verilator/include/verilated_random.cpp

506 lines
17 KiB
C++
Raw Permalink Normal View History

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Code available from: https://verilator.org
//
// Copyright 2024 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU Lesser
// General Public License Version 3 or the Perl Artistic License Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=========================================================================
///
/// \file
/// \brief Verilated randomization implementation code
///
/// This file must be compiled and linked against all Verilated objects
/// that use randomization features.
///
/// See the internals documentation docs/internals.rst for details.
///
//=========================================================================
#include "verilated_random.h"
#include <iomanip>
#include <iostream>
#include <sstream>
#include <streambuf>
#define _VL_SOLVER_HASH_LEN 1
#define _VL_SOLVER_HASH_LEN_TOTAL 4
// clang-format off
#if defined(__unix__) || defined(__unix) || (defined(__APPLE__) && defined(__MACH__))
# define _VL_SOLVER_PIPE // Allow pipe SMT solving. Needs fork()
#endif
#ifdef _VL_SOLVER_PIPE
# include <sys/wait.h>
# include <fcntl.h>
#endif
#if defined(_WIN32) || defined(__MINGW32__)
# include <io.h> // open, read, write, close
#endif
// clang-format on
class Process final : private std::streambuf, public std::iostream {
static constexpr int BUFFER_SIZE = 4096;
const char* const* m_cmd = nullptr; // fork() process argv
#ifdef _VL_SOLVER_PIPE
pid_t m_pid = 0; // fork() process id
#else
int m_pid = 0; // fork() process id - always zero as disabled
#endif
bool m_pidExited = true; // If subprocess has exited and can be opened
int m_pidStatus = 0; // fork() process exit status, valid if m_pidExited
int m_writeFd = -1; // File descriptor TO subprocess
int m_readFd = -1; // File descriptor FROM subprocess
char m_readBuf[BUFFER_SIZE];
char m_writeBuf[BUFFER_SIZE];
public:
typedef std::streambuf::traits_type traits_type;
protected:
int overflow(int c = traits_type::eof()) override {
char c2 = static_cast<char>(c);
if (pbase() == pptr()) return 0;
size_t size = pptr() - pbase();
ssize_t n = ::write(m_writeFd, pbase(), size);
if (n == -1) perror("write");
if (n <= 0) {
wait_report();
return traits_type::eof();
}
if (n == size)
setp(m_writeBuf, m_writeBuf + sizeof(m_writeBuf));
else
setp(m_writeBuf + n, m_writeBuf + sizeof(m_writeBuf));
if (c != traits_type::eof()) sputc(c2);
return 0;
}
int underflow() override {
sync();
ssize_t n = ::read(m_readFd, m_readBuf, sizeof(m_readBuf));
if (n == -1) perror("read");
if (n <= 0) {
wait_report();
return traits_type::eof();
}
setg(m_readBuf, m_readBuf, m_readBuf + n);
return traits_type::to_int_type(m_readBuf[0]);
}
int sync() override {
overflow();
return 0;
}
public:
explicit Process(const char* const* const cmd = nullptr)
: std::streambuf{}
, std::iostream{this}
, m_cmd{cmd} {
open(cmd);
}
void wait_report() {
if (m_pidExited) return;
#ifdef _VL_SOLVER_PIPE
if (waitpid(m_pid, &m_pidStatus, 0) != m_pid) return;
if (m_pidStatus) {
std::stringstream msg;
msg << "Subprocess command `" << m_cmd[0];
for (const char* const* arg = m_cmd + 1; *arg; arg++) msg << ' ' << *arg;
msg << "' failed: ";
if (WIFSIGNALED(m_pidStatus))
msg << strsignal(WTERMSIG(m_pidStatus))
<< (WCOREDUMP(m_pidStatus) ? " (core dumped)" : "");
else if (WIFEXITED(m_pidStatus))
msg << "exit status " << WEXITSTATUS(m_pidStatus);
const std::string str = msg.str();
VL_WARN_MT("", 0, "Process", str.c_str());
}
#endif
m_pidExited = true;
m_pid = 0;
closeFds();
}
void closeFds() {
if (m_writeFd != -1) {
close(m_writeFd);
m_writeFd = -1;
}
if (m_readFd != -1) {
close(m_readFd);
m_readFd = -1;
}
}
bool open(const char* const* const cmd) {
setp(std::begin(m_writeBuf), std::end(m_writeBuf));
setg(m_readBuf, m_readBuf, m_readBuf);
#ifdef _VL_SOLVER_PIPE
if (!cmd || !cmd[0]) return false;
m_cmd = cmd;
int fd_stdin[2]; // Can't use std::array
int fd_stdout[2]; // Can't use std::array
constexpr int P_RD = 0;
constexpr int P_WR = 1;
if (pipe(fd_stdin) != 0) {
perror("Process::open: pipe");
return false;
}
if (pipe(fd_stdout) != 0) {
perror("Process::open: pipe");
close(fd_stdin[P_RD]);
close(fd_stdin[P_WR]);
return false;
}
if (fd_stdin[P_RD] <= 2 || fd_stdin[P_WR] <= 2 || fd_stdout[P_RD] <= 2
|| fd_stdout[P_WR] <= 2) {
// We'd have to rearrange all of the FD usages in this case.
