verilator/include/verilated_trace_imp.cpp
Geza Lore ff425369ac
Reduce .rodata footprint of trace initialization (#3250)
Trace initialization (tracep->decl* functions) used to explicitly pass
the complete hierarchical names of signals as string constants. This
contains a lot of redundancy (path prefixes), does not scale well with
large designs and resulted in .rodata sections (the string constants) in
ELF executables being extremely large.

This patch changes the API of trace initialization that allows pushing
and popping name prefixes as we walk the hierarchy tree, which are
prepended to declared signal names at run-time during trace
initialization. This in turn allows us to emit repeat path/name
components only once, effectively removing all duplicate path prefixes.
On SweRV EH1 this reduces the .rodata section in a --trace build by 94%.

Additionally, trace declarations are now emitted in lexical order by
hierarchical signal names, and the top level trace initialization
function respects --output-split-ctrace.
2021-12-19 15:15:07 +00:00

694 lines
25 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//=============================================================================
//
// Code available from: https://verilator.org
//
// Copyright 2001-2021 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=============================================================================
///
/// \file
/// \brief Verilated common-format tracing implementation code
///
/// This file must be compiled and linked against all Verilated objects
/// that use --trace.
///
/// Use "verilator --trace" to add this to the Makefile for the linker.
///
//=============================================================================
// clang-format off
#ifndef VL_CPPCHECK
#ifndef VL_DERIVED_T
# error "This file should be included in trace format implementations"
#endif
#include "verilated_intrinsics.h"
#include "verilated_trace.h"
#if 0
# include <iostream>
# define VL_TRACE_THREAD_DEBUG(msg) std::cout << "TRACE THREAD: " << msg << std::endl
#else
# define VL_TRACE_THREAD_DEBUG(msg)
#endif
// clang-format on
//=============================================================================
// Static utility functions
static double timescaleToDouble(const char* unitp) {
char* endp = nullptr;
double value = std::strtod(unitp, &endp);
// On error so we allow just "ns" to return 1e-9.
if (value == 0.0 && endp == unitp) value = 1;
unitp = endp;
for (; *unitp && std::isspace(*unitp); unitp++) {}
switch (*unitp) {
case 's': value *= 1e0; break;
case 'm': value *= 1e-3; break;
case 'u': value *= 1e-6; break;
case 'n': value *= 1e-9; break;
case 'p': value *= 1e-12; break;
case 'f': value *= 1e-15; break;
case 'a': value *= 1e-18; break;
}
return value;
}
static std::string doubleToTimescale(double value) {
const char* suffixp = "s";
// clang-format off
if (value >= 1e0) { suffixp = "s"; value *= 1e0; }
else if (value >= 1e-3 ) { suffixp = "ms"; value *= 1e3; }
else if (value >= 1e-6 ) { suffixp = "us"; value *= 1e6; }
else if (value >= 1e-9 ) { suffixp = "ns"; value *= 1e9; }
else if (value >= 1e-12) { suffixp = "ps"; value *= 1e12; }
else if (value >= 1e-15) { suffixp = "fs"; value *= 1e15; }
else if (value >= 1e-18) { suffixp = "as"; value *= 1e18; }
// clang-format on
char valuestr[100];
VL_SNPRINTF(valuestr, 100, "%0.0f%s", value, suffixp);
return valuestr; // Gets converted to string, so no ref to stack
}
#ifdef VL_TRACE_THREADED
//=========================================================================
// Buffer management
template <> vluint32_t* VerilatedTrace<VL_DERIVED_T>::getTraceBuffer() {
vluint32_t* bufferp;
// Some jitter is expected, so some number of alternative trace buffers are
// required, but don't allocate more than 8 buffers.
if (m_numTraceBuffers < 8) {
// Allocate a new buffer if none is available
if (!m_buffersFromWorker.tryGet(bufferp)) {
++m_numTraceBuffers;
// Note: over allocate a bit so pointer comparison is well defined
// if we overflow only by a small amount
bufferp = new vluint32_t[m_traceBufferSize + 16];
}
} else {
// Block until a buffer becomes available
bufferp = m_buffersFromWorker.get();
}
return bufferp;
}
template <> void VerilatedTrace<VL_DERIVED_T>::waitForBuffer(const vluint32_t* buffp) {
// Slow path code only called on flush/shutdown, so use a simple algorithm.
