verilator/include/verilated_fst_c.cpp

263 lines
9.0 KiB
C++
Raw Normal View History

// -*- mode: C++; c-file-style: "cc-mode" -*-
//=============================================================================
//
// THIS MODULE IS PUBLICLY LICENSED
//
// Copyright 2001-2020 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=============================================================================
///
/// \file
/// \brief C++ Tracing in FST Format
///
//=============================================================================
// SPDIFF_OFF
Improve tracing performance. (#2257) * Improve tracing performance. Various tactics used to improve performance of both VCD and FST tracing: - Both: Change tracing functions to templates to take variable widths as template parameters. For VCD, subsequently specialize these to the values used by Verilator. This avoids redundant instructions and hard to predict branches. - Both: Check for value changes via direct pointer access into the previous signal value buffer. This eliminates a lot of simple pointer arithmetic instructions form the tracing code. - Both: Verilator provides clean input, no need to mask out used bits. - VCD: pre-compute identifier codes and use memory copy instead of re-computing them every time a code is emitted. This saves a lot of instructions and hard to predict branches. The added D-cache misses are cheaper than the removed branches/instructions. - VCD: re-write the routines emitting the changes to be more efficient. - FST: Use previous signal value buffer the same way as the VCD tracing code, and only call the FST API when a change is detected. Performance as measured on SweRV EH1, with the pre-canned CoreMark benchmark running from DCCM/ICCM, clang 6.0.0, Intel i7-3770 @ 3.40GHz, and IO to ramdisk: +--------------+---------------+----------------------+ | VCD | FST | FST separate thread | | (--trace) | (--trace-fst) | (--trace-fst-thread) | ------------+-----------------------------------------------------+ Before | 30.2 s | 121.1 s | 69.8 s | ============+==============+===============+======================+ After | 24.7 s | 45.7 s | 32.4 s | ------------+--------------+---------------+----------------------+ Speedup | 22 % | 256 % | 215 % | ------------+--------------+---------------+----------------------+ Rel. to VCD | 1 x | 1.85 x | 1.31 x | ------------+--------------+---------------+----------------------+ In addition, FST trace size for the above reduced by 48%.
2020-04-13 23:13:10 +00:00
// clang-format off
2020-02-08 12:09:41 +00:00
#define __STDC_LIMIT_MACROS // UINT64_MAX
#include "verilated.h"
#include "verilated_fst_c.h"
2019-05-03 00:33:05 +00:00
// GTKWave configuration
#ifdef VL_TRACE_FST_WRITER_THREAD
2019-05-03 00:33:05 +00:00
# define HAVE_LIBPTHREAD
# define FST_WRITER_PARALLEL
#endif
// Include the GTKWave implementation directly
#define FST_CONFIG_INCLUDE "fst_config.h"
#include "gtkwave/fastlz.c"
#include "gtkwave/fstapi.c"
#include "gtkwave/lz4.c"
#include <algorithm>
#include <iterator>
#include <sstream>
#if defined(_WIN32) && !defined(__MINGW32__) && !defined(__CYGWIN__)
# include <io.h>
#else
# include <unistd.h>
#endif
Improve tracing performance. (#2257) * Improve tracing performance. Various tactics used to improve performance of both VCD and FST tracing: - Both: Change tracing functions to templates to take variable widths as template parameters. For VCD, subsequently specialize these to the values used by Verilator. This avoids redundant instructions and hard to predict branches. - Both: Check for value changes via direct pointer access into the previous signal value buffer. This eliminates a lot of simple pointer arithmetic instructions form the tracing code. - Both: Verilator provides clean input, no need to mask out used bits. - VCD: pre-compute identifier codes and use memory copy instead of re-computing them every time a code is emitted. This saves a lot of instructions and hard to predict branches. The added D-cache misses are cheaper than the removed branches/instructions. - VCD: re-write the routines emitting the changes to be more efficient. - FST: Use previous signal value buffer the same way as the VCD tracing code, and only call the FST API when a change is detected. Performance as measured on SweRV EH1, with the pre-canned CoreMark benchmark running from DCCM/ICCM, clang 6.0.0, Intel i7-3770 @ 3.40GHz, and IO to ramdisk: +--------------+---------------+----------------------+ | VCD | FST | FST separate thread | | (--trace) | (--trace-fst) | (--trace-fst-thread) | ------------+-----------------------------------------------------+ Before | 30.2 s | 121.1 s | 69.8 s | ============+==============+===============+======================+ After | 24.7 s | 45.7 s | 32.4 s | ------------+--------------+---------------+----------------------+ Speedup | 22 % | 256 % | 215 % | ------------+--------------+---------------+----------------------+ Rel. to VCD | 1 x | 1.85 x | 1.31 x | ------------+--------------+---------------+----------------------+ In addition, FST trace size for the above reduced by 48%.