// Too unlikely; verilator isn't a daemon.
fprintf(stderr, "stdin/stdout closed before pipe opened\n");
close(fd_stdin[P_RD]);
close(fd_stdin[P_WR]);
close(fd_stdout[P_RD]);
close(fd_stdout[P_WR]);
return false;
}
const pid_t pid = fork();
if (pid < 0) {
perror("Process::open: fork");
close(fd_stdin[P_RD]);
close(fd_stdin[P_WR]);
close(fd_stdout[P_RD]);
close(fd_stdout[P_WR]);
return false;
}
if (pid == 0) {
// Child
close(fd_stdin[P_WR]);
dup2(fd_stdin[P_RD], STDIN_FILENO);
close(fd_stdout[P_RD]);
dup2(fd_stdout[P_WR], STDOUT_FILENO);
execvp(cmd[0], const_cast<char* const*>(cmd));
std::stringstream msg;
msg << "Process::open: execvp(" << cmd[0] << ")";
const std::string str = msg.str();
perror(str.c_str());
_exit(127);
}
// Parent
m_pid = pid;
m_pidExited = false;
m_pidStatus = 0;
m_readFd = fd_stdout[P_RD];
m_writeFd = fd_stdin[P_WR];
close(fd_stdin[P_RD]);
close(fd_stdout[P_WR]);
return true;
#else
return false;
#endif
}
};
static Process& getSolver() {
static Process s_solver;
static bool s_done = false;
if (s_done) return s_solver;
s_done = true;
static std::vector<const char*> s_argv;
static std::string s_program = Verilated::threadContextp()->solverProgram();
s_argv.emplace_back(&s_program[0]);
for (char* arg = &s_program[0]; *arg; arg++) {
if (*arg == ' ') {
*arg = '\0';
s_argv.emplace_back(arg + 1);
}
}
s_argv.emplace_back(nullptr);
const char* const* const cmd = &s_argv[0];
s_solver.open(cmd);
s_solver << "(set-logic QF_ABV)\n";
s_solver << "(check-sat)\n";
s_solver << "(reset)\n";
std::string s;
getline(s_solver, s);
if (s == "sat") return s_solver;
std::stringstream msg;
msg << "Unable to communicate with SAT solver, please check its installation or specify a "
"different one in VERILATOR_SOLVER environment variable.\n";
msg << " ... Tried: $";
for (const char* const* arg = cmd; *arg; arg++) msg << ' ' << *arg;
msg << '\n';
const std::string str = msg.str();
VL_WARN_MT("", 0, "randomize", str.c_str());
while (getline(s_solver, s)) {}
return s_solver;
}
std::string readUntilBalanced(std::istream& stream) {
std::string result;
std::string token;
int parenCount = 1;
while (stream >> token) {
for (const char c : token) {
if (c == '(') {
++parenCount;
} else if (c == ')') {
--parenCount;
}
}
result += token + " ";
if (parenCount == 0) break;
}
return result;
}
std::string parseNestedSelect(const std::string& nested_select_expr,
std::vector<std::string>& indices) {
std::istringstream nestedStream(nested_select_expr);
std::string name, idx;
nestedStream >> name;
if (name == "(select") {
const std::string further_nested_expr = readUntilBalanced(nestedStream);
name = parseNestedSelect(further_nested_expr, indices);
}
std::getline(nestedStream, idx, ')');
indices.push_back(idx);
return name;
}
//======================================================================
// VlRandomizer:: Methods
void VlRandomVar::emitGetValue(std::ostream& s) const { s << ' ' << m_name; }
void VlRandomVar::emitExtract(std::ostream& s, int i) const {
s << " ((_ extract " << i << ' ' << i << ") " << m_name << ')';
}
void VlRandomVar::emitType(std::ostream& s) const { s << "(_ BitVec " << width() << ')'; }
