verilator/src/V3LifePost.cpp
2020-05-31 20:21:07 +01:00

371 lines
14 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: AssignPost Variable assignment elimination
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
// Copyright 2003-2020 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
// LIFE TRANSFORMATIONS:
// Build control-flow graph with assignments and var usages
// All modules:
// Delete these
// ASSIGN(Vdly, a)
// ... {no reads or writes of a after the first write to Vdly}
// ... {no reads of a after the first write to Vdly}
// ASSIGNPOST(Vdly, tmp)
//
//*************************************************************************
#include "config_build.h"
#include "verilatedos.h"
#include "V3Global.h"
#include "V3PartitionGraph.h"
#include "V3GraphPathChecker.h"
#include "V3LifePost.h"
#include "V3Stats.h"
#include "V3Ast.h"
#include <memory> // for vl_unique_ptr -> auto_ptr or unique_ptr
#include VL_INCLUDE_UNORDERED_MAP
//######################################################################
// LifePost class functions
class LifePostElimVisitor : public AstNVisitor {
private:
bool m_tracingCall; // Iterating into a CCall to a CFunc
// NODE STATE
// INPUT:
// AstVarScope::user4p() -> AstVarScope*, If set, replace this
// varscope with specified new one
// STATE
// METHODS
VL_DEBUG_FUNC; // Declare debug()
// VISITORS
virtual void visit(AstVarRef* nodep) VL_OVERRIDE {
AstVarScope* vscp = nodep->varScopep();
UASSERT_OBJ(vscp, nodep, "Scope not assigned");
if (AstVarScope* newvscp = reinterpret_cast<AstVarScope*>(vscp->user4p())) {
UINFO(9, " Replace " << nodep << " to " << newvscp << endl);
AstVarRef* newrefp = new AstVarRef(nodep->fileline(), newvscp, nodep->lvalue());
nodep->replaceWith(newrefp);
VL_DO_DANGLING(nodep->deleteTree(), nodep);
}
}
virtual void visit(AstNodeModule* nodep) VL_OVERRIDE {
// Only track the top scopes, not lower level functions
if (nodep->isTop()) iterateChildren(nodep);
}
virtual void visit(AstNodeCCall* nodep) VL_OVERRIDE {
iterateChildren(nodep);
if (!nodep->funcp()->entryPoint()) {
// Enter the function and trace it
m_tracingCall = true;
iterate(nodep->funcp());
}
}
virtual void visit(AstExecGraph* nodep) VL_OVERRIDE {
// Can just iterate across the MTask bodies in any order. Order
// isn't important for LifePostElimVisitor's simple substitution.
iterateChildren(nodep);
}
virtual void visit(AstCFunc* nodep) VL_OVERRIDE {
if (!m_tracingCall && !nodep->entryPoint()) return;
m_tracingCall = false;
iterateChildren(nodep);
}
virtual void visit(AstVar*) VL_OVERRIDE {} // Don't want varrefs under it
virtual void visit(AstNode* nodep) VL_OVERRIDE { iterateChildren(nodep); }
public:
// CONSTRUCTORS
explicit LifePostElimVisitor(AstTopScope* nodep)
: m_tracingCall(false) {
iterate(nodep);
}
virtual ~LifePostElimVisitor() {}
};
//######################################################################
// Location within the execution graph, identified by an mtask
// and a sequence number within the mtask:
struct LifeLocation {
const ExecMTask* mtaskp;
uint32_t sequence;
public:
LifeLocation()
: mtaskp(NULL)
, sequence(0) {}
LifeLocation(const ExecMTask* mtaskp_, uint32_t sequence_)
: mtaskp(mtaskp_)
, sequence(sequence_) {}
bool operator<(const LifeLocation& b) const {
unsigned a_id = mtaskp ? mtaskp->id() : 0;
unsigned b_id = b.mtaskp ? b.mtaskp->id() : 0;
if (a_id < b_id) { return true; }
if (b_id < a_id) { return false; }
return sequence < b.sequence;
}
};
struct LifePostLocation {
LifeLocation loc;
AstAssignPost* nodep;
LifePostLocation()
: nodep(NULL) {}
LifePostLocation(LifeLocation loc_, AstAssignPost* nodep_)
: loc(loc_)
, nodep(nodep_) {}
};
//######################################################################
// LifePost delay elimination
class LifePostDlyVisitor : public AstNVisitor {
private:
// NODE STATE
// Cleared on entire tree
// AstVarScope::user4() -> AstVarScope*: Passed to LifePostElim to substitute this var
AstUser4InUse m_inuser4;
// STATE
uint32_t m_sequence; // Sequence number of assigns/varrefs,
// // local to the current MTask.
const ExecMTask* m_execMTaskp; // Current ExecMTask being processed,
// // or NULL for serial code.
VDouble0 m_statAssnDel; // Statistic tracking
bool m_tracingCall; // Currently tracing a CCall to a CFunc
// Map each varscope to one or more locations where it's accessed.
// These maps will not include any ASSIGNPOST accesses:
typedef vl_unordered_map<const AstVarScope*, std::set<LifeLocation> > LocMap;
LocMap m_reads; // VarScope read locations
LocMap m_writes; // VarScope write locations
// Map each dly var to its AstAssignPost* node and the location thereof
typedef vl_unordered_map<const AstVarScope*, LifePostLocation> PostLocMap;
PostLocMap m_assignposts; // AssignPost dly var locations
const V3Graph* m_mtasksGraphp; // Mtask tracking graph
vl_unique_ptr<GraphPathChecker> m_checker;
// METHODS
VL_DEBUG_FUNC; // Declare debug()
bool before(const LifeLocation& a, const LifeLocation& b) {
if (a.mtaskp == b.mtaskp) return a.sequence < b.sequence;
return m_checker->pathExistsFrom(a.mtaskp, b.mtaskp);
}
bool outsideCriticalArea(LifeLocation loc, const std::set<LifeLocation>& dlyVarAssigns,
LifeLocation assignPostLoc) {
// If loc is before all of dlyVarAssigns, return true.
// ("Before" means certain to be ordered before them at execution time.)
// If assignPostLoc is before loc, return true.
//
// Otherwise, loc could fall in the "critical" area where the
// substitution affects the result of the operation at loc, so
// return false.
if (!loc.mtaskp && assignPostLoc.mtaskp) {
// This is threaded mode; 'loc' is something that happens at
// initial/settle time, or perhaps in _eval() but outside of
// the mtask graph.
// In either case, it's not in the critical area.
return true;
}
if (before(assignPostLoc, loc)) return true;
for (std::set<LifeLocation>::iterator it = dlyVarAssigns.begin();
it != dlyVarAssigns.end(); ++it) {
if (!before(loc, *it)) return false;
}
return true;
}
void squashAssignposts() {
for (PostLocMap::iterator it = m_assignposts.begin(); it != m_assignposts.end(); ++it) {
LifePostLocation* app = &it->second;
AstVarRef* lhsp = VN_CAST(app->nodep->lhsp(), VarRef); // original var
AstVarRef* rhsp = VN_CAST(app->nodep->rhsp(), VarRef); // dly var
AstVarScope* dlyVarp = rhsp->varScopep();
AstVarScope* origVarp = lhsp->varScopep();
// Scrunch these:
// X1: __Vdly__q = __PVT__clk_clocks;
// ... {no reads or writes of __PVT__q after the first write to __Vdly__q}
// ... {no reads of __Vdly__q after the first write to __Vdly__q}
// X2: __PVT__q = __Vdly__q;
//
// Into just this:
// X1: __PVT__q = __PVT__clk_clocks;
// X2: (nothing)
// More formally, with the non-sequential mtasks graph, we must
// prove all of these before doing the scrunch:
// 1) No reads of the dly var anywhere except for the ASSIGNPOST
// 2) Every read of the original var either falls before each of
// the dly var's assignments, or after the ASSIGNPOST.
// 3) Every write of the original var either falls before each of
// the dly var's assignments, or after the ASSIGNPOST.
const std::set<LifeLocation>& dlyVarAssigns = m_writes[dlyVarp];
// Proof (1)
const std::set<LifeLocation>& dlyVarReads = m_reads[dlyVarp];
if (!dlyVarReads.empty()) {
continue; // do not scrunch, go to next LifePostLocation
}
// Proof (2)
bool canScrunch = true;
const std::set<LifeLocation>& origVarReads = m_reads[origVarp];
for (std::set<LifeLocation>::iterator rdLocIt = origVarReads.begin();
rdLocIt != origVarReads.end(); ++rdLocIt) {
if (!outsideCriticalArea(*rdLocIt, dlyVarAssigns, app->loc)) {
canScrunch = false;
break;
}
}
if (!canScrunch) continue;
// Proof (3)
const std::set<LifeLocation>& origVarWrites = m_writes[origVarp];
for (std::set<LifeLocation>::iterator wrLocIt = origVarWrites.begin();
wrLocIt != origVarWrites.end(); ++wrLocIt) {
if (!outsideCriticalArea(*wrLocIt, dlyVarAssigns, app->loc)) {
canScrunch = false;
break;
}
}
if (!canScrunch) continue;
// Delete and mark so LifePostElimVisitor will get it
UINFO(4, " DELETE " << app->nodep << endl);
dlyVarp->user4p(origVarp);
VL_DO_DANGLING(app->nodep->unlinkFrBack()->deleteTree(), app->nodep);
++m_statAssnDel;
}
}
// VISITORS
virtual void visit(AstTopScope* nodep) VL_OVERRIDE {
AstNode::user4ClearTree(); // user4p() used on entire tree
// First, build maps of every location (mtask and sequence
// within the mtask) where each varscope is read, and written.
iterateChildren(nodep);
if (v3Global.opt.mtasks()) {
UASSERT_OBJ(m_mtasksGraphp, nodep, "Should have initted m_mtasksGraphp by now");
m_checker.reset(new GraphPathChecker(m_mtasksGraphp));
} else {
UASSERT_OBJ(!m_mtasksGraphp, nodep,
"Did not expect any m_mtasksGraphp in serial mode");
}
// Find all assignposts. Determine which ones can be
// eliminated. Remove those, and mark their dly vars' user4 field
// to indicate we should replace these dly vars with their original
// variables.
squashAssignposts();
// Replace any node4p varscopes with the new scope
LifePostElimVisitor visitor(nodep);
}
virtual void visit(AstVarRef* nodep) VL_OVERRIDE {
// Consumption/generation of a variable,
AstVarScope* vscp = nodep->varScopep();
UASSERT_OBJ(vscp, nodep, "Scope not assigned");
LifeLocation loc(m_execMTaskp, ++m_sequence);
if (nodep->lvalue()) {
m_writes[vscp].insert(loc);
} else {
m_reads[vscp].insert(loc);
}
}
virtual void visit(AstAssignPre* nodep) VL_OVERRIDE {
// Do not record varrefs within assign pre.
//
// The pre-assignment into the dly var should not count as its
// first write; we only want to consider reads and writes that
// would still happen if the dly var were eliminated.
}
virtual void visit(AstAssignPost* nodep) VL_OVERRIDE {
// Don't record ASSIGNPOST in the read/write maps, record them in a
// separate map
if (AstVarRef* rhsp = VN_CAST(nodep->rhsp(), VarRef)) {
// rhsp is the dly var
AstVarScope* dlyVarp = rhsp->varScopep();
UASSERT_OBJ(m_assignposts.find(dlyVarp) == m_assignposts.end(), nodep,
"LifePostLocation attempted duplicate dlyvar map addition");
LifeLocation loc(m_execMTaskp, ++m_sequence);
m_assignposts[dlyVarp] = LifePostLocation(loc, nodep);
}
}
virtual void visit(AstNodeModule* nodep) VL_OVERRIDE {
// Only track the top scopes, not lower level functions
if (nodep->isTop()) iterateChildren(nodep);
}
virtual void visit(AstNodeCCall* nodep) VL_OVERRIDE {
iterateChildren(nodep);
if (!nodep->funcp()->entryPoint()) {
// Enter the function and trace it
m_tracingCall = true;
iterate(nodep->funcp());
}
}
virtual void visit(AstExecGraph* nodep) VL_OVERRIDE {
// Treat the ExecGraph like a call to each mtask body
m_mtasksGraphp = nodep->depGraphp();
for (V3GraphVertex* mtaskVxp = m_mtasksGraphp->verticesBeginp(); mtaskVxp;
mtaskVxp = mtaskVxp->verticesNextp()) {
ExecMTask* mtaskp = dynamic_cast<ExecMTask*>(mtaskVxp);
m_execMTaskp = mtaskp;
m_sequence = 0;
iterate(mtaskp->bodyp());
}
m_execMTaskp = NULL;
}
virtual void visit(AstCFunc* nodep) VL_OVERRIDE {
if (!m_tracingCall && !nodep->entryPoint()) return;
m_tracingCall = false;
iterateChildren(nodep);
}
//-----
virtual void visit(AstVar*) VL_OVERRIDE {} // Don't want varrefs under it
virtual void visit(AstNode* nodep) VL_OVERRIDE { iterateChildren(nodep); }
public:
// CONSTRUCTORS
explicit LifePostDlyVisitor(AstNetlist* nodep)
: m_sequence(0)
, m_execMTaskp(NULL)
, m_tracingCall(false)
, m_mtasksGraphp(NULL) {
iterate(nodep);
}
virtual ~LifePostDlyVisitor() {
V3Stats::addStat("Optimizations, Lifetime postassign deletions", m_statAssnDel);
}
};
//######################################################################
// LifePost class functions
void V3LifePost::lifepostAll(AstNetlist* nodep) {
UINFO(2, __FUNCTION__ << ": " << endl);
// Mark redundant AssignPost
{ LifePostDlyVisitor visitor(nodep); } // Destruct before checking
V3Global::dumpCheckGlobalTree("life_post", 0, v3Global.opt.dumpTreeLevel(__FILE__) >= 3);
}