verilator/src/V3Graph.h

242 lines
9.3 KiB
C
Raw Normal View History

// $Id$ //-*- C++ -*-
//*************************************************************************
// DESCRIPTION: Verilator: Graph optimizations
//
// Code available from: http://www.veripool.com/verilator
//
// AUTHORS: Wilson Snyder with Paul Wasson, Duane Gabli
//
//*************************************************************************
//
// Copyright 2003-2007 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// General Public License or the Perl Artistic License.
//
// Verilator is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
//*************************************************************************
#ifndef _V3GRAPH_H_
#define _V3GRAPH_H_ 1
#include "config_build.h"
#include "verilatedos.h"
#include "V3Error.h"
#include "V3List.h"
#include <vector>
#include <algorithm>
class V3Graph;
class V3GraphVertex;
class V3GraphEdge;
class GraphOrder;
class GraphAcycEdge;
class OrderEitherVertex;
class OrderLogicVertex;
//=============================================================================
// Most graph algorithms accept an arbitrary function that returns
// True for those edges we should honor.
typedef bool (*V3EdgeFuncP)(const V3GraphEdge* edgep);
//============================================================================
class V3Graph {
private:
// STATE
V3List<V3GraphVertex*> m_vertices; // All vertices
static int s_debug;
protected:
friend class V3GraphVertex; friend class V3GraphEdge;
friend class GraphAcyc;
// METHODS
void acyclicDFS();
void acyclicDFSIterate(V3GraphVertex *vertexp, int depth, uint32_t currentRank);
void acyclicCut();
void acyclicLoop(V3GraphVertex* vertexp, int depth);
double orderDFSIterate(V3GraphVertex* vertexp);
void dumpEdge(ostream& os, V3GraphVertex* vertexp, V3GraphEdge* edgep);
void verticesUnlink() { m_vertices.reset(); }
// ACCESSORS
static int debug();
public:
V3Graph();
virtual ~V3Graph();
static void debug(int level) { s_debug = level; }
virtual string dotRankDir() { return "TB"; } // rankdir for dot plotting
// METHODS
void clear(); // Empty it of all vertices/edges, as if making a new object
void clearColors();
/// Assign same color to all vertices in the same weakly connected component
/// Thus different color if there's no edges between the two subgraphs
void weaklyConnected(V3EdgeFuncP edgeFuncp);
/// Assign same color to all vertices that are strongly connected
/// Thus different color if there's no directional circuit within the subgraphs.
/// (I.E. all loops will occur within each color, not between them.)
void stronglyConnected(V3EdgeFuncP edgeFuncp);
/// Assign a ordering number to all vertexes in a tree.
/// All nodes with no inputs will get rank 1
void rank(V3EdgeFuncP edgeFuncp);
void rank();
/// Sort all vertices by rank and fanout, lowest first
/// Sort all edges by weight, lowest first
void order();
/// Make acyclical (into a tree) by breaking a minimal subset of cutable edges.
void acyclic(V3EdgeFuncP edgeFuncp);
/// Delete any nodes with only outputs
void deleteCutableOnlyEdges();
/// Any cutable edged become non-cutable
void makeEdgesNonCutable(V3EdgeFuncP edgeFuncp);
/// Remove any redundant edges, weights become MAX of any other weight
void removeRedundantEdges(V3EdgeFuncP edgeFuncp);
/// Remove any redundant edges, weights become SUM of any other weight
void removeRedundantEdgesSum(V3EdgeFuncP edgeFuncp);
/// Call loopsVertexCb on any loops starting where specified
void reportLoops(V3EdgeFuncP edgeFuncp, V3GraphVertex* vertexp);
/// Debugging
void dump(ostream& os=cout);
void dumpDotFile(const string& filename, bool colorAsSubgraph);
void dumpDotFilePrefixed(const string& nameComment, bool colorAsSubgraph=false);
void userClearVertices();
void userClearEdges();
static void test();
//
V3GraphVertex* verticesBeginp() const { return m_vertices.begin(); }
// CALLBACKS
virtual void loopsMessageCb(V3GraphVertex* vertexp) { v3fatalSrc("Loops detected in graph: "<<vertexp); }
virtual void loopsVertexCb(V3GraphVertex* vertexp);
};
//============================================================================
class V3GraphVertex : public AstNUser {
// Vertices may be a 'gate'/wire statement OR a variable
protected:
friend class V3Graph; friend class V3GraphEdge;
friend class GraphOrderEdgeCmp; friend class GraphOrderVertexCmp;
