verilator/src/V3DfgPasses.h

141 lines
5.5 KiB
C
Raw Normal View History

Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 15:46:22 +00:00
// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: Passes over DfgGraph
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
2025-01-01 13:30:25 +00:00
// Copyright 2003-2025 by Wilson Snyder. This program is free software; you
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 15:46:22 +00:00
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
#ifndef VERILATOR_V3DFGPASSES_H_
#define VERILATOR_V3DFGPASSES_H_
#include "config_build.h"
#include "verilatedos.h"
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 15:46:22 +00:00
#include "V3DfgPatternStats.h"
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 15:46:22 +00:00
#include "V3DfgPeephole.h"
class AstModule;
class DfgGraph;
//===========================================================================
// Various context objects hold data that need to persist across invocations
// of a DFG pass.
class V3DfgCseContext final {
const std::string m_label; // Label to apply to stats
public:
VDouble0 m_eliminated; // Number of common sub-expressions eliminated
explicit V3DfgCseContext(const std::string& label)
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 15:46:22 +00:00
: m_label{label} {}
~V3DfgCseContext() VL_MT_DISABLED;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 15:46:22 +00:00
};
class V3DfgRegularizeContext final {
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 15:46:22 +00:00
const std::string m_label; // Label to apply to stats
// Used to generate unique names for different DFGs within the same hashed name
std::unordered_map<std::string, uint32_t> m_multiplicity;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 15:46:22 +00:00
public:
VDouble0 m_temporariesIntroduced; // Number of temporaries introduced
std::string tmpNamePrefix(const DfgGraph&); // Return prefix to use for given graph
explicit V3DfgRegularizeContext(const std::string& label)
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 15:46:22 +00:00
: m_label{label} {}
~V3DfgRegularizeContext() VL_MT_DISABLED;
};
class V3DfgEliminateVarsContext final {
const std::string m_label; // Label to apply to stats
public:
VDouble0 m_varsReplaced; // Number of variables replaced
VDouble0 m_varsRemoved; // Number of variables removed
explicit V3DfgEliminateVarsContext(const std::string& label)
: m_label{label} {}
~V3DfgEliminateVarsContext() VL_MT_DISABLED;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 15:46:22 +00:00
};
class V3DfgOptimizationContext final {
const std::string m_label; // Label to add to stats, etc.
const std::string m_prefix; // Prefix to add to file dumps (derived from label)
public:
VDouble0 m_modules; // Number of modules optimized
VDouble0 m_coalescedAssignments; // Number of partial assignments coalesced
2022-09-26 13:21:05 +00:00
VDouble0 m_inputEquations; // Number of input combinational equations
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 15:46:22 +00:00
VDouble0 m_representable; // Number of combinational equations representable
VDouble0 m_nonRepDType; // Equations non-representable due to data type
VDouble0 m_nonRepImpure; // Equations non-representable due to impure node
VDouble0 m_nonRepTiming; // Equations non-representable due to timing control
VDouble0 m_nonRepLhs; // Equations non-representable due to lhs
VDouble0 m_nonRepNode; // Equations non-representable due to node type
VDouble0 m_nonRepUnknown; // Equations non-representable due to unknown node
VDouble0 m_nonRepVarRef; // Equations non-representable due to variable reference
VDouble0 m_nonRepWidth; // Equations non-representable due to width mismatch
VDouble0 m_resultEquations; // Number of result combinational equations
V3DfgCseContext m_cseContext0{m_label + " 1st"};
V3DfgCseContext m_cseContext1{m_label + " 2nd"};
V3DfgPeepholeContext m_peepholeContext{m_label};
V3DfgRegularizeContext m_regularizeContext{m_label};
V3DfgEliminateVarsContext m_eliminateVarsContext{m_label};
V3DfgPatternStats m_patternStats;
explicit V3DfgOptimizationContext(const std::string& label) VL_MT_DISABLED;
~V3DfgOptimizationContext() VL_MT_DISABLED;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 15:46:22 +00:00
const std::string& prefix() const { return m_prefix; }
};
namespace V3DfgPasses {
//===========================================================================
// Top level entry points
//===========================================================================
// Construct a DfGGraph representing the combinational logic in the given AstModule. The logic
// that is represented by the graph is removed from the given AstModule. Returns the
// constructed DfgGraph.
DfgGraph* astToDfg(AstModule&, V3DfgOptimizationContext&) VL_MT_DISABLED;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 15:46:22 +00:00
// Optimize the given DfgGraph
void optimize(DfgGraph&, V3DfgOptimizationContext&) VL_MT_DISABLED;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 15:46:22 +00:00
// Convert DfgGraph back into Ast, and insert converted graph back into its parent module.
// Returns the parent module.
AstModule* dfgToAst(DfgGraph&, V3DfgOptimizationContext&) VL_MT_DISABLED;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 15:46:22 +00:00
//===========================================================================
// Intermediate/internal operations
//===========================================================================
// Common subexpression elimination
void cse(DfgGraph&, V3DfgCseContext&) VL_MT_DISABLED;
// Inline fully driven variables
2024-03-25 23:06:25 +00:00
void inlineVars(DfgGraph&) VL_MT_DISABLED;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 15:46:22 +00:00
// Peephole optimizations
void peephole(DfgGraph&, V3DfgPeepholeContext&) VL_MT_DISABLED;
// Regularize graph. This must be run before converting back to Ast.
void regularize(DfgGraph&, V3DfgRegularizeContext&) VL_MT_DISABLED;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 15:46:22 +00:00
// Remove unused nodes
void removeUnused(DfgGraph&) VL_MT_DISABLED;
// Eliminate (remove or replace) redundant variables. Also removes resulting unused logic.
void eliminateVars(DfgGraph&, V3DfgEliminateVarsContext&) VL_MT_DISABLED;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 15:46:22 +00:00
} // namespace V3DfgPasses
#endif