2020-04-13 23:13:10 +00:00
// clang-format on
//=============================================================================
// Specialization of the generics for this trace format
#define VL_DERIVED_T VerilatedFst
#include "verilated_trace_imp.cpp"
#undef VL_DERIVED_T
//=============================================================================
// VerilatedFst
VerilatedFst::VerilatedFst(void* fst)
2020-03-07 23:39:58 +00:00
: m_fst(fst)
, m_symbolp(NULL)
, m_strbuf(NULL) {}
VerilatedFst::~VerilatedFst() {
if (m_fst) fstWriterClose(m_fst);
if (m_symbolp) VL_DO_CLEAR(delete[] m_symbolp, m_symbolp = NULL);
if (m_strbuf) VL_DO_CLEAR(delete[] m_strbuf, m_strbuf = NULL);
}
void VerilatedFst::open(const char* filename) VL_MT_UNSAFE {
m_assertOne.check();
m_fst = fstWriterCreate(filename, 1);
2019-05-02 23:55:16 +00:00
fstWriterSetPackType(m_fst, FST_WR_PT_LZ4);
fstWriterSetTimescaleFromString(m_fst, timeResStr().c_str()); // lintok-begin-on-ref
#ifdef VL_TRACE_FST_WRITER_THREAD
2019-05-03 00:33:05 +00:00
fstWriterSetParallelMode(m_fst, 1);
#endif
m_curScope.clear();
VerilatedTrace<VerilatedFst>::traceInit();
// Clear the scope stack
std::list<std::string>::iterator it = m_curScope.begin();
while (it != m_curScope.end()) {
fstWriterSetUpscope(m_fst);
it = m_curScope.erase(it);
}
// convert m_code2symbol into an array for fast lookup
if (!m_symbolp) {
m_symbolp = new fstHandle[nextCode()];
for (Code2SymbolType::iterator it = m_code2symbol.begin(); it != m_code2symbol.end();
++it) {
m_symbolp[it->first] = it->second;
}
}
m_code2symbol.clear();
// Allocate string buffer for arrays
if (!m_strbuf) { m_strbuf = new char[maxBits() + 32]; }
}
void VerilatedFst::close() {
m_assertOne.check();
VerilatedTrace<VerilatedFst>::close();
fstWriterClose(m_fst);
m_fst = NULL;
}
void VerilatedFst::flush() {
VerilatedTrace<VerilatedFst>::flush();
fstWriterFlushContext(m_fst);
}
void VerilatedFst::emitTimeChange(vluint64_t timeui) { fstWriterEmitTimeChange(m_fst, timeui); }
//=============================================================================
// Decl
void VerilatedFst::declDTypeEnum(int dtypenum, const char* name, vluint32_t elements,
unsigned int minValbits, const char** itemNamesp,
const char** itemValuesp) {
fstEnumHandle enumNum
= fstWriterCreateEnumTable(m_fst, name, elements, minValbits, itemNamesp, itemValuesp);
m_local2fstdtype[dtypenum] = enumNum;
}
void VerilatedFst::declare(vluint32_t code, const char* name, int dtypenum, fstVarDir vardir,
fstVarType vartype, bool array, int arraynum, int msb, int lsb) {
const int bits = ((msb > lsb) ? (msb - lsb) : (lsb - msb)) + 1;
VerilatedTrace<VerilatedFst>::declCode(code, bits, false);
2020-03-07 23:39:58 +00:00
std::istringstream nameiss(name);
2020-06-02 03:16:02 +00:00
std::istream_iterator<std::string> beg(nameiss);
std::istream_iterator<std::string> end;
std::list<std::string> tokens(beg, end); // Split name
std::string symbol_name(tokens.back());
tokens.pop_back(); // Remove symbol name from hierarchy
tokens.insert(tokens.begin(), moduleName()); // Add current module to the hierarchy
// Find point where current and new scope diverge
std::list<std::string>::iterator cur_it = m_curScope.begin();
std::list<std::string>::iterator new_it = tokens.begin();
while (cur_it != m_curScope.end() && new_it != tokens.end()) {
if (*cur_it != *new_it) break;
++cur_it;
++new_it;
}
// Go back to the common point
while (cur_it != m_curScope.end()) {
fstWriterSetUpscope(m_fst);
cur_it = m_curScope.erase(cur_it);
}
// Follow the hierarchy of the new variable from the common scope point
while (new_it != tokens.end()) {
fstWriterSetScope(m_fst, FST_ST_VCD_SCOPE, new_it->c_str(), NULL);