friend class GraphAcyc; friend class GraphAlgRank;
V3ListEnt<V3GraphVertex*> m_vertices;// All vertices, linked list
V3List<V3GraphEdge*> m_outs; // Outbound edges,linked list
V3List<V3GraphEdge*> m_ins; // Inbound edges, linked list
double m_fanout; // Order fanout
uint32_t m_color; // Color of the node
uint32_t m_rank; // Rank of edge
union {
void* m_userp; // Marker for some algorithms
uint32_t m_user; // Marker for some algorithms
};
// METHODS
void verticesPushBack(V3Graph* graphp);
// ACCESSORS
void fanout(double fanout) { m_fanout = fanout; }
void rank(uint32_t rank) { m_rank = rank; }
void outUnlink() { m_outs.reset(); }
public:
// CONSTRUCTION
V3GraphVertex(V3Graph* graphp);
virtual ~V3GraphVertex() {}
void unlinkEdges(V3Graph* graphp);
void unlinkDelete(V3Graph* graphp);
// ACCESSORS
virtual string name() const { return ""; }
virtual string dotColor() const { return "black"; }
virtual string dotShape() const { return ""; }
virtual string dotStyle() const { return ""; }
virtual string dotName() const { return ""; }
uint32_t color() const { return m_color; }
void color(uint32_t color) { m_color = color; }
uint32_t rank() const { return m_rank; }
double fanout() const { return m_fanout; }
void user(uint32_t user) { m_user = user; }
uint32_t user() const { return m_user; }
void userp(void* userp) { m_userp = userp; }
void* userp() const { return m_userp; }
// ITERATORS
V3GraphVertex* verticesNextp() const { return m_vertices.nextp(); }
V3GraphEdge* inBeginp() const { return m_ins.begin(); }
bool inEmpty() const { return inBeginp()==NULL; }
bool inSize1() const;
V3GraphEdge* outBeginp() const { return m_outs.begin(); }
bool outEmpty() const { return outBeginp()==NULL; }
bool outSize1() const;
// METHODS
void rerouteEdges(V3Graph* graphp); ///< Edges are routed around this vertex to point from "from" directly to "to"
};
ostream& operator<<(ostream& os, V3GraphVertex* vertexp);
//============================================================================
class V3GraphEdge {
// Wires/variables aren't edges. Edges have only a single to/from vertex
protected:
friend class V3Graph; friend class V3GraphVertex;
friend class GraphOrderEdgeCmp; friend class GraphOrderVertexCmp;
friend class GraphAcyc; friend class GraphAcycEdge;
V3ListEnt<V3GraphEdge*> m_outs; // Next Outbound edge for same vertex (linked list)
V3ListEnt<V3GraphEdge*> m_ins; // Next Inbound edge for same vertex (linked list)
//
V3GraphVertex* m_fromp; // Vertices pointing to this edge
V3GraphVertex* m_top; // Vertices this edge points to
int m_weight; // Weight of the connection
bool m_cutable; // Interconnect may be broken in order sorting
union {
void* m_userp; // Marker for some algorithms
uint32_t m_user; // Marker for some algorithms
};
// METHODS
void cut() { m_weight = 0; } // 0 weight is same as disconnected
void outPushBack();
void inPushBack();
public:
// ENUMS
enum Cuttable { NOT_CUTABLE = false, CUTABLE = true }; // For passing to V3GraphEdge
// CONSTRUCTION
// Add DAG from one node to the specified node
V3GraphEdge(V3Graph* graphp, V3GraphVertex* fromp, V3GraphVertex* top, int weight, bool cutable=false);
virtual ~V3GraphEdge() {}
// METHODS
virtual string name() const { return m_fromp->name()+"->"+m_top->name(); }
virtual string dotLabel() const { return ""; }
virtual string dotColor() const { return cutable()?"yellowGreen":"red"; }
virtual string dotStyle() const { return cutable()?"dashed":""; }
void unlinkDelete();
// ACCESSORS
int weight() const { return m_weight; }
void weight(int weight) { m_weight=weight; }
bool cutable() const { return m_cutable; }
void cutable(bool cutable) { m_cutable=cutable; }
void userp(void* user) { m_userp = user; }
void* userp() const { return m_userp; }
void user(uint32_t user) { m_user = user; }
uint32_t user() const { return m_user; }
V3GraphVertex* fromp() const { return m_fromp; }
V3GraphVertex* top() const { return m_top; }
// STATIC ACCESSORS
static bool followNotCutable(const V3GraphEdge* edgep) { return !edgep->m_cutable; }
static bool followAlwaysTrue(const V3GraphEdge*) { return true; }
// ITERATORS
V3GraphEdge* outNextp() const { return m_outs.nextp(); }
V3GraphEdge* inNextp() const { return m_ins.nextp(); }
};
//============================================================================
#endif // Guard