mean = " . ($mean) . "\n";
print " stddev = " . ($stddev) . "\n";
print " e ^ stddev = " . exp($stddev). "\n";
print "\n";
}
sub report_graph {
my $time_per = $Opt_Time_Per_Char;
if ($time_per == 0) {
$time_per = ($Global{last_end} / 40); # Start with 40 columns
while ($time_per > 10) {
my ($graph, $conflicts) = _make_graph($time_per);
last if !$conflicts;
$time_per = int($time_per/2);
}
# One more step so we can fit more labels
$time_per = int($time_per/2);
}
my ($graph, $conflicts) = _make_graph($time_per);
print "\nThread gantt graph:\n";
print " Legend: One character width = $time_per rdtsc ticks\n";
print " Legend: '&' = multiple mtasks in this period (character width)\n";
my $scale = " <-".$Global{last_end}." rdtsc total";
for (my $col = length($scale); # -2 for '->' below
$col < ($Global{last_end}/$time_per); ++$col) {
$scale .= "-";
}
print " $scale->\n";
foreach my $thread (sort keys %{$graph}) {
print " t: ";
_print_graph_line($graph->{$thread}, '');
}
}
sub _make_graph {
my $time_per = shift;
my $graph = {}; # {thread}{column}{char=>'x' or chars=>#}
my $conflicts = 0;
foreach my $thread (keys %Threads) {
# Make potentially multiple characters per column
foreach my $start (sort {$a <=> $b} keys %{$Threads{$thread}}) {
my $end = $Threads{$thread}{$start}{end};
my $mtask = $Threads{$thread}{$start}{mtask};
my $cpu = $Threads{$thread}{$start}{cpu};
my $startcol = _time_col($time_per, $start);
my $endcol = _time_col($time_per, $end);
my $label = "[";
$label .= "$cpu"; # Maybe make optional in future
my $width = $endcol - $startcol + 1;
while (length($label) < ($width-1)) { # -1 for ']'
$label .= "-";
}
$label .= "]";
$graph->{$thread}[$startcol]{char} .= $label;
}
if ($Debug) {
print "# Multicol: "; _print_graph_line($graph->{$thread}, '|');
}
# Expand line to one char per column
for (my $col = 0; $col <= $#{$graph->{$thread}}; ++$col) {
if (my $chars = $graph->{$thread}[$col]{char}) {
my $ok = 1;
for (my $coladd = 1; $coladd<length($chars); ++$coladd) {
if ($graph->{$thread}[$col + $coladd]{char}) {
$ok = 0; last;
}
}
if (!$ok) {
if ($chars =~ /\[.*\[/) { # Two begins or more
$conflicts++;
$graph->{$thread}[$col]{char} = "&";
} else {
$graph->{$thread}[$col]{char} = "[";
}
for (my $coladd = 1; $coladd<length($chars); ++$coladd) {
if ($graph->{$thread}[$col + $coladd]{char}) {
last;
} else {
$graph->{$thread}[$col + $coladd]{char} = 'x';
}
}
} else {
my $coladd = 0;
foreach my $char (split //, $chars) {
$graph->{$thread}[$col+$coladd]{char} = $char;
++$coladd;
}
}
}
}
if ($Debug) {
print "# Singlcol: "; _print_graph_line($graph->{$thread}, '|');
}
}
print "# Conflicts $conflicts\n" if $Debug;
return ($graph, $conflicts);
}
sub _print_graph_line {
my $graph_thread = shift;
my $sep = shift;
for (my $col = 0; $col <= $#{$graph_thread}; ++$col) {
my $c = $graph_thread->[$col]{char}; $c=' ' if !defined $c;
print $c, $sep;
}
print "\n";
}
sub _time_col {
my $time_per = shift;
my $time = shift;
return int($time/$time_per);
}
#######################################################################
sub write_vcd {
my $filename = shift;
print "Writing $filename\n";
my $fh = IO::File->new(">$filename") or die "%Error: $! $filename,";
my $vcd = {values => {}, # {<time>}{<code>} = value
sigs => {}, # {<module>}{<sig}} = code
code => 0,
};
my %parallelism;
foreach my $thread (keys %Threads) {
my $mcode = ($vcd->{sigs}{threads}{"thread${thread}_mtask"} ||= $vcd->{code}++);
foreach my $start (sort {$a <=> $b} keys %{$Threads{$thread}}) {
my $end = $Threads{$thread}{$start}{end};
my $mtask = $Threads{$thread}{$start}{mtask};
my $cpu = $Threads{$thread}{$start}{cpu};
$vcd->{values}{$start}{$mcode} = $mtask;
$vcd->{values}{$end}{$mcode} = undef;
$parallelism{$start}++;
$parallelism{$end}--;
my $ccode = $vcd->{sigs}{cpus}{"cpu${cpu}_thread"} ||= $vcd->{code}++;
$vcd->{values}{$start}{$ccode} = $thread;
$vcd->{values}{$end}{$ccode} = undef;
my $mcode = $vcd->{sigs}{mtasks}{"mtask${mtask}_cpu"} ||= $vcd->{code}++;
$vcd->{values}{$start}{$mcode} = $cpu;
$vcd->{values}{$end}{$mcode} = undef;
}
}
{
my $pcode = ($vcd->{sigs}{Stats}{"parallelism"} ||= $vcd->{code}++);
my $value = 0;
foreach my $time (sort {$a<=>$b} keys %parallelism) {
$value += $parallelism{$time};
$vcd->{values}{$time}{$pcode} = $value;
}
}
$fh->print('$version Generated by verilator_gantt $end'."\n");
$fh->print('$timescale 1ns $end'."\n");
$fh->print("\n");
my %all_codes;
$fh->print(' $scope module gantt $end'."\n");
foreach my $module (sort keys %{$vcd->{sigs}}) {
$fh->printf(' $scope module %s $end'."\n", $module);
foreach my $sig (sort keys %{$vcd->{sigs}{$module}}) {