m_curScope.push_back(*new_it);
new_it = tokens.erase(new_it);
}
std::stringstream name_ss;
name_ss << symbol_name;
if (array) name_ss << "(" << arraynum << ")";
std::string name_str = name_ss.str();
if (dtypenum > 0) {
fstEnumHandle enumNum = m_local2fstdtype[dtypenum];
fstWriterEmitEnumTableRef(m_fst, enumNum);
}
Code2SymbolType::const_iterator it = m_code2symbol.find(code);
if (it == m_code2symbol.end()) { // New
m_code2symbol[code]
= fstWriterCreateVar(m_fst, vartype, vardir, bits, name_str.c_str(), 0);
} else { // Alias
fstWriterCreateVar(m_fst, vartype, vardir, bits, name_str.c_str(), it->second);
}
}
void VerilatedFst::declBit(vluint32_t code, const char* name, int dtypenum, fstVarDir vardir,
fstVarType vartype, bool array, int arraynum) {
declare(code, name, dtypenum, vardir, vartype, array, arraynum, 0, 0);
}
void VerilatedFst::declBus(vluint32_t code, const char* name, int dtypenum, fstVarDir vardir,
fstVarType vartype, bool array, int arraynum, int msb, int lsb) {
declare(code, name, dtypenum, vardir, vartype, array, arraynum, msb, lsb);
}
void VerilatedFst::declQuad(vluint32_t code, const char* name, int dtypenum, fstVarDir vardir,
fstVarType vartype, bool array, int arraynum, int msb, int lsb) {
declare(code, name, dtypenum, vardir, vartype, array, arraynum, msb, lsb);
}
void VerilatedFst::declArray(vluint32_t code, const char* name, int dtypenum, fstVarDir vardir,
fstVarType vartype, bool array, int arraynum, int msb, int lsb) {
declare(code, name, dtypenum, vardir, vartype, array, arraynum, msb, lsb);
}
void VerilatedFst::declDouble(vluint32_t code, const char* name, int dtypenum, fstVarDir vardir,
fstVarType vartype, bool array, int arraynum) {
declare(code, name, dtypenum, vardir, vartype, array, arraynum, 63, 0);
}
// Note: emit* are only ever called from one place (full* in
// verilated_trace_imp.cpp, which is included in this file at the top),
// so always inline them.
VL_ATTR_ALWINLINE
void VerilatedFst::emitBit(vluint32_t code, CData newval) {
fstWriterEmitValueChange(m_fst, m_symbolp[code], newval ? "1" : "0");
}
VL_ATTR_ALWINLINE
void VerilatedFst::emitCData(vluint32_t code, CData newval, int bits) {
char buf[VL_BYTESIZE];
cvtCDataToStr(buf, newval << (VL_BYTESIZE - bits));
fstWriterEmitValueChange(m_fst, m_symbolp[code], buf);
}
VL_ATTR_ALWINLINE
void VerilatedFst::emitSData(vluint32_t code, SData newval, int bits) {
char buf[VL_SHORTSIZE];
cvtSDataToStr(buf, newval << (VL_SHORTSIZE - bits));
fstWriterEmitValueChange(m_fst, m_symbolp[code], buf);
}
VL_ATTR_ALWINLINE
void VerilatedFst::emitIData(vluint32_t code, IData newval, int bits) {
char buf[VL_IDATASIZE];
cvtIDataToStr(buf, newval << (VL_IDATASIZE - bits));
fstWriterEmitValueChange(m_fst, m_symbolp[code], buf);
}
VL_ATTR_ALWINLINE
void VerilatedFst::emitQData(vluint32_t code, QData newval, int bits) {
char buf[VL_QUADSIZE];
cvtQDataToStr(buf, newval << (VL_QUADSIZE - bits));
fstWriterEmitValueChange(m_fst, m_symbolp[code], buf);
}
VL_ATTR_ALWINLINE
void VerilatedFst::emitWData(vluint32_t code, const WData* newvalp, int bits) {
int words = VL_WORDS_I(bits);
char* wp = m_strbuf;
// Convert the most significant word
const int bitsInMSW = VL_BITBIT_E(bits) ? VL_BITBIT_E(bits) : VL_EDATASIZE;
cvtEDataToStr(wp, newvalp[--words] << (VL_EDATASIZE - bitsInMSW));
wp += bitsInMSW;
// Convert the remaining words
while (words > 0) {
cvtEDataToStr(wp, newvalp[--words]);
wp += VL_EDATASIZE;
}
fstWriterEmitValueChange(m_fst, m_symbolp[code], m_strbuf);
}
VL_ATTR_ALWINLINE
void VerilatedFst::emitDouble(vluint32_t code, double newval) {
fstWriterEmitValueChange(m_fst, m_symbolp[code], &newval);
}