int VlRandomVar::totalWidth() const { return m_width; }
static bool parseSMTNum(int obits, WDataOutP owp, const std::string& val) {
int i;
for (i = 0; val[i] && val[i] != '#'; i++) {}
if (val[i++] != '#') return false;
switch (val[i++]) {
case 'b': _vl_vsss_based(owp, obits, 1, &val[i], 0, val.size() - i); break;
case 'o': _vl_vsss_based(owp, obits, 3, &val[i], 0, val.size() - i); break;
case 'h': // FALLTHRU
case 'x': _vl_vsss_based(owp, obits, 4, &val[i], 0, val.size() - i); break;
default:
VL_WARN_MT(__FILE__, __LINE__, "randomize",
"Internal: Unable to parse solver's randomized number");
return false;
}
return true;
}
bool VlRandomVar::set(const std::string& idx, const std::string& val) const {
VlWide<VL_WQ_WORDS_E> qowp;
VL_SET_WQ(qowp, 0ULL);
WDataOutP owp = qowp;
const int obits = width();
VlWide<VL_WQ_WORDS_E> qiwp;
VL_SET_WQ(qiwp, 0ULL);
if (!idx.empty() && !parseSMTNum(64, qiwp, idx)) return false;
const int nidx = qiwp[0];
if (obits > VL_QUADSIZE) owp = reinterpret_cast<WDataOutP>(datap(nidx));
if (!parseSMTNum(obits, owp, val)) return false;
if (obits <= VL_BYTESIZE) {
CData* const p = static_cast<CData*>(datap(nidx));
*p = VL_CLEAN_II(obits, obits, owp[0]);
} else if (obits <= VL_SHORTSIZE) {
SData* const p = static_cast<SData*>(datap(nidx));
*p = VL_CLEAN_II(obits, obits, owp[0]);
} else if (obits <= VL_IDATASIZE) {
IData* const p = static_cast<IData*>(datap(nidx));
*p = VL_CLEAN_II(obits, obits, owp[0]);
} else if (obits <= VL_QUADSIZE) {
QData* const p = static_cast<QData*>(datap(nidx));
*p = VL_CLEAN_QQ(obits, obits, VL_SET_QW(owp));
} else {
_vl_clean_inplace_w(obits, owp);
}
return true;
}
void VlRandomizer::randomConstraint(std::ostream& os, VlRNG& rngr, int bits) {
const IData hash = VL_RANDOM_RNG_I(rngr) & ((1 << bits) - 1);
int varBits = 0;
for (const auto& var : m_vars) varBits += var.second->totalWidth();
os << "(= #b";
for (int i = bits - 1; i >= 0; i--) os << (VL_BITISSET_I(hash, i) ? '1' : '0');
if (bits > 1) os << " (concat";
for (int i = 0; i < bits; i++) {
IData varBitsLeft = varBits;
IData varBitsWant = (varBits + 1) / 2;
if (varBits > 2) os << " (bvxor";
for (const auto& var : m_vars) {
for (int j = 0; j < var.second->totalWidth(); j++, varBitsLeft--) {
const bool doEmit = (VL_RANDOM_RNG_I(rngr) % varBitsLeft) < varBitsWant;
if (doEmit) {
var.second->emitExtract(os, j);
if (--varBitsWant == 0) break;
}
}
if (varBitsWant == 0) break;
}
if (varBits > 2) os << ')';
}
if (bits > 1) os << ')';
os << ')';
}
bool VlRandomizer::next(VlRNG& rngr) {
if (m_vars.empty()) return true;
std::iostream& f = getSolver();
if (!f) return false;
f << "(set-option :produce-models true)\n";
f << "(set-logic QF_ABV)\n";
f << "(define-fun __Vbv ((b Bool)) (_ BitVec 1) (ite b #b1 #b0))\n";
f << "(define-fun __Vbool ((v (_ BitVec 1))) Bool (= #b1 v))\n";
for (const auto& var : m_vars) {
if (var.second->dimension() > 0) {
auto arrVarsp = std::make_shared<const ArrayInfoMap>(m_arr_vars);
var.second->setArrayInfo(arrVarsp);
}
f << "(declare-fun " << var.first << " () ";
var.second->emitType(f);
f << ")\n";
}
for (const std::string& constraint : m_constraints) {
f << "(assert (= #b1 " << constraint << "))\n";
}
f << "(check-sat)\n";
bool sat = parseSolution(f);
if (!sat) {
f << "(reset)\n";
return false;
}
for (int i = 0; i < _VL_SOLVER_HASH_LEN_TOTAL && sat; i++) {
f << "(assert ";
randomConstraint(f, rngr, _VL_SOLVER_HASH_LEN);
f << ")\n";
f << "\n(check-sat)\n";
sat = parseSolution(f);
}
f << "(reset)\n";
return true;
}
bool VlRandomizer::parseSolution(std::iostream& f) {
std::string sat;
do { std::getline(f, sat); } while (sat == "");
if (sat == "unsat") return false;
if (sat != "sat") {
std::stringstream msg;
msg << "Internal: Solver error: " << sat;
const std::string str = msg.str();
VL_WARN_MT(__FILE__, __LINE__, "randomize", str.c_str());
return false;
}
f << "(get-value (";
for (const auto& var : m_vars) {
if (var.second->dimension() > 0) {
auto arrVarsp = std::make_shared<const ArrayInfoMap>(m_arr_vars);
var.second->setArrayInfo(arrVarsp);
}
var.second->emitGetValue(f);
}
f << "))\n";
// Quasi-parse S-expression of the form ((x #xVALUE) (y #bVALUE) (z #xVALUE))
char c;
f >> c;
if (c != '(') {
VL_WARN_MT(__FILE__, __LINE__, "randomize",
"Internal: Unable to parse solver's response: invalid S-expression");
return false;
}
while (true) {
f >> c;
if (c == ')') break;
if (c != '(') {
VL_WARN_MT(__FILE__, __LINE__, "randomize",
"Internal: Unable to parse solver's response: invalid S-expression");
return false;
}
std::string name, idx, value;
std::vector<std::string> indices;
f >> name;
indices.clear();
if (name == "(select") {
const std::string selectExpr = readUntilBalanced(f);
name = parseNestedSelect(selectExpr, indices);
}
std::getline(f, value, ')');
const auto it = m_vars.find(name);
if (it == m_vars.end()) continue;
const VlRandomVar& varr = *it->second;
if (m_randmode && !varr.randModeIdxNone()) {
if (!(m_randmode->at(varr.randModeIdx()))) continue;
}
if (!indices.empty()) {
std::ostringstream oss;
oss << varr.name();
for (const auto& hex_index : indices) {
const size_t start = hex_index.find_first_not_of(" ");
if (start == std::string::npos || hex_index.substr(start, 2) != "#x") {
VL_FATAL_MT(__FILE__, __LINE__, "randomize",
"hex_index contains invalid format");
continue;
}
const long long index = std::stoll(hex_index.substr(start + 2), nullptr, 16);
oss << "[" << index << "]";
}
const std::string indexed_name = oss.str();
const auto it = std::find_if(m_arr_vars.begin(), m_arr_vars.end(),
[&indexed_name](const auto& entry) {
return entry.second->m_name == indexed_name;
});
if (it != m_arr_vars.end()) {
std::ostringstream ss;
ss << "#x" << std::hex << std::setw(8) << std::setfill('0') << it->second->m_index;
idx = ss.str();
} else {
VL_FATAL_MT(__FILE__, __LINE__, "randomize",
"indexed_name not found in m_arr_vars");
}
}
varr.set(idx, value);
}
return true;
}
void VlRandomizer::hard(std::string&& constraint) {
m_constraints.emplace_back(std::move(constraint));
}
void VlRandomizer::clear() { m_constraints.clear(); }
#ifdef VL_DEBUG
void VlRandomizer::dump() const {
for (const auto& var : m_vars) {
VL_PRINTF("Variable (%d): %s\n", var.second->width(), var.second->name());
}
for (const std::string& c : m_constraints) VL_PRINTF("Constraint: %s\n", c.c_str());
}
#endif