my $code = $vcd->{sigs}{$module}{$sig};
$fh->printf(' $var wire 32 v%x %s [31:0] $end'."\n",
$code, $sig);
$all_codes{$code} = 1;
}
$fh->print(' $upscope $end'."\n");
}
$fh->print(' $upscope $end'."\n");
$fh->print('$enddefinitions $end'."\n");
$fh->print("\n");
my $first = 1;
foreach my $time (sort {$a <=> $b} keys %{$vcd->{values}}) {
if ($first) {
$first = 0;
# Start with Z for any signals without time zero data
foreach my $code (keys %all_codes) {
if (!defined $vcd->{values}{$time}{$code}) {
$vcd->{values}{$time}{$code} = undef;
}
}
}
$fh->printf("#%d\n", $time);
foreach my $code (sort keys %{$vcd->{values}{$time}}) {
my $value = $vcd->{values}{$time}{$code};
if (defined $value) {
$fh->printf("b%b v%x\n", $value, $code);
} else {
$fh->printf("bz v%x\n", $code);
}
}
}
}
#######################################################################
# Similar to Statistics::Basic functions, but avoid a package dependency
sub max {
my $n = $_[0]; shift;
while (defined $_[0]) {
$n = $_[0] if !defined $n || $_[0] > $n;
shift;
}
return $n;
}
sub mean {
my $arrayref = shift;
my $n = 0;
my $sum = 0;
foreach my $v (@$arrayref) {
$sum += $v;
$n++;
}
return undef if !$n;
return $sum/$n;
}
sub stddev {
my $arrayref = shift;
my $n = 0;
my $sum = 0;
my $sumsq = 0;
foreach my $v (@$arrayref) {
$sum += $v;
$sumsq += $v**2;
$n++;
}
return undef if !$n;
return sqrt(($sumsq/$n) - ($sum/$n)**2);
}
#######################################################################
__END__
=pod
=head1 NAME
verilator_gantt - Create Gantt chart of multi-threaded execution
=head1 SYNOPSIS
Creates a visual representation to help analyze Verilator multithreaded
simulation performance, by showing when each macro-task starts and ends,
and showing when each thread is busy or idle.
The generated Gantt chart has time on the X-axis. Times shown are to the
scale printed, i.e. a certain about of time for each character width. The
Y-axis shows threads, each thread's execution is shown on one line. That
line shows "[" at the position in time when it executes.
Following the "[" is the cpu number the task executed on, followed by zero
or more "-" to make the width of the characters match the scaled execution
time, followed by a "]". If the scale is too small, the cpu number and
mtask number will not be printed. If the scale is very small, a "&"
indicates multiple mtasks started at that time position.
Also creates a value change dump (VCD) format dump file which may be viewed
in a waveform viewer (e.g. C<GTKWave>). See below.
=head1 USAGE
Build with --prof-threads.
Run a sim with +verilator+prof+threads+window 2.
This will create profile_threads.dat.
Then run:
verilator_gantt profile_threads.dat
The report will be printed on standard output, this also generates
profile_threads.vcd
View profile_threads.vcd in a waveform viewer.
=head1 VCD SIGNALS
In waveforms there are the following signals. Most signals the "decimal"
format will remove the leading zeros and make the traces easier to read.
parallelism: The number of mtasks active at this time, for best performance
this will match the thread count. You may want to use an "analog step"
format to view this signal.
cpu#_thread: For the given CPU number, the thread number executing.
mtask#_cpu; For the given mtask id, the CPU it is executing on.
thread#_mtask: For the given thread number, the mtask id executing.
=head1 ARGUMENTS
=over 4
=item I<filename>
The filename to read data from, defaults to "profile_threads.dat".
=item --help
Displays this message and program version and exits.
=item --scale I<n>
On the X-axis of the generated Gantt chart, each character represents this
many time units. (On x86, time units are rdtsc ticks.) Defaults to 0,
which will automatically compute a reasonable scale where no two mtasks
need to fit into same character width's worth of scaled time.
=item --no-vcd
=item --vcd I<filename>
Set output filename for vcd dump, or disable. Default is
verilator_gantt.vcd.
=back
=head1 DISTRIBUTION
The latest version is available from L<http://www.veripool.org/>.
2019-01-04 00:17:22 +00:00
Copyright 2018-2019 by Wilson Snyder. Verilator is free software; you can
redistribute it and/or modify it under the terms of either the GNU Lesser
General Public License Version 3 or the Perl Artistic License Version 2.0.
=head1 AUTHORS
Wilson Snyder <wsnyder@wsnyder.org>
=head1 SEE ALSO
C<verilator>
=cut
######################################################################
### Local Variables:
### compile-command: "$V4/bin/verilator_gantt $V4/test_regress/obj_vltmt/t_gantt/vlt_sim.log"
### End: