verilator/include/verilated_vpi.cpp

2059 lines
78 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Copyright 2009-2020 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=========================================================================
///
/// \file
/// \brief Verilator: VPI implementation code
///
/// This file must be compiled and linked against all objects
/// created from Verilator or called by Verilator that use the VPI.
///
/// Use "verilator --vpi" to add this to the Makefile for the linker.
///
/// Code available from: https://verilator.org
///
//=========================================================================
#define _VERILATED_VPI_CPP_
#include "verilated.h"
#include "verilated_vpi.h"
#include "verilated_imp.h"
#include <list>
#include <map>
#include <set>
//======================================================================
// Internal constants
#define VL_DEBUG_IF_PLI VL_DEBUG_IF
constexpr unsigned VL_VPI_LINE_SIZE = 8192;
//======================================================================
// Internal macros
#define _VL_VPI_INTERNAL VerilatedVpiImp::error_info()->setMessage(vpiInternal)->setMessage
#define _VL_VPI_SYSTEM VerilatedVpiImp::error_info()->setMessage(vpiSystem)->setMessage
#define _VL_VPI_ERROR VerilatedVpiImp::error_info()->setMessage(vpiError)->setMessage
#define _VL_VPI_WARNING VerilatedVpiImp::error_info()->setMessage(vpiWarning)->setMessage
#define _VL_VPI_NOTICE VerilatedVpiImp::error_info()->setMessage(vpiNotice)->setMessage
#define _VL_VPI_ERROR_RESET VerilatedVpiImp::error_info()->resetError
// Not supported yet
#define _VL_VPI_UNIMP() \
(_VL_VPI_ERROR(__FILE__, __LINE__, Verilated::catName("Unsupported VPI function: ", VL_FUNC)))
//======================================================================
// Implementation
// Base VPI handled object
class VerilatedVpio {
// MEM MANGLEMENT
static VL_THREAD_LOCAL vluint8_t* t_freeHead;
public:
// CONSTRUCTORS
VerilatedVpio() {}
virtual ~VerilatedVpio() {}
inline static void* operator new(size_t size) VL_MT_SAFE {
// We new and delete tons of vpi structures, so keep them around
// To simplify our free list, we use a size large enough for all derived types
// We reserve word zero for the next pointer, as that's safer in case a
// dangling reference to the original remains around.
static const size_t chunk = 96;
if (VL_UNCOVERABLE(size > chunk)) VL_FATAL_MT(__FILE__, __LINE__, "", "increase chunk");
if (VL_LIKELY(t_freeHead)) {
vluint8_t* newp = t_freeHead;
t_freeHead = *(reinterpret_cast<vluint8_t**>(newp));
return newp + 8;
}
// +8: 8 bytes for next
vluint8_t* newp = reinterpret_cast<vluint8_t*>(::operator new(chunk + 8));
return newp + 8;
}
inline static void operator delete(void* obj, size_t /*size*/)VL_MT_SAFE {
vluint8_t* oldp = (static_cast<vluint8_t*>(obj)) - 8;
*(reinterpret_cast<void**>(oldp)) = t_freeHead;
t_freeHead = oldp;
}
// MEMBERS
static inline VerilatedVpio* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpio*>(reinterpret_cast<VerilatedVpio*>(h));
}
inline vpiHandle castVpiHandle() { return reinterpret_cast<vpiHandle>(this); }
// ACCESSORS
virtual const char* name() const { return "<null>"; }
virtual const char* fullname() const { return "<null>"; }
virtual const char* defname() const { return "<null>"; }
virtual vluint32_t type() const { return 0; }
virtual vluint32_t size() const { return 0; }
virtual const VerilatedRange* rangep() const { return nullptr; }
virtual vpiHandle dovpi_scan() { return nullptr; }
};
typedef PLI_INT32 (*VerilatedPliCb)(struct t_cb_data*);
class VerilatedVpioCb : public VerilatedVpio {
t_cb_data m_cbData;
s_vpi_value m_value;
QData m_time;
public:
// cppcheck-suppress uninitVar // m_value
VerilatedVpioCb(const t_cb_data* cbDatap, QData time)
: m_cbData(*cbDatap)
, m_time(time) { // Need () or GCC 4.8 false warning
m_value.format = cbDatap->value ? cbDatap->value->format : vpiSuppressVal;
m_cbData.value = &m_value;
}
virtual ~VerilatedVpioCb() override {}
static inline VerilatedVpioCb* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioCb*>(reinterpret_cast<VerilatedVpio*>(h));
}
virtual vluint32_t type() const override { return vpiCallback; }
vluint32_t reason() const { return m_cbData.reason; }
VerilatedPliCb cb_rtnp() const { return m_cbData.cb_rtn; }
t_cb_data* cb_datap() { return &(m_cbData); }
QData time() const { return m_time; }
};
class VerilatedVpioConst : public VerilatedVpio {
vlsint32_t m_num;
public:
explicit VerilatedVpioConst(vlsint32_t num)
: m_num{num} {}
virtual ~VerilatedVpioConst() override {}
static inline VerilatedVpioConst* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioConst*>(reinterpret_cast<VerilatedVpio*>(h));
}
virtual vluint32_t type() const override { return vpiConstant; }
vlsint32_t num() const { return m_num; }
};
class VerilatedVpioParam : public VerilatedVpio {
const VerilatedVar* m_varp;
const VerilatedScope* m_scopep;
public:
VerilatedVpioParam(const VerilatedVar* varp, const VerilatedScope* scopep)
: m_varp{varp}
, m_scopep{scopep} {}
virtual ~VerilatedVpioParam() override {}
static inline VerilatedVpioParam* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioParam*>(reinterpret_cast<VerilatedVpio*>(h));
}
virtual vluint32_t type() const override { return vpiParameter; }
const VerilatedVar* varp() const { return m_varp; }
void* varDatap() const { return m_varp->datap(); }
const VerilatedScope* scopep() const { return m_scopep; }
virtual const char* name() const override { return m_varp->name(); }
virtual const char* fullname() const override {
static VL_THREAD_LOCAL std::string out;
out = std::string(m_scopep->name()) + "." + name();
return out.c_str();
}
};
class VerilatedVpioRange : public VerilatedVpio {
const VerilatedRange* m_range;
vlsint32_t m_iteration = 0;
public:
explicit VerilatedVpioRange(const VerilatedRange* range)
: m_range{range} {}
virtual ~VerilatedVpioRange() override {}
static inline VerilatedVpioRange* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioRange*>(reinterpret_cast<VerilatedVpio*>(h));
}
virtual vluint32_t type() const override { return vpiRange; }
virtual vluint32_t size() const override { return m_range->elements(); }
virtual const VerilatedRange* rangep() const override { return m_range; }
int iteration() const { return m_iteration; }
void iterationInc() { ++m_iteration; }
virtual vpiHandle dovpi_scan() override {
if (!iteration()) {
VerilatedVpioRange* nextp = new VerilatedVpioRange(*this);
nextp->iterationInc();
return ((nextp)->castVpiHandle());
}
return nullptr; // End of list - only one deep
}
};
class VerilatedVpioScope : public VerilatedVpio {
protected:
const VerilatedScope* m_scopep;
public:
explicit VerilatedVpioScope(const VerilatedScope* scopep)
: m_scopep{scopep} {}
virtual ~VerilatedVpioScope() override {}
static inline VerilatedVpioScope* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioScope*>(reinterpret_cast<VerilatedVpio*>(h));
}
virtual vluint32_t type() const override { return vpiScope; }
const VerilatedScope* scopep() const { return m_scopep; }
virtual const char* name() const override { return m_scopep->name(); }
virtual const char* fullname() const override { return m_scopep->name(); }
};
class VerilatedVpioVar : public VerilatedVpio {
const VerilatedVar* m_varp;
const VerilatedScope* m_scopep;
vluint8_t* m_prevDatap = nullptr; // Previous value of data, for cbValueChange
union {
vluint8_t u8[4];
vluint32_t u32;
} m_mask; // memoized variable mask
vluint32_t m_entSize; // memoized variable size
protected:
void* m_varDatap; // varp()->datap() adjusted for array entries
vlsint32_t m_index = 0;
const VerilatedRange& get_range() const {
// Determine number of dimensions and return outermost
return (m_varp->dims() > 1) ? m_varp->unpacked() : m_varp->packed();
}
public:
VerilatedVpioVar(const VerilatedVar* varp, const VerilatedScope* scopep)
: m_varp{varp}
, m_scopep{scopep} {
m_mask.u32 = VL_MASK_I(varp->packed().elements());
m_entSize = varp->entSize();
m_varDatap = varp->datap();
}
virtual ~VerilatedVpioVar() override {
if (m_prevDatap) VL_DO_CLEAR(delete[] m_prevDatap, m_prevDatap = nullptr);
}
static inline VerilatedVpioVar* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioVar*>(reinterpret_cast<VerilatedVpio*>(h));
}
const VerilatedVar* varp() const { return m_varp; }
const VerilatedScope* scopep() const { return m_scopep; }
vluint32_t mask() const { return m_mask.u32; }
vluint8_t mask_byte(int idx) { return m_mask.u8[idx & 3]; }
vluint32_t entSize() const { return m_entSize; }
vluint32_t index() const { return m_index; }
virtual vluint32_t type() const override {
return (varp()->dims() > 1) ? vpiMemory : vpiReg; // but might be wire, logic
}
virtual vluint32_t size() const override { return get_range().elements(); }
virtual const VerilatedRange* rangep() const override { return &get_range(); }
virtual const char* name() const override { return m_varp->name(); }
virtual const char* fullname() const override {
static VL_THREAD_LOCAL std::string out;
out = std::string(m_scopep->name()) + "." + name();
return out.c_str();
}
void* prevDatap() const { return m_prevDatap; }
void* varDatap() const { return m_varDatap; }
void createPrevDatap() {
if (VL_UNLIKELY(!m_prevDatap)) {
m_prevDatap = new vluint8_t[entSize()];
memcpy(prevDatap(), varp()->datap(), entSize());
}
}
};
class VerilatedVpioMemoryWord : public VerilatedVpioVar {
public:
VerilatedVpioMemoryWord(const VerilatedVar* varp, const VerilatedScope* scopep,
vlsint32_t index, int offset)
: VerilatedVpioVar{varp, scopep} {
m_index = index;
m_varDatap = (static_cast<vluint8_t*>(varp->datap())) + entSize() * offset;
}
virtual ~VerilatedVpioMemoryWord() override {}
static inline VerilatedVpioMemoryWord* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioMemoryWord*>(reinterpret_cast<VerilatedVpio*>(h));
}
virtual vluint32_t type() const override { return vpiMemoryWord; }
virtual vluint32_t size() const override { return varp()->packed().elements(); }
virtual const VerilatedRange* rangep() const override { return &(varp()->packed()); }
virtual const char* fullname() const override {
static VL_THREAD_LOCAL std::string out;
char num[20];
sprintf(num, "%d", m_index);
out = std::string(scopep()->name()) + "." + name() + "[" + num + "]";
return out.c_str();
}
};
class VerilatedVpioVarIter : public VerilatedVpio {
const VerilatedScope* m_scopep;
VerilatedVarNameMap::const_iterator m_it;
bool m_started = false;
public:
explicit VerilatedVpioVarIter(const VerilatedScope* scopep)
: m_scopep{scopep} {}
virtual ~VerilatedVpioVarIter() override {}
static inline VerilatedVpioVarIter* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioVarIter*>(reinterpret_cast<VerilatedVpio*>(h));
}
virtual vluint32_t type() const override { return vpiIterator; }
virtual vpiHandle dovpi_scan() override {
if (VL_LIKELY(m_scopep->varsp())) {
VerilatedVarNameMap* varsp = m_scopep->varsp();
if (VL_UNLIKELY(!m_started)) {
m_it = varsp->begin();
m_started = true;
} else if (VL_UNLIKELY(m_it == varsp->end())) {
return nullptr;
} else {
++m_it;
}
if (m_it == varsp->end()) return nullptr;
return ((new VerilatedVpioVar(&(m_it->second), m_scopep))->castVpiHandle());
}
return nullptr; // End of list - only one deep
}
};
class VerilatedVpioMemoryWordIter : public VerilatedVpio {
const vpiHandle m_handle;
const VerilatedVar* m_varp;
vlsint32_t m_iteration;
vlsint32_t m_direction;
bool m_done = false;
public:
VerilatedVpioMemoryWordIter(const vpiHandle handle, const VerilatedVar* varp)
: m_handle{handle}
, m_varp{varp}
, m_iteration{varp->unpacked().right()}
, m_direction{VL_LIKELY(varp->unpacked().left() > varp->unpacked().right()) ? 1 : -1} {}
virtual ~VerilatedVpioMemoryWordIter() override {}
static inline VerilatedVpioMemoryWordIter* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioMemoryWordIter*>(reinterpret_cast<VerilatedVpio*>(h));
}
virtual vluint32_t type() const override { return vpiIterator; }
void iterationInc() {
if (!(m_done = (m_iteration == m_varp->unpacked().left()))) m_iteration += m_direction;
}
virtual vpiHandle dovpi_scan() override {
vpiHandle result;
if (m_done) return nullptr;
result = vpi_handle_by_index(m_handle, m_iteration);
iterationInc();
return result;
}
};
class VerilatedVpioModule : public VerilatedVpioScope {
const char* m_name;
const char* m_fullname;
public:
explicit VerilatedVpioModule(const VerilatedScope* modulep)
: VerilatedVpioScope{modulep} {
m_fullname = m_scopep->name();
if (strncmp(m_fullname, "TOP.", 4) == 0) m_fullname += 4;
m_name = m_scopep->identifier();
}
static inline VerilatedVpioModule* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioModule*>(reinterpret_cast<VerilatedVpio*>(h));
}
virtual vluint32_t type() const override { return vpiModule; }
virtual const char* name() const override { return m_name; }
virtual const char* fullname() const override { return m_fullname; }
};
class VerilatedVpioModuleIter : public VerilatedVpio {
const std::vector<const VerilatedScope*>* m_vec;
std::vector<const VerilatedScope*>::const_iterator m_it;
public:
explicit VerilatedVpioModuleIter(const std::vector<const VerilatedScope*>& vec)
: m_vec{&vec} {
m_it = m_vec->begin();
}
virtual ~VerilatedVpioModuleIter() override {}
static inline VerilatedVpioModuleIter* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioModuleIter*>(reinterpret_cast<VerilatedVpio*>(h));
}
virtual vluint32_t type() const override { return vpiIterator; }
virtual vpiHandle dovpi_scan() override {
if (m_it == m_vec->end()) return nullptr;
const VerilatedScope* modp = *m_it++;
return (new VerilatedVpioModule(modp))->castVpiHandle();
}
};
//======================================================================
struct VerilatedVpiTimedCbsCmp {
/// Ordering sets keyed by time, then callback descriptor
bool operator()(const std::pair<QData, VerilatedVpioCb*>& a,
const std::pair<QData, VerilatedVpioCb*>& b) const {
if (a.first < b.first) return true;
if (a.first > b.first) return false;
return a.second < b.second;
}
};
class VerilatedVpiError;
class VerilatedVpiImp {
enum { CB_ENUM_MAX_VALUE = cbAtEndOfSimTime + 1 }; // Maxium callback reason
typedef std::list<VerilatedVpioCb*> VpioCbList;
typedef std::set<std::pair<QData, VerilatedVpioCb*>, VerilatedVpiTimedCbsCmp> VpioTimedCbs;
struct product_info {
PLI_BYTE8* product;
};
VpioCbList m_cbObjLists[CB_ENUM_MAX_VALUE]; // Callbacks for each supported reason
VpioTimedCbs m_timedCbs; // Time based callbacks
VerilatedVpiError* m_errorInfop = nullptr; // Container for vpi error info
VerilatedAssertOneThread m_assertOne; ///< Assert only called from single thread
static VerilatedVpiImp s_s; // Singleton
public:
VerilatedVpiImp() {}
~VerilatedVpiImp() {}
static void assertOneCheck() { s_s.m_assertOne.check(); }
static void cbReasonAdd(VerilatedVpioCb* vop) {
if (vop->reason() == cbValueChange) {
if (VerilatedVpioVar* varop = VerilatedVpioVar::castp(vop->cb_datap()->obj)) {
varop->createPrevDatap();
}
}
if (VL_UNCOVERABLE(vop->reason() >= CB_ENUM_MAX_VALUE)) {
VL_FATAL_MT(__FILE__, __LINE__, "", "vpi bb reason too large");
}
s_s.m_cbObjLists[vop->reason()].push_back(vop);
}
static void cbTimedAdd(VerilatedVpioCb* vop) {
s_s.m_timedCbs.insert(std::make_pair(vop->time(), vop));
}
static void cbReasonRemove(VerilatedVpioCb* cbp) {
VpioCbList& cbObjList = s_s.m_cbObjLists[cbp->reason()];
// We do not remove it now as we may be iterating the list,
// instead set to nullptr and will cleanup later
for (auto& ir : cbObjList) {
if (ir == cbp) ir = nullptr;
}
}
static void cbTimedRemove(VerilatedVpioCb* cbp) {
const auto it = s_s.m_timedCbs.find(std::make_pair(cbp->time(), cbp));
if (VL_LIKELY(it != s_s.m_timedCbs.end())) s_s.m_timedCbs.erase(it);
}
static void callTimedCbs() VL_MT_UNSAFE_ONE {
assertOneCheck();
QData time = VL_TIME_Q();
for (auto it = s_s.m_timedCbs.begin(); it != s_s.m_timedCbs.end();) {
if (VL_UNLIKELY(it->first <= time)) {
VerilatedVpioCb* vop = it->second;
const auto last_it = it;
++it; // Timed callbacks are one-shot
s_s.m_timedCbs.erase(last_it);
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: timed_callback %p\n", vop););
(vop->cb_rtnp())(vop->cb_datap());
} else {
++it;
}
}
}
static QData cbNextDeadline() {
const auto it = s_s.m_timedCbs.cbegin();
if (VL_LIKELY(it != s_s.m_timedCbs.cend())) return it->first;
return ~0ULL; // maxquad
}
static bool callCbs(vluint32_t reason) VL_MT_UNSAFE_ONE {
VpioCbList& cbObjList = s_s.m_cbObjLists[reason];
bool called = false;
const auto end = cbObjList.end(); // prevent looping over newly added elements
for (auto it = cbObjList.begin(); it != end;) {
if (VL_UNLIKELY(!*it)) { // Deleted earlier, cleanup
it = cbObjList.erase(it);
continue;
}
VerilatedVpioCb* vop = *it++;
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: reason_callback %d %p\n", reason, vop););
(vop->cb_rtnp())(vop->cb_datap());
called = true;
}
return called;
}
static bool callValueCbs() VL_MT_UNSAFE_ONE {
assertOneCheck();
VpioCbList& cbObjList = s_s.m_cbObjLists[cbValueChange];
bool called = false;
typedef std::set<VerilatedVpioVar*> VpioVarSet;
VpioVarSet update; // set of objects to update after callbacks
const auto end = cbObjList.end(); // prevent looping over newly added elements
for (auto it = cbObjList.begin(); it != end;) {
if (VL_UNLIKELY(!*it)) { // Deleted earlier, cleanup
it = cbObjList.erase(it);
continue;
}
VerilatedVpioCb* vop = *it++;
if (VerilatedVpioVar* varop = VerilatedVpioVar::castp(vop->cb_datap()->obj)) {
void* newDatap = varop->varDatap();
void* prevDatap = varop->prevDatap(); // Was malloced when we added the callback
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: value_test %s v[0]=%d/%d %p %p\n",
varop->fullname(), *((CData*)newDatap),
*((CData*)prevDatap), newDatap, prevDatap););
if (memcmp(prevDatap, newDatap, varop->entSize()) != 0) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: value_callback %p %s v[0]=%d\n", vop,
varop->fullname(), *((CData*)newDatap)););
update.insert(varop);
vpi_get_value(vop->cb_datap()->obj, vop->cb_datap()->value);
(vop->cb_rtnp())(vop->cb_datap());
called = true;
}
}
}
for (const auto& ip : update) { memcpy(ip->prevDatap(), ip->varDatap(), ip->entSize()); }
return called;
}
static VerilatedVpiError* error_info() VL_MT_UNSAFE_ONE; // getter for vpi error info
};
class VerilatedVpiError {
//// Container for vpi error info
t_vpi_error_info m_errorInfo;
bool m_flag = false;
char m_buff[VL_VPI_LINE_SIZE];
void setError(PLI_BYTE8* message, PLI_BYTE8* code, PLI_BYTE8* file, PLI_INT32 line) {
m_errorInfo.message = message;
m_errorInfo.file = file;
m_errorInfo.line = line;
m_errorInfo.code = code;
do_callbacks();
}
void do_callbacks() {
if (getError()->level >= vpiError && Verilated::fatalOnVpiError()) {
// Stop on vpi error/unsupported
vpi_unsupported();
}
// We need to run above code first because in the case that the
// callback executes further vpi functions we will loose the error
// as it will be overwritten.