// Collect buffers from worker and stash them until we get the one we want.
std::deque<vluint32_t*> stash;
do { stash.push_back(m_buffersFromWorker.get()); } while (stash.back() != buffp);
// Now put them back in the queue, in the original order.
while (!stash.empty()) {
m_buffersFromWorker.put_front(stash.back());
stash.pop_back();
}
}
//=========================================================================
// Worker thread
template <> void VerilatedTrace<VL_DERIVED_T>::workerThreadMain() {
bool shutdown = false;
do {
vluint32_t* const bufferp = m_buffersToWorker.get();
VL_TRACE_THREAD_DEBUG("");
VL_TRACE_THREAD_DEBUG("Got buffer: " << bufferp);
const vluint32_t* readp = bufferp;
while (true) {
const vluint32_t cmd = readp[0];
const vluint32_t top = cmd >> 4;
// Always set this up, as it is almost always needed
vluint32_t* const oldp = m_sigs_oldvalp + readp[1];
// Note this increment needs to be undone on commands which do not
// actually contain a code, but those are the rare cases.
readp += 2;
switch (cmd & 0xF) {
//===
// CHG_* commands
case VerilatedTraceCommand::CHG_BIT_0:
VL_TRACE_THREAD_DEBUG("Command CHG_BIT_0 " << top);
chgBitImpl(oldp, 0);
continue;
case VerilatedTraceCommand::CHG_BIT_1:
VL_TRACE_THREAD_DEBUG("Command CHG_BIT_1 " << top);
chgBitImpl(oldp, 1);
continue;
case VerilatedTraceCommand::CHG_CDATA:
VL_TRACE_THREAD_DEBUG("Command CHG_CDATA " << top);
// Bits stored in bottom byte of command
chgCDataImpl(oldp, *readp, top);
readp += 1;
continue;
case VerilatedTraceCommand::CHG_SDATA:
VL_TRACE_THREAD_DEBUG("Command CHG_SDATA " << top);
// Bits stored in bottom byte of command
chgSDataImpl(oldp, *readp, top);
readp += 1;
continue;
case VerilatedTraceCommand::CHG_IDATA:
VL_TRACE_THREAD_DEBUG("Command CHG_IDATA " << top);
// Bits stored in bottom byte of command
chgIDataImpl(oldp, *readp, top);
readp += 1;
continue;
case VerilatedTraceCommand::CHG_QDATA:
VL_TRACE_THREAD_DEBUG("Command CHG_QDATA " << top);
// Bits stored in bottom byte of command
chgQDataImpl(oldp, *reinterpret_cast<const QData*>(readp), top);
readp += 2;
continue;
case VerilatedTraceCommand::CHG_WDATA:
VL_TRACE_THREAD_DEBUG("Command CHG_WDATA " << top);
chgWDataImpl(oldp, readp, top);
readp += VL_WORDS_I(top);
continue;
case VerilatedTraceCommand::CHG_DOUBLE:
VL_TRACE_THREAD_DEBUG("Command CHG_DOUBLE " << top);
chgDoubleImpl(oldp, *reinterpret_cast<const double*>(readp));
readp += 2;
continue;
//===
// Rare commands
case VerilatedTraceCommand::TIME_CHANGE:
VL_TRACE_THREAD_DEBUG("Command TIME_CHANGE " << top);
readp -= 1; // No code in this command, undo increment
emitTimeChange(*reinterpret_cast<const vluint64_t*>(readp));
readp += 2;
continue;
//===
// Commands ending this buffer
case VerilatedTraceCommand::END: VL_TRACE_THREAD_DEBUG("Command END"); break;
case VerilatedTraceCommand::SHUTDOWN:
VL_TRACE_THREAD_DEBUG("Command SHUTDOWN");
shutdown = true;
break;
//===
// Unknown command
default: { // LCOV_EXCL_START
VL_TRACE_THREAD_DEBUG("Command UNKNOWN");
VL_PRINTF_MT("Trace command: 0x%08x\n", cmd);
VL_FATAL_MT(__FILE__, __LINE__, "", "Unknown trace command");
break;
} // LCOV_EXCL_STOP
}
// The above switch will execute 'continue' when necessary,
// so if we ever reach here, we are done with the buffer.
break;
}
VL_TRACE_THREAD_DEBUG("Returning buffer");
// Return buffer
m_buffersFromWorker.put(bufferp);
} while (VL_LIKELY(!shutdown));
}
template <> void VerilatedTrace<VL_DERIVED_T>::shutdownWorker() {
// If the worker thread is not running, done..
if (!m_workerThread) return;
// Hand an buffer with a shutdown command to the worker thread
vluint32_t* const bufferp = getTraceBuffer();
bufferp[0] = VerilatedTraceCommand::SHUTDOWN;
m_buffersToWorker.put(bufferp);
// Wait for it to return
waitForBuffer(bufferp);
// Join the thread and delete it
m_workerThread->join();
m_workerThread.reset(nullptr);
}
#endif
//=============================================================================
// Life cycle
template <> void VerilatedTrace<VL_DERIVED_T>::closeBase() {
#ifdef VL_TRACE_THREADED
shutdownWorker();
while (m_numTraceBuffers) {
delete[] m_buffersFromWorker.get();
--m_numTraceBuffers;
}
#endif
}
template <> void VerilatedTrace<VL_DERIVED_T>::flushBase() {
#ifdef VL_TRACE_THREADED
// Hand an empty buffer to the worker thread
vluint32_t* const bufferp = getTraceBuffer();
*bufferp = VerilatedTraceCommand::END;
m_buffersToWorker.put(bufferp);
// Wait for it to be returned. As the processing is in-order,
// this ensures all previous buffers have been processed.