VerilatedVpiImp::callCbs(cbPLIError);
}
public:
VerilatedVpiError() {
m_buff[0] = '\0';
m_errorInfo.product = const_cast<PLI_BYTE8*>(Verilated::productName());
}
~VerilatedVpiError() {}
static void selfTest() VL_MT_UNSAFE_ONE;
VerilatedVpiError* setMessage(PLI_INT32 level) {
m_flag = true;
m_errorInfo.level = level;
return this;
}
void setMessage(const std::string& file, PLI_INT32 line, const char* message, ...) {
// message cannot be a const string& as va_start cannot use a reference
static VL_THREAD_LOCAL std::string filehold;
va_list args;
va_start(args, message);
VL_VSNPRINTF(m_buff, sizeof(m_buff), message, args);
va_end(args);
m_errorInfo.state = vpiPLI;
filehold = file;
setError((PLI_BYTE8*)m_buff, nullptr, const_cast<PLI_BYTE8*>(filehold.c_str()), line);
}
p_vpi_error_info getError() {
if (m_flag) return &m_errorInfo;
return nullptr;
}
void resetError() { m_flag = false; }
static void vpi_unsupported() {
// Not supported yet
p_vpi_error_info error_info_p = VerilatedVpiImp::error_info()->getError();
if (error_info_p) {
VL_FATAL_MT(error_info_p->file, error_info_p->line, "", error_info_p->message);
return;
}
VL_FATAL_MT(__FILE__, __LINE__, "", "vpi_unsupported called without error info set");
}
static const char* strFromVpiVal(PLI_INT32 vpiVal) VL_MT_SAFE;
static const char* strFromVpiObjType(PLI_INT32 vpiVal) VL_MT_SAFE;
static const char* strFromVpiMethod(PLI_INT32 vpiVal) VL_MT_SAFE;
static const char* strFromVpiCallbackReason(PLI_INT32 vpiVal) VL_MT_SAFE;
static const char* strFromVpiProp(PLI_INT32 vpiVal) VL_MT_SAFE;
};
//======================================================================
VerilatedVpiImp VerilatedVpiImp::s_s; // Singleton
VL_THREAD_LOCAL vluint8_t* VerilatedVpio::t_freeHead = nullptr;
//======================================================================
// VerilatedVpi implementation
void VerilatedVpi::callTimedCbs() VL_MT_UNSAFE_ONE { VerilatedVpiImp::callTimedCbs(); }
bool VerilatedVpi::callValueCbs() VL_MT_UNSAFE_ONE { return VerilatedVpiImp::callValueCbs(); }
bool VerilatedVpi::callCbs(vluint32_t reason) VL_MT_UNSAFE_ONE {
return VerilatedVpiImp::callCbs(reason);
}
QData VerilatedVpi::cbNextDeadline() VL_MT_UNSAFE_ONE { return VerilatedVpiImp::cbNextDeadline(); }
//======================================================================
// VerilatedVpiImp implementation
VerilatedVpiError* VerilatedVpiImp::error_info() VL_MT_UNSAFE_ONE {
VerilatedVpiImp::assertOneCheck();
if (VL_UNLIKELY(!s_s.m_errorInfop)) { s_s.m_errorInfop = new VerilatedVpiError(); }
return s_s.m_errorInfop;
}
//======================================================================
// VerilatedVpiError Methods
const char* VerilatedVpiError::strFromVpiVal(PLI_INT32 vpiVal) VL_MT_SAFE {
// clang-format off
static const char* const names[] = {
"*undefined*",
"vpiBinStrVal",
"vpiOctStrVal",
"vpiDecStrVal",
"vpiHexStrVal",
"vpiScalarVal",
"vpiIntVal",
"vpiRealVal",
"vpiStringVal",
"vpiVectorVal",
"vpiStrengthVal",
"vpiTimeVal",
"vpiObjTypeVal",
"vpiSuppressVal",
"vpiShortIntVal",
"vpiLongIntVal",
"vpiShortRealVal",
"vpiRawTwoStateVal",
"vpiRawFourStateVal",
};
// clang-format on
if (VL_UNCOVERABLE(vpiVal < 0)) return names[0];
return names[(vpiVal <= vpiRawFourStateVal) ? vpiVal : 0];
}
const char* VerilatedVpiError::strFromVpiObjType(PLI_INT32 vpiVal) VL_MT_SAFE {
// clang-format off
static const char* const names[] = {
"*undefined*",
"vpiAlways",
"vpiAssignStmt",
"vpiAssignment",
"vpiBegin",
"vpiCase",
"vpiCaseItem",
"vpiConstant",
"vpiContAssign",
"vpiDeassign",
"vpiDefParam",
"vpiDelayControl",
"vpiDisable",
"vpiEventControl",
"vpiEventStmt",
"vpiFor",
"vpiForce",
"vpiForever",
"vpiFork",
"vpiFuncCall",
"vpiFunction",
"vpiGate",
"vpiIf",
"vpiIfElse",
"vpiInitial",
"vpiIntegerVar",
"vpiInterModPath",
"vpiIterator",
"vpiIODecl",
"vpiMemory",
"vpiMemoryWord",
"vpiModPath",
"vpiModule",
"vpiNamedBegin",
"vpiNamedEvent",
"vpiNamedFork",
"vpiNet",
"vpiNetBit",
"vpiNullStmt",
"vpiOperation",
"vpiParamAssign",
"vpiParameter",
"vpiPartSelect",
"vpiPathTerm",
"vpiPort",
"vpiPortBit",
"vpiPrimTerm",
"vpiRealVar",
"vpiReg",
"vpiRegBit",
"vpiRelease",
"vpiRepeat",
"vpiRepeatControl",
"vpiSchedEvent",
"vpiSpecParam",
"vpiSwitch",
"vpiSysFuncCall",
"vpiSysTaskCall",
"vpiTableEntry",
"vpiTask",
"vpiTaskCall",
"vpiTchk",
"vpiTchkTerm",
"vpiTimeVar",
"vpiTimeQueue",
"vpiUdp",
"vpiUdpDefn",
"vpiUserSystf",
"vpiVarSelect",
"vpiWait",
"vpiWhile",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"vpiAttribute",
"vpiBitSelect",
"vpiCallback",
"vpiDelayTerm",
"vpiDelayDevice",
"vpiFrame",
"vpiGateArray",
"vpiModuleArray",
"vpiPrimitiveArray",
"vpiNetArray",
"vpiRange",
"vpiRegArray",
"vpiSwitchArray",
"vpiUdpArray",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"vpiContAssignBit",
"vpiNamedEventArray",
"vpiIndexedPartSelect",
"*undefined*",
"*undefined*",
"vpiGenScopeArray",
"vpiGenScope",
"vpiGenVar"
};
// clang-format on
if (VL_UNCOVERABLE(vpiVal < 0)) return names[0];
return names[(vpiVal <= vpiGenVar) ? vpiVal : 0];
}
const char* VerilatedVpiError::strFromVpiMethod(PLI_INT32 vpiVal) VL_MT_SAFE {
// clang-format off
static const char* const names[] = {
"vpiCondition",
"vpiDelay",
"vpiElseStmt",
"vpiForIncStmt",
"vpiForInitStmt",
"vpiHighConn",
"vpiLhs",
"vpiIndex",
"vpiLeftRange",
"vpiLowConn",
"vpiParent",
"vpiRhs",
"vpiRightRange",
"vpiScope",
"vpiSysTfCall",
"vpiTchkDataTerm",
"vpiTchkNotifier",
"vpiTchkRefTerm",
"vpiArgument",
"vpiBit",
"vpiDriver",
"vpiInternalScope",
"vpiLoad",
"vpiModDataPathIn",
"vpiModPathIn",
"vpiModPathOut",
"vpiOperand",
"vpiPortInst",
"vpiProcess",
"vpiVariables",
"vpiUse",
"vpiExpr",
"vpiPrimitive",
"vpiStmt"
};
// clang-format on
if (vpiVal > vpiStmt || vpiVal < vpiCondition) return "*undefined*";
return names[vpiVal - vpiCondition];
}
const char* VerilatedVpiError::strFromVpiCallbackReason(PLI_INT32 vpiVal) VL_MT_SAFE {
// clang-format off
static const char* const names[] = {
"*undefined*",
"cbValueChange",
"cbStmt",
"cbForce",
"cbRelease",
"cbAtStartOfSimTime",
"cbReadWriteSynch",
"cbReadOnlySynch",
"cbNextSimTime",
"cbAfterDelay",
"cbEndOfCompile",
"cbStartOfSimulation",
"cbEndOfSimulation",
"cbError",
"cbTchkViolation",
"cbStartOfSave",
"cbEndOfSave",
"cbStartOfRestart",
"cbEndOfRestart",
"cbStartOfReset",
"cbEndOfReset",
"cbEnterInteractive",
"cbExitInteractive",
"cbInteractiveScopeChange",
"cbUnresolvedSystf",
"cbAssign",
"cbDeassign",
"cbDisable",
"cbPLIError",
"cbSignal",
"cbNBASynch",
"cbAtEndOfSimTime"
};
// clang-format on
if (VL_UNCOVERABLE(vpiVal < 0)) return names[0];
return names[(vpiVal <= cbAtEndOfSimTime) ? vpiVal : 0];
}
const char* VerilatedVpiError::strFromVpiProp(PLI_INT32 vpiVal) VL_MT_SAFE {
// clang-format off
static const char* const names[] = {
"*undefined or other*",
"vpiType",
"vpiName",
"vpiFullName",
"vpiSize",
"vpiFile",
"vpiLineNo",
"vpiTopModule",
"vpiCellInstance",
"vpiDefName",
"vpiProtected",
"vpiTimeUnit",
"vpiTimePrecision",
"vpiDefNetType",
"vpiUnconnDrive",
"vpiDefFile",
"vpiDefLineNo",
"vpiScalar",
"vpiVector",
"vpiExplicitName",
"vpiDirection",
"vpiConnByName",
"vpiNetType",
"vpiExplicitScalared",
"vpiExplicitVectored",
"vpiExpanded",
"vpiImplicitDecl",
"vpiChargeStrength",
"vpiArray",
"vpiPortIndex",
"vpiTermIndex",
"vpiStrength0",
"vpiStrength1",
"vpiPrimType",
"vpiPolarity",
"vpiDataPolarity",
"vpiEdge",
"vpiPathType",
"vpiTchkType",
"vpiOpType",
"vpiConstType",
"vpiBlocking",
"vpiCaseType",
"vpiFuncType",
"vpiNetDeclAssign",
"vpiUserDefn",
"vpiScheduled",
"*undefined*",
"*undefined*",
"vpiActive",
"vpiAutomatic",
"vpiCell",
"vpiConfig",
"vpiConstantSelect",
"vpiDecompile",
"vpiDefAttribute",
"vpiDelayType",
"vpiIteratorType",
"vpiLibrary",
"*undefined*",
"vpiOffset",
"vpiResolvedNetType",
"vpiSaveRestartID",
"vpiSaveRestartLocation",
"vpiValid",
"vpiSigned",
"vpiStop",
"vpiFinish",
"vpiReset",
"vpiSetInteractiveScope",
"vpiLocalParam",
"vpiModPathHasIfNone",
"vpiIndexedPartSelectType",
"vpiIsMemory",
"vpiIsProtected"
};
// clang-format on
if (vpiVal == vpiUndefined) return "vpiUndefined";
return names[(vpiVal <= vpiIsProtected) ? vpiVal : 0];
}
#define SELF_CHECK_RESULT_CSTR(got, exp) \
if (0 != strcmp((got), (exp))) { \
std::string msg \
= std::string("%Error: ") + "GOT = '" + got + "'" + " EXP = '" + exp + "'"; \
VL_FATAL_MT(__FILE__, __LINE__, "", msg.c_str()); \
}
#define SELF_CHECK_ENUM_STR(fn, enumn) \
do { \
const char* strVal = VerilatedVpiError::fn(enumn); \
SELF_CHECK_RESULT_CSTR(strVal, #enumn); \
} while (0)
void VerilatedVpi::selfTest() VL_MT_UNSAFE_ONE { VerilatedVpiError::selfTest(); }
void VerilatedVpiError::selfTest() VL_MT_UNSAFE_ONE {
VerilatedVpiImp::assertOneCheck();
SELF_CHECK_ENUM_STR(strFromVpiVal, vpiBinStrVal);
SELF_CHECK_ENUM_STR(strFromVpiVal, vpiRawFourStateVal);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAlways);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiWhile);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAttribute);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiUdpArray);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiContAssignBit);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiGenVar);
SELF_CHECK_ENUM_STR(strFromVpiMethod, vpiCondition);
SELF_CHECK_ENUM_STR(strFromVpiMethod, vpiStmt);
SELF_CHECK_ENUM_STR(strFromVpiCallbackReason, cbValueChange);
SELF_CHECK_ENUM_STR(strFromVpiCallbackReason, cbAtEndOfSimTime);
SELF_CHECK_ENUM_STR(strFromVpiProp, vpiType);
SELF_CHECK_ENUM_STR(strFromVpiProp, vpiProtected);
SELF_CHECK_ENUM_STR(strFromVpiProp, vpiDirection);
SELF_CHECK_ENUM_STR(strFromVpiProp, vpiTermIndex);
SELF_CHECK_ENUM_STR(strFromVpiProp, vpiConstType);
SELF_CHECK_ENUM_STR(strFromVpiProp, vpiAutomatic);
SELF_CHECK_ENUM_STR(strFromVpiProp, vpiOffset);
SELF_CHECK_ENUM_STR(strFromVpiProp, vpiStop);
SELF_CHECK_ENUM_STR(strFromVpiProp, vpiIsProtected);
}
#undef SELF_CHECK_ENUM_STR
#undef SELF_CHECK_RESULT_CSTR
//======================================================================
// callback related
vpiHandle vpi_register_cb(p_cb_data cb_data_p) {
VerilatedVpiImp::assertOneCheck();
_VL_VPI_ERROR_RESET();
// cppcheck-suppress nullPointer
if (VL_UNLIKELY(!cb_data_p)) {
_VL_VPI_WARNING(__FILE__, __LINE__, "%s : callback data pointer is null", VL_FUNC);
return nullptr;
}
switch (cb_data_p->reason) {
case cbAfterDelay: {
QData time = 0;
if (cb_data_p->time) time = _VL_SET_QII(cb_data_p->time->high, cb_data_p->time->low);
VerilatedVpioCb* vop = new VerilatedVpioCb(cb_data_p, VL_TIME_Q() + time);
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_register_cb %d %p delay=%" VL_PRI64 "u\n",
cb_data_p->reason, vop, time););
VerilatedVpiImp::cbTimedAdd(vop);
return vop->castVpiHandle();
}
case cbReadWriteSynch: // FALLTHRU // Supported via vlt_main.cpp
case cbReadOnlySynch: // FALLTHRU // Supported via vlt_main.cpp
case cbNextSimTime: // FALLTHRU // Supported via vlt_main.cpp
case cbStartOfSimulation: // FALLTHRU // Supported via vlt_main.cpp
case cbEndOfSimulation: // FALLTHRU // Supported via vlt_main.cpp
case cbValueChange: // FALLTHRU // Supported via vlt_main.cpp
case cbPLIError: // FALLTHRU // NOP, but need to return handle, so make object
case cbEnterInteractive: // FALLTHRU // NOP, but need to return handle, so make object
case cbExitInteractive: // FALLTHRU // NOP, but need to return handle, so make object
case cbInteractiveScopeChange: { // FALLTHRU // NOP, but need to return handle, so make object
VerilatedVpioCb* vop = new VerilatedVpioCb(cb_data_p, 0);
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_register_cb %d %p\n", cb_data_p->reason, vop););
VerilatedVpiImp::cbReasonAdd(vop);
return vop->castVpiHandle();
}
default:
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported callback type %s", VL_FUNC,
VerilatedVpiError::strFromVpiCallbackReason(cb_data_p->reason));
return nullptr;
}
}
PLI_INT32 vpi_remove_cb(vpiHandle cb_obj) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_remove_cb %p\n", cb_obj););
VerilatedVpiImp::assertOneCheck();
VerilatedVpioCb* vop = VerilatedVpioCb::castp(cb_obj);
_VL_VPI_ERROR_RESET();
if (VL_UNLIKELY(!vop)) return 0;
if (vop->cb_datap()->reason == cbAfterDelay) {
VerilatedVpiImp::cbTimedRemove(vop);
} else {
VerilatedVpiImp::cbReasonRemove(vop);
}
return 1;
}
void vpi_get_cb_info(vpiHandle /*object*/, p_cb_data /*cb_data_p*/) { _VL_VPI_UNIMP(); }
vpiHandle vpi_register_systf(p_vpi_systf_data /*systf_data_p*/) {
_VL_VPI_UNIMP();
return nullptr;
}
void vpi_get_systf_info(vpiHandle /*object*/, p_vpi_systf_data /*systf_data_p*/) {
_VL_VPI_UNIMP();
}
// for obtaining handles
vpiHandle vpi_handle_by_name(PLI_BYTE8* namep, vpiHandle scope) {
VerilatedVpiImp::assertOneCheck();
_VL_VPI_ERROR_RESET();
if (VL_UNLIKELY(!namep)) return nullptr;
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_handle_by_name %s %p\n", namep, scope););
const VerilatedVar* varp = nullptr;
const VerilatedScope* scopep;
VerilatedVpioScope* voScopep = VerilatedVpioScope::castp(scope);
std::string scopeAndName = namep;
if (voScopep) {
scopeAndName = std::string(voScopep->fullname()) + "." + namep;
namep = const_cast<PLI_BYTE8*>(scopeAndName.c_str());
}
{
// This doesn't yet follow the hierarchy in the proper way
scopep = Verilated::scopeFind(namep);
if (scopep) { // Whole thing found as a scope
if (scopep->type() == VerilatedScope::SCOPE_MODULE) {
return (new VerilatedVpioModule(scopep))->castVpiHandle();
} else {
return (new VerilatedVpioScope(scopep))->castVpiHandle();
}
}
const char* baseNamep = scopeAndName.c_str();
std::string scopename;
const char* dotp = strrchr(namep, '.');
if (VL_LIKELY(dotp)) {
baseNamep = dotp + 1;
scopename = std::string(namep, dotp - namep);
}
if (scopename.find('.') == std::string::npos) {
// This is a toplevel, hence search in our TOP ports first.
scopep = Verilated::scopeFind("TOP");
if (scopep) { varp = scopep->varFind(baseNamep); }
}
if (!varp) {
scopep = Verilated::scopeFind(scopename.c_str());
if (!scopep) return nullptr;
varp = scopep->varFind(baseNamep);
}
}
if (!varp) return nullptr;
if (varp->isParam()) {
return (new VerilatedVpioParam(varp, scopep))->castVpiHandle();
} else {
return (new VerilatedVpioVar(varp, scopep))->castVpiHandle();
}
}
vpiHandle vpi_handle_by_index(vpiHandle object, PLI_INT32 indx) {
// Used to get array entries
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_handle_by_index %p %d\n", object, indx););
VerilatedVpiImp::assertOneCheck();
VerilatedVpioVar* varop = VerilatedVpioVar::castp(object);
_VL_VPI_ERROR_RESET();
if (VL_LIKELY(varop)) {
if (varop->varp()->dims() < 2) return nullptr;
if (VL_LIKELY(varop->varp()->unpacked().left() >= varop->varp()->unpacked().right())) {
if (VL_UNLIKELY(indx > varop->varp()->unpacked().left()
|| indx < varop->varp()->unpacked().right()))
return nullptr;
return (new VerilatedVpioMemoryWord(varop->varp(), varop->scopep(), indx,
indx - varop->varp()->unpacked().right()))
->castVpiHandle();
}
if (VL_UNLIKELY(indx < varop->varp()->unpacked().left()
|| indx > varop->varp()->unpacked().right()))
return nullptr;
return (new VerilatedVpioMemoryWord(varop->varp(), varop->scopep(), indx,
indx - varop->varp()->unpacked().left()))
->castVpiHandle();
}
_VL_VPI_INTERNAL(__FILE__, __LINE__, "%s : can't resolve handle", VL_FUNC);
return nullptr;
}
// for traversing relationships
vpiHandle vpi_handle(PLI_INT32 type, vpiHandle object) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_handle %d %p\n", type, object););
VerilatedVpiImp::assertOneCheck();
_VL_VPI_ERROR_RESET();
switch (type) {
case vpiLeftRange: {
if (VerilatedVpioVar* vop = VerilatedVpioVar::castp(object)) {
if (VL_UNLIKELY(!vop->rangep())) return nullptr;
return (new VerilatedVpioConst(vop->rangep()->left()))->castVpiHandle();
} else if (VerilatedVpioRange* vop = VerilatedVpioRange::castp(object)) {
if (VL_UNLIKELY(!vop->rangep())) return nullptr;
return (new VerilatedVpioConst(vop->rangep()->left()))->castVpiHandle();
}
_VL_VPI_WARNING(__FILE__, __LINE__,
"%s: Unsupported vpiHandle (%p) for type %s, nothing will be returned",
VL_FUNC, object, VerilatedVpiError::strFromVpiMethod(type));
return nullptr;
}
case vpiRightRange: {
if (VerilatedVpioVar* vop = VerilatedVpioVar::castp(object)) {
if (VL_UNLIKELY(!vop->rangep())) return nullptr;
return (new VerilatedVpioConst(vop->rangep()->right()))->castVpiHandle();
} else if (VerilatedVpioRange* vop = VerilatedVpioRange::castp(object)) {
if (VL_UNLIKELY(!vop->rangep())) return nullptr;
return (new VerilatedVpioConst(vop->rangep()->right()))->castVpiHandle();
}
_VL_VPI_WARNING(__FILE__, __LINE__,
"%s: Unsupported vpiHandle (%p) for type %s, nothing will be returned",
VL_FUNC, object, VerilatedVpiError::strFromVpiMethod(type));
return nullptr;
}
case vpiIndex: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return nullptr;
return (new VerilatedVpioConst(vop->index()))->castVpiHandle();
}
case vpiScope: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return nullptr;
return (new VerilatedVpioScope(vop->scopep()))->castVpiHandle();
}
case vpiParent: {
VerilatedVpioMemoryWord* vop = VerilatedVpioMemoryWord::castp(object);
if (VL_UNLIKELY(!vop)) return nullptr;
return (new VerilatedVpioVar(vop->varp(), vop->scopep()))->castVpiHandle();
}
default:
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned",
VL_FUNC, VerilatedVpiError::strFromVpiMethod(type));
return nullptr;
}
}
vpiHandle vpi_handle_multi(PLI_INT32 /*type*/, vpiHandle /*refHandle1*/, vpiHandle /*refHandle2*/,
...) {
_VL_VPI_UNIMP();
return nullptr;
}
vpiHandle vpi_iterate(PLI_INT32 type, vpiHandle object) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_iterate %d %p\n", type, object););
VerilatedVpiImp::assertOneCheck();
_VL_VPI_ERROR_RESET();
switch (type) {
case vpiMemoryWord: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return nullptr;
if (vop->varp()->dims() < 2) return nullptr;
if (vop->varp()->dims() > 2) {
_VL_VPI_WARNING(__FILE__, __LINE__,
"%s: %s, object %s has unsupported number of indices (%d)", VL_FUNC,
VerilatedVpiError::strFromVpiMethod(type), vop->fullname(),
vop->varp()->dims());
}
return (new VerilatedVpioMemoryWordIter(object, vop->varp()))->castVpiHandle();
}
case vpiRange: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return nullptr;
if (vop->varp()->dims() < 2) return nullptr;
// Unsupported is multidim list
if (vop->varp()->dims() > 2) {
_VL_VPI_WARNING(__FILE__, __LINE__,
"%s: %s, object %s has unsupported number of indices (%d)", VL_FUNC,
VerilatedVpiError::strFromVpiMethod(type), vop->fullname(),
vop->varp()->dims());
}
return ((new VerilatedVpioRange(vop->rangep()))->castVpiHandle());
}
case vpiReg: {
VerilatedVpioScope* vop = VerilatedVpioScope::castp(object);
if (VL_UNLIKELY(!vop)) return nullptr;
return ((new VerilatedVpioVarIter(vop->scopep()))->castVpiHandle());
}
case vpiModule: {
VerilatedVpioModule* vop = VerilatedVpioModule::castp(object);
const VerilatedHierarchyMap* map = VerilatedImp::hierarchyMap();
const VerilatedScope* mod = vop ? vop->scopep() : nullptr;
const auto it = vlstd::as_const(map)->find(const_cast<VerilatedScope*>(mod));
if (it == map->end()) return nullptr;
return ((new VerilatedVpioModuleIter(it->second))->castVpiHandle());
}
default:
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned",
VL_FUNC, VerilatedVpiError::strFromVpiObjType(type));
return nullptr;
}
}
vpiHandle vpi_scan(vpiHandle object) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_scan %p\n", object););
VerilatedVpiImp::assertOneCheck();
_VL_VPI_ERROR_RESET();
VerilatedVpio* vop = VerilatedVpio::castp(object);
if (VL_UNLIKELY(!vop)) return nullptr;
return vop->dovpi_scan();
}
// for processing properties
PLI_INT32 vpi_get(PLI_INT32 property, vpiHandle object) {
// Leave this in the header file - in many cases the compiler can constant propagate "object"
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_get %d %p\n", property, object););
VerilatedVpiImp::assertOneCheck();
_VL_VPI_ERROR_RESET();
switch (property) {
case vpiTimePrecision: {
return Verilated::timeprecision();
}
case vpiTimeUnit: {
VerilatedVpioScope* vop = VerilatedVpioScope::castp(object);
if (!vop) return Verilated::timeunit(); // Null asks for global, not unlikely
return vop->scopep()->timeunit();
}
case vpiType: {
VerilatedVpio* vop = VerilatedVpio::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return vop->type();
}
case vpiDirection: {
// By forthought, the directions already are vpi enumerated
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return vop->varp()->vldir();
}
case vpiScalar: // FALLTHRU
case vpiVector: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return (property == vpiVector) ^ (vop->varp()->dims() == 0);
}
case vpiSize: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return vop->size();
}
default:
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned",
VL_FUNC, VerilatedVpiError::strFromVpiProp(property));
return 0;
}
}
PLI_INT64 vpi_get64(PLI_INT32 /*property*/, vpiHandle /*object*/) {
_VL_VPI_UNIMP();
return 0;
}
PLI_BYTE8* vpi_get_str(PLI_INT32 property, vpiHandle object) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_get_str %d %p\n", property, object););
VerilatedVpiImp::assertOneCheck();
VerilatedVpio* vop = VerilatedVpio::castp(object);
_VL_VPI_ERROR_RESET();
if (VL_UNLIKELY(!vop)) return nullptr;
switch (property) {
case vpiName: {
return const_cast<PLI_BYTE8*>(vop->name());
}
case vpiFullName: {
return const_cast<PLI_BYTE8*>(vop->fullname());
}
case vpiDefName: {
return const_cast<PLI_BYTE8*>(vop->defname());
}
case vpiType: {
return const_cast<PLI_BYTE8*>(VerilatedVpiError::strFromVpiObjType(vop->type()));
}
default:
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned",
VL_FUNC, VerilatedVpiError::strFromVpiProp(property));
return nullptr;
}
}
// delay processing
void vpi_get_delays(vpiHandle /*object*/, p_vpi_delay /*delay_p*/) { _VL_VPI_UNIMP(); }
void vpi_put_delays(vpiHandle /*object*/, p_vpi_delay /*delay_p*/) { _VL_VPI_UNIMP(); }
// value processing
bool vl_check_format(const VerilatedVar* varp, const p_vpi_value valuep, const char* fullname,
bool isGetValue) {
bool status = true;
if ((valuep->format == vpiVectorVal) || (valuep->format == vpiBinStrVal)
|| (valuep->format == vpiOctStrVal) || (valuep->format == vpiHexStrVal)) {
switch (varp->vltype()) {
case VLVT_UINT8:
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: return status;
default: status = false;
}
} else if (valuep->format == vpiDecStrVal) {
switch (varp->vltype()) {
case VLVT_UINT8:
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64: return status;
default: status = false;
}
} else if (valuep->format == vpiStringVal) {
switch (varp->vltype()) {
case VLVT_UINT8:
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: return status;
case VLVT_STRING:
if (isGetValue) {
return status;
} else {
status = false;
break;
}
default: status = false;
}
} else if (valuep->format == vpiIntVal) {
switch (varp->vltype()) {
case VLVT_UINT8:
case VLVT_UINT16:
case VLVT_UINT32: return status;
default: status = false;
}
} else if (valuep->format == vpiSuppressVal) {
return status;
} else {
status = false;
}
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s", VL_FUNC,
VerilatedVpiError::strFromVpiVal(valuep->format), fullname);
return status;
}
void vl_get_value(const VerilatedVar* varp, void* varDatap, p_vpi_value valuep,
const char* fullname) {
if (!vl_check_format(varp, valuep, fullname, true)) return;
// Maximum required size is for binary string, one byte per bit plus null termination
static VL_THREAD_LOCAL char outStr[1 + VL_MULS_MAX_WORDS * 32];
// cppcheck-suppress variableScope
static VL_THREAD_LOCAL int outStrSz = sizeof(outStr) - 1;
// We used to presume vpiValue.format = vpiIntVal or if single bit vpiScalarVal
// This may cause backward compatibility issues with older code.
if (valuep->format == vpiVectorVal) {
// Vector pointer must come from our memory pool
// It only needs to persist until the next vpi_get_value
static VL_THREAD_LOCAL t_vpi_vecval out[VL_MULS_MAX_WORDS * 2];
valuep->value.vector = out;
if (varp->vltype() == VLVT_UINT8) {
out[0].aval = *(reinterpret_cast<CData*>(varDatap));
out[0].bval = 0;
return;
} else if (varp->vltype() == VLVT_UINT16) {
out[0].aval = *(reinterpret_cast<SData*>(varDatap));
out[0].bval = 0;
return;
} else if (varp->vltype() == VLVT_UINT32) {
out[0].aval = *(reinterpret_cast<IData*>(varDatap));
out[0].bval = 0;
return;
} else if (varp->vltype() == VLVT_UINT64) {
QData data = *(reinterpret_cast<QData*>(varDatap));
out[1].aval = static_cast<IData>(data >> 32ULL);
out[1].bval = 0;
out[0].aval = static_cast<IData>(data);
out[0].bval = 0;
return;
} else if (varp->vltype() == VLVT_WDATA) {
int words = VL_WORDS_I(varp->packed().elements());
if (VL_UNCOVERABLE(words >= VL_MULS_MAX_WORDS)) {
VL_FATAL_MT(
__FILE__, __LINE__, "",
"vpi_get_value with more than VL_MULS_MAX_WORDS; increase and recompile");
}
WDataInP datap = (reinterpret_cast<EData*>(varDatap));
for (int i = 0; i < words; ++i) {
out[i].aval = datap[i];
out[i].bval = 0;
}
return;
}
} else if (valuep->format == vpiBinStrVal) {
valuep->value.str = outStr;
int bits = varp->packed().elements();
CData* datap = (reinterpret_cast<CData*>(varDatap));
int i;
if (bits > outStrSz) {
// limit maximum size of output to size of buffer to prevent overrun.
bits = outStrSz;
_VL_VPI_WARNING(
__FILE__, __LINE__,
"%s: Truncating string value of %s for %s"
" as buffer size (%d, VL_MULS_MAX_WORDS=%d) is less than required (%d)",
VL_FUNC, VerilatedVpiError::strFromVpiVal(valuep->format), fullname, outStrSz,
VL_MULS_MAX_WORDS, bits);
}
for (i = 0; i < bits; ++i) {
char val = (datap[i >> 3] >> (i & 7)) & 1;
outStr[bits - i - 1] = val ? '1' : '0';
}
outStr[i] = '\0';
return;
} else if (valuep->format == vpiOctStrVal) {
valuep->value.str = outStr;
int chars = (varp->packed().elements() + 2) / 3;
int bytes = VL_BYTES_I(varp->packed().elements());
CData* datap = (reinterpret_cast<CData*>(varDatap));
int i;
if (chars > outStrSz) {
// limit maximum size of output to size of buffer to prevent overrun.
_VL_VPI_WARNING(
__FILE__, __LINE__,
"%s: Truncating string value of %s for %s"
" as buffer size (%d, VL_MULS_MAX_WORDS=%d) is less than required (%d)",
VL_FUNC, VerilatedVpiError::strFromVpiVal(valuep->format), fullname, outStrSz,
VL_MULS_MAX_WORDS, chars);
chars = outStrSz;
}
for (i = 0; i < chars; ++i) {
div_t idx = div(i * 3, 8);
int val = datap[idx.quot];
if ((idx.quot + 1) < bytes) {
// if the next byte is valid or that in
// for when the required 3 bits straddle adjacent bytes
val |= datap[idx.quot + 1] << 8;
}
// align so least significant 3 bits represent octal char
val >>= idx.rem;
if (i == (chars - 1)) {
// most signifcant char, mask off non existant bits when vector
// size is not a multiple of 3
unsigned int rem = varp->packed().elements() % 3;
if (rem) {
// generate bit mask & zero non existant bits
val &= (1 << rem) - 1;
}
}
outStr[chars - i - 1] = '0' + (val & 7);
}
outStr[i] = '\0';
return;
} else if (valuep->format == vpiDecStrVal) {
valuep->value.str = outStr;
// outStrSz does not include nullptr termination so add one
if (varp->vltype() == VLVT_UINT8) {
VL_SNPRINTF(outStr, outStrSz + 1, "%hhu",
static_cast<unsigned char>(*(reinterpret_cast<CData*>(varDatap))));
return;
} else if (varp->vltype() == VLVT_UINT16) {
VL_SNPRINTF(outStr, outStrSz + 1, "%hu",
static_cast<unsigned short>(*(reinterpret_cast<SData*>(varDatap))));
return;
} else if (varp->vltype() == VLVT_UINT32) {
VL_SNPRINTF(outStr, outStrSz + 1, "%u",
static_cast<unsigned int>(*(reinterpret_cast<IData*>(varDatap))));
return;
} else if (varp->vltype() == VLVT_UINT64) {
VL_SNPRINTF(outStr, outStrSz + 1, "%llu",
static_cast<unsigned long long>(*(reinterpret_cast<QData*>(varDatap))));
return;
}
} else if (valuep->format == vpiHexStrVal) {
valuep->value.str = outStr;
int chars = (varp->packed().elements() + 3) >> 2;
CData* datap = (reinterpret_cast<CData*>(varDatap));
int i;
if (chars > outStrSz) {
// limit maximum size of output to size of buffer to prevent overrun.
_VL_VPI_WARNING(
__FILE__, __LINE__,
"%s: Truncating string value of %s for %s"
" as buffer size (%d, VL_MULS_MAX_WORDS=%d) is less than required (%d)",
VL_FUNC, VerilatedVpiError::strFromVpiVal(valuep->format), fullname, outStrSz,
VL_MULS_MAX_WORDS, chars);
chars = outStrSz;
}
for (i = 0; i < chars; ++i) {
char val = (datap[i >> 1] >> ((i & 1) << 2)) & 15;
if (i == (chars - 1)) {
// most signifcant char, mask off non existant bits when vector
// size is not a multiple of 4
unsigned int rem = varp->packed().elements() & 3;
if (rem) {
// generate bit mask & zero non existant bits
val &= (1 << rem) - 1;
}
}
outStr[chars - i - 1] = "0123456789abcdef"[static_cast<int>(val)];
}
outStr[i] = '\0';
return;
} else if (valuep->format == vpiStringVal) {
if (varp->vltype() == VLVT_STRING) {
valuep->value.str = reinterpret_cast<char*>(varDatap);
return;
} else {
valuep->value.str = outStr;
int bytes = VL_BYTES_I(varp->packed().elements());
CData* datap = (reinterpret_cast<CData*>(varDatap));
int i;
if (bytes > outStrSz) {
// limit maximum size of output to size of buffer to prevent overrun.
_VL_VPI_WARNING(
__FILE__, __LINE__,
"%s: Truncating string value of %s for %s"
" as buffer size (%d, VL_MULS_MAX_WORDS=%d) is less than required (%d)",
VL_FUNC, VerilatedVpiError::strFromVpiVal(valuep->format), fullname, outStrSz,
VL_MULS_MAX_WORDS, bytes);
bytes = outStrSz;
}
for (i = 0; i < bytes; ++i) {
char val = datap[bytes - i - 1];
// other simulators replace [leading?] zero chars with spaces, replicate here.
outStr[i] = val ? val : ' ';
}
outStr[i] = '\0';
return;
}
} else if (valuep->format == vpiIntVal) {
if (varp->vltype() == VLVT_UINT8) {
valuep->value.integer = *(reinterpret_cast<CData*>(varDatap));
return;
} else if (varp->vltype() == VLVT_UINT16) {
valuep->value.integer = *(reinterpret_cast<SData*>(varDatap));
return;
} else if (varp->vltype() == VLVT_UINT32) {
valuep->value.integer = *(reinterpret_cast<IData*>(varDatap));
return;
}
} else if (valuep->format == vpiSuppressVal) {
return;
}
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) as requested for %s", VL_FUNC,
VerilatedVpiError::strFromVpiVal(valuep->format), fullname);
}
void vpi_get_value(vpiHandle object, p_vpi_value valuep) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_get_value %p\n", object););
VerilatedVpiImp::assertOneCheck();
_VL_VPI_ERROR_RESET();
if (VL_UNLIKELY(!valuep)) return;
if (VerilatedVpioVar* vop = VerilatedVpioVar::castp(object)) {
vl_get_value(vop->varp(), vop->varDatap(), valuep, vop->fullname());
return;
} else if (VerilatedVpioParam* vop = VerilatedVpioParam::castp(object)) {
vl_get_value(vop->varp(), vop->varDatap(), valuep, vop->fullname());
return;
} else if (VerilatedVpioConst* vop = VerilatedVpioConst::castp(object)) {
if (valuep->format == vpiIntVal) {
valuep->value.integer = vop->num();
return;
}
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s", VL_FUNC,
VerilatedVpiError::strFromVpiVal(valuep->format), vop->fullname());
return;
}
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported vpiHandle (%p)", VL_FUNC, object);
}
vpiHandle vpi_put_value(vpiHandle object, p_vpi_value valuep, p_vpi_time /*time_p*/,
PLI_INT32 /*flags*/) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_put_value %p %p\n", object, valuep););
VerilatedVpiImp::assertOneCheck();
_VL_VPI_ERROR_RESET();
if (VL_UNLIKELY(!valuep)) {
_VL_VPI_WARNING(__FILE__, __LINE__, "Ignoring vpi_put_value with nullptr value pointer");
return nullptr;
}
if (VerilatedVpioVar* vop = VerilatedVpioVar::castp(object)) {
VL_DEBUG_IF_PLI(
VL_DBG_MSGF("- vpi: vpi_put_value name=%s fmt=%d vali=%d\n", vop->fullname(),
valuep->format, valuep->value.integer);
VL_DBG_MSGF("- vpi: varp=%p putatp=%p\n", vop->varp()->datap(), vop->varDatap()););
if (VL_UNLIKELY(!vop->varp()->isPublicRW())) {
_VL_VPI_WARNING(__FILE__, __LINE__,
"Ignoring vpi_put_value to signal marked read-only,"
" use public_flat_rw instead: %s",
vop->fullname());
return nullptr;
}
if (!vl_check_format(vop->varp(), valuep, vop->fullname(), false)) return nullptr;
if (valuep->format == vpiVectorVal) {
if (VL_UNLIKELY(!valuep->value.vector)) return nullptr;
if (vop->varp()->vltype() == VLVT_UINT8) {
*(reinterpret_cast<CData*>(vop->varDatap()))
= valuep->value.vector[0].aval & vop->mask();
return object;
} else if (vop->varp()->vltype() == VLVT_UINT16) {
*(reinterpret_cast<SData*>(vop->varDatap()))
= valuep->value.vector[0].aval & vop->mask();
return object;
} else if (vop->varp()->vltype() == VLVT_UINT32) {
*(reinterpret_cast<IData*>(vop->varDatap()))
= valuep->value.vector[0].aval & vop->mask();
return object;
} else if (vop->varp()->vltype() == VLVT_UINT64) {
*(reinterpret_cast<QData*>(vop->varDatap())) = _VL_SET_QII(
valuep->value.vector[1].aval & vop->mask(), valuep->value.vector[0].aval);
return object;
} else if (vop->varp()->vltype() == VLVT_WDATA) {
int words = VL_WORDS_I(vop->varp()->packed().elements());
WDataOutP datap = (reinterpret_cast<EData*>(vop->varDatap()));
for (int i = 0; i < words; ++i) {
datap[i] = valuep->value.vector[i].aval;
if (i == (words - 1)) datap[i] &= vop->mask();
}
return object;
}
} else if (valuep->format == vpiBinStrVal) {
int bits = vop->varp()->packed().elements();
int len = strlen(valuep->value.str);
CData* datap = (reinterpret_cast<CData*>(vop->varDatap()));
for (int i = 0; i < bits; ++i) {
char set = (i < len) ? (valuep->value.str[len - i - 1] == '1') : 0;
// zero bits 7:1 of byte when assigning to bit 0, else
// or in 1 if bit set
if (i & 7) {
datap[i >> 3] |= set << (i & 7);
} else {
datap[i >> 3] = set;
}
}
return object;
} else if (valuep->format == vpiOctStrVal) {
int chars = (vop->varp()->packed().elements() + 2) / 3;
int bytes = VL_BYTES_I(vop->varp()->packed().elements());
int len = strlen(valuep->value.str);
CData* datap = (reinterpret_cast<CData*>(vop->varDatap()));
div_t idx;
datap[0] = 0; // reset zero'th byte
for (int i = 0; i < chars; ++i) {
union {
char byte[2];
vluint16_t half;
} val;
idx = div(i * 3, 8);
if (i < len) {
// ignore illegal chars
char digit = valuep->value.str[len - i - 1];
if (digit >= '0' && digit <= '7') {
val.half = digit - '0';
} else {
_VL_VPI_WARNING(__FILE__, __LINE__,
"%s: Non octal character '%c' in '%s' as value %s for %s",
VL_FUNC, digit, valuep->value.str,
VerilatedVpiError::strFromVpiVal(valuep->format),
vop->fullname());
val.half = 0;
}
} else {
val.half = 0;
}
// align octal character to position within vector, note that
// the three bits may straddle a byte boundary so two byte wide
// assignments are made to adjacent bytes - but not if the least
// significant byte of the aligned value is the most significant
// byte of the destination.
val.half <<= idx.rem;
datap[idx.quot] |= val.byte[0]; // or in value
if ((idx.quot + 1) < bytes) {
datap[idx.quot + 1] = val.byte[1]; // this also resets
// all bits to 0 prior to or'ing above
}
}
// mask off non-existent bits in the most significant byte
if (idx.quot == (bytes - 1)) {
datap[idx.quot] &= vop->mask_byte(idx.quot);
} else if (idx.quot + 1 == (bytes - 1)) {
datap[idx.quot + 1] &= vop->mask_byte(idx.quot + 1);
}
// zero off remaining top bytes
for (int i = idx.quot + 2; i < bytes; ++i) datap[i] = 0;
return object;
} else if (valuep->format == vpiDecStrVal) {
char remainder[16];
unsigned long long val;
int success = sscanf(valuep->value.str, "%30llu%15s", &val, remainder);
if (success < 1) {
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Parsing failed for '%s' as value %s for %s",
VL_FUNC, valuep->value.str,
VerilatedVpiError::strFromVpiVal(valuep->format), vop->fullname());
return nullptr;
}
if (success > 1) {
_VL_VPI_WARNING(__FILE__, __LINE__,
"%s: Trailing garbage '%s' in '%s' as value %s for %s", VL_FUNC,
remainder, valuep->value.str,
VerilatedVpiError::strFromVpiVal(valuep->format), vop->fullname());
}
if (vop->varp()->vltype() == VLVT_UINT8) {
*(reinterpret_cast<CData*>(vop->varDatap())) = val & vop->mask();
return object;
} else if (vop->varp()->vltype() == VLVT_UINT16) {
*(reinterpret_cast<SData*>(vop->varDatap())) = val & vop->mask();
return object;
} else if (vop->varp()->vltype() == VLVT_UINT32) {
*(reinterpret_cast<IData*>(vop->varDatap())) = val & vop->mask();
return object;
} else if (vop->varp()->vltype() == VLVT_UINT64) {
*(reinterpret_cast<QData*>(vop->varDatap())) = val;
(reinterpret_cast<IData*>(vop->varDatap()))[1] &= vop->mask();
return object;
}
} else if (valuep->format == vpiHexStrVal) {
int chars = (vop->varp()->packed().elements() + 3) >> 2;
CData* datap = (reinterpret_cast<CData*>(vop->varDatap()));
char* val = valuep->value.str;
// skip hex ident if one is detected at the start of the string
if (val[0] == '0' && (val[1] == 'x' || val[1] == 'X')) val += 2;
int len = strlen(val);
for (int i = 0; i < chars; ++i) {
char hex;
// compute hex digit value
if (i < len) {
char digit = val[len - i - 1];
if (digit >= '0' && digit <= '9') {
hex = digit - '0';
} else if (digit >= 'a' && digit <= 'f') {
hex = digit - 'a' + 10;
} else if (digit >= 'A' && digit <= 'F') {
hex = digit - 'A' + 10;
} else {
_VL_VPI_WARNING(__FILE__, __LINE__,
"%s: Non hex character '%c' in '%s' as value %s for %s",
VL_FUNC, digit, valuep->value.str,
VerilatedVpiError::strFromVpiVal(valuep->format),
vop->fullname());
hex = 0;
}
} else {
hex = 0;
}
// assign hex digit value to destination
if (i & 1) {
datap[i >> 1] |= hex << 4;
} else {
datap[i >> 1] = hex; // this also resets all
// bits to 0 prior to or'ing above of the msb
}
}
// apply bit mask to most significant byte
datap[(chars - 1) >> 1] &= vop->mask_byte((chars - 1) >> 1);
return object;
} else if (valuep->format == vpiStringVal) {
int bytes = VL_BYTES_I(vop->varp()->packed().elements());
int len = strlen(valuep->value.str);
CData* datap = (reinterpret_cast<CData*>(vop->varDatap()));
for (int i = 0; i < bytes; ++i) {
// prepend with 0 values before placing string the least significant bytes
datap[i] = (i < len) ? valuep->value.str[len - i - 1] : 0;
}
return object;
} else if (valuep->format == vpiIntVal) {
if (vop->varp()->vltype() == VLVT_UINT8) {
*(reinterpret_cast<CData*>(vop->varDatap())) = vop->mask() & valuep->value.integer;
return object;
} else if (vop->varp()->vltype() == VLVT_UINT16) {
*(reinterpret_cast<SData*>(vop->varDatap())) = vop->mask() & valuep->value.integer;
return object;
} else if (vop->varp()->vltype() == VLVT_UINT32) {
*(reinterpret_cast<IData*>(vop->varDatap())) = vop->mask() & valuep->value.integer;
return object;
}
}
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) as requested for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(valuep->format), vop->fullname());
return nullptr;
} else if (VerilatedVpioParam* vop = VerilatedVpioParam::castp(object)) {
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Ignoring vpi_put_value to vpiParameter: %s",
VL_FUNC, vop->fullname());
return nullptr;
} else if (VerilatedVpioConst* vop = VerilatedVpioConst::castp(object)) {
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Ignoring vpi_put_value to vpiConstant: %s",
VL_FUNC, vop->fullname());
return nullptr;
}
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported vpiHandle (%p)", VL_FUNC, object);
return nullptr;
}
void vpi_get_value_array(vpiHandle /*object*/, p_vpi_arrayvalue /*arrayvalue_p*/,
PLI_INT32* /*index_p*/, PLI_UINT32 /*num*/) {
_VL_VPI_UNIMP();
}
void vpi_put_value_array(vpiHandle /*object*/, p_vpi_arrayvalue /*arrayvalue_p*/,
PLI_INT32* /*index_p*/, PLI_UINT32 /*num*/) {
_VL_VPI_UNIMP();
}
// time processing
void vpi_get_time(vpiHandle object, p_vpi_time time_p) {
VerilatedVpiImp::assertOneCheck();
_VL_VPI_ERROR_RESET();
// cppcheck-suppress nullPointer
if (VL_UNLIKELY(!time_p)) {
_VL_VPI_WARNING(__FILE__, __LINE__, "Ignoring vpi_get_time with nullptr value pointer");
return;
}
if (time_p->type == vpiSimTime) {
QData qtime = VL_TIME_Q();
WData itime[2];
VL_SET_WQ(itime, qtime);
time_p->low = itime[0];
time_p->high = itime[1];
return;
} else if (time_p->type == vpiScaledRealTime) {
double dtime = VL_TIME_D();
if (VerilatedVpioScope* vop = VerilatedVpioScope::castp(object)) {
int scalePow10 = Verilated::timeprecision() - vop->scopep()->timeunit();
double scale = vl_time_multiplier(scalePow10); // e.g. 0.0001
dtime *= scale;
}
time_p->real = dtime;
return;
}
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported type (%d)", VL_FUNC, time_p->type);
}
// I/O routines
PLI_UINT32 vpi_mcd_open(PLI_BYTE8* filenamep) {
VerilatedVpiImp::assertOneCheck();
_VL_VPI_ERROR_RESET();
return VL_FOPEN_NN(filenamep, "wb");
}
PLI_UINT32 vpi_mcd_close(PLI_UINT32 mcd) {
VerilatedVpiImp::assertOneCheck();
_VL_VPI_ERROR_RESET();
VL_FCLOSE_I(mcd);
return 0;
}
PLI_BYTE8* vpi_mcd_name(PLI_UINT32 /*mcd*/) {
_VL_VPI_UNIMP();
return nullptr;
}
PLI_INT32 vpi_mcd_printf(PLI_UINT32 mcd, PLI_BYTE8* formatp, ...) {
VerilatedVpiImp::assertOneCheck();
_VL_VPI_ERROR_RESET();
va_list ap;
va_start(ap, formatp);
int chars = vpi_mcd_vprintf(mcd, formatp, ap);
va_end(ap);
return chars;
}
PLI_INT32 vpi_printf(PLI_BYTE8* formatp, ...) {
VerilatedVpiImp::assertOneCheck();
_VL_VPI_ERROR_RESET();
va_list ap;
va_start(ap, formatp);
int chars = vpi_vprintf(formatp, ap);
va_end(ap);
return chars;
}
PLI_INT32 vpi_vprintf(PLI_BYTE8* formatp, va_list ap) {
VerilatedVpiImp::assertOneCheck();
_VL_VPI_ERROR_RESET();
return VL_VPRINTF(formatp, ap);
}
PLI_INT32 vpi_mcd_vprintf(PLI_UINT32 mcd, PLI_BYTE8* format, va_list ap) {
VerilatedVpiImp::assertOneCheck();
FILE* fp = VL_CVT_I_FP(mcd);
_VL_VPI_ERROR_RESET();
// cppcheck-suppress nullPointer
if (VL_UNLIKELY(!fp)) return 0;
int chars = vfprintf(fp, format, ap);
return chars;
}
PLI_INT32 vpi_flush(void) {
VerilatedVpiImp::assertOneCheck();
_VL_VPI_ERROR_RESET();
Verilated::runFlushCallbacks();
return 0;
}
PLI_INT32 vpi_mcd_flush(PLI_UINT32 mcd) {
VerilatedVpiImp::assertOneCheck();
FILE* fp = VL_CVT_I_FP(mcd);
_VL_VPI_ERROR_RESET();
if (VL_UNLIKELY(!fp)) return 1;
fflush(fp);
return 0;
}
// utility routines
PLI_INT32 vpi_compare_objects(vpiHandle /*object1*/, vpiHandle /*object2*/) {
_VL_VPI_UNIMP();
return 0;
}
PLI_INT32 vpi_chk_error(p_vpi_error_info error_info_p) {
// executing vpi_chk_error does not reset error
// error_info_p can be nullptr, so only return level in that case
VerilatedVpiImp::assertOneCheck();
p_vpi_error_info _error_info_p = VerilatedVpiImp::error_info()->getError();
if (error_info_p && _error_info_p) *error_info_p = *_error_info_p;
if (!_error_info_p) return 0; // no error occured
return _error_info_p->level; // return error severity level
}
PLI_INT32 vpi_free_object(vpiHandle object) {
VerilatedVpiImp::assertOneCheck();
_VL_VPI_ERROR_RESET();
return vpi_release_handle(object); // Deprecated
}
PLI_INT32 vpi_release_handle(vpiHandle object) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_release_handle %p\n", object););
VerilatedVpiImp::assertOneCheck();
VerilatedVpio* vop = VerilatedVpio::castp(object);
_VL_VPI_ERROR_RESET();
if (VL_UNLIKELY(!vop)) return 0;
vpi_remove_cb(object); // May not be a callback, but that's ok
VL_DO_DANGLING(delete vop, vop);
return 1;
}
PLI_INT32 vpi_get_vlog_info(p_vpi_vlog_info vlog_info_p) VL_MT_SAFE {
VerilatedVpiImp::assertOneCheck();
_VL_VPI_ERROR_RESET();
vlog_info_p->argc = Verilated::getCommandArgs()->argc;
vlog_info_p->argv = const_cast<PLI_BYTE8**>(Verilated::getCommandArgs()->argv);
vlog_info_p->product = const_cast<PLI_BYTE8*>(Verilated::productName());
vlog_info_p->version = const_cast<PLI_BYTE8*>(Verilated::productVersion());
return 1;
}
// routines added with 1364-2001
PLI_INT32 vpi_get_data(PLI_INT32 /*id*/, PLI_BYTE8* /*dataLoc*/, PLI_INT32 /*numOfBytes*/) {
_VL_VPI_UNIMP();
return 0;
}
PLI_INT32 vpi_put_data(PLI_INT32 /*id*/, PLI_BYTE8* /*dataLoc*/, PLI_INT32 /*numOfBytes*/) {
_VL_VPI_UNIMP();
return 0;
}
void* vpi_get_userdata(vpiHandle /*obj*/) {
_VL_VPI_UNIMP();
return nullptr;
}
PLI_INT32 vpi_put_userdata(vpiHandle /*obj*/, void* /*userdata*/) {
_VL_VPI_UNIMP();
return 0;
}
PLI_INT32 vpi_control(PLI_INT32 operation, ...) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_control %d\n", operation););
VerilatedVpiImp::assertOneCheck();
_VL_VPI_ERROR_RESET();
switch (operation) {
case vpiFinish: {
VL_FINISH_MT("", 0, "*VPI*");
return 1;
}
case vpiStop: {
VL_STOP_MT("", 0, "*VPI*");
return 1; // LCOV_EXCL_LINE
}
default: {
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, ignoring", VL_FUNC,
VerilatedVpiError::strFromVpiProp(operation));
return 0;
}
}
}
vpiHandle vpi_handle_by_multi_index(vpiHandle /*obj*/, PLI_INT32 /*num_index*/,
PLI_INT32* /*index_array*/) {
_VL_VPI_UNIMP();
return nullptr;
}