waitForBuffer(bufferp);
#endif
}
//=============================================================================
// Callbacks to run on global events
template <> void VerilatedTrace<VL_DERIVED_T>::onFlush(void* selfp) {
// This calls 'flush' on the derived class (which must then get any mutex)
reinterpret_cast<VL_DERIVED_T*>(selfp)->flush();
}
template <> void VerilatedTrace<VL_DERIVED_T>::onExit(void* selfp) {
// This calls 'close' on the derived class (which must then get any mutex)
reinterpret_cast<VL_DERIVED_T*>(selfp)->close();
}
//=============================================================================
// VerilatedTrace
template <>
VerilatedTrace<VL_DERIVED_T>::VerilatedTrace()
: m_sigs_oldvalp{nullptr}
, m_timeLastDump{0}
, m_fullDump{true}
, m_nextCode{0}
, m_numSignals{0}
, m_maxBits{0}
, m_scopeEscape{'.'}
, m_timeRes{1e-9}
, m_timeUnit {
1e-9
}
#ifdef VL_TRACE_THREADED
, m_numTraceBuffers { 0 }
#endif
{
set_time_unit(Verilated::threadContextp()->timeunitString());
set_time_resolution(Verilated::threadContextp()->timeprecisionString());
}
template <> VerilatedTrace<VL_DERIVED_T>::~VerilatedTrace() {
if (m_sigs_oldvalp) VL_DO_CLEAR(delete[] m_sigs_oldvalp, m_sigs_oldvalp = nullptr);
Verilated::removeFlushCb(VerilatedTrace<VL_DERIVED_T>::onFlush, this);
Verilated::removeExitCb(VerilatedTrace<VL_DERIVED_T>::onExit, this);
#ifdef VL_TRACE_THREADED
closeBase();
#endif
}
//=========================================================================
// Internals available to format specific implementations
template <> void VerilatedTrace<VL_DERIVED_T>::traceInit() VL_MT_UNSAFE {
// Note: It is possible to re-open a trace file (VCD in particular),
// so we must reset the next code here, but it must have the same number
// of codes on re-open
const vluint32_t expectedCodes = nextCode();
m_nextCode = 1;
m_numSignals = 0;
m_maxBits = 0;
// Call all initialize callbacks, which will:
// - Call decl* for each signal
// - Store the base code
for (vluint32_t i = 0; i < m_initCbs.size(); ++i) {
const CallbackRecord& cbr = m_initCbs[i];
cbr.m_initCb(cbr.m_userp, self(), nextCode());
}
if (expectedCodes && nextCode() != expectedCodes) {
VL_FATAL_MT(__FILE__, __LINE__, "",
"Reopening trace file with different number of signals");
}
// Now that we know the number of codes, allocate space for the buffer
// holding previous signal values.
if (!m_sigs_oldvalp) m_sigs_oldvalp = new vluint32_t[nextCode()];
// Set callback so flush/abort will flush this file
Verilated::addFlushCb(VerilatedTrace<VL_DERIVED_T>::onFlush, this);
Verilated::addExitCb(VerilatedTrace<VL_DERIVED_T>::onExit, this);
#ifdef VL_TRACE_THREADED
// Compute trace buffer size. we need to be able to store a new value for
// each signal, which is 'nextCode()' entries after the init callbacks
// above have been run, plus up to 2 more words of metadata per signal,
// plus fixed overhead of 1 for a termination flag and 3 for a time stamp
// update.
m_traceBufferSize = nextCode() + numSignals() * 2 + 4;
// Start the worker thread
m_workerThread.reset(new std::thread{&VerilatedTrace<VL_DERIVED_T>::workerThreadMain, this});
#endif
}
template <>
void VerilatedTrace<VL_DERIVED_T>::declCode(vluint32_t code, vluint32_t bits, bool tri) {
if (VL_UNCOVERABLE(!code)) {
VL_FATAL_MT(__FILE__, __LINE__, "", "Internal: internal trace problem, code 0 is illegal");
}
// Note: The tri-state flag is not used by Verilator, but is here for
// compatibility with some foreign code.
int codesNeeded = VL_WORDS_I(bits);
if (tri) codesNeeded *= 2;
m_nextCode = std::max(m_nextCode, code + codesNeeded);
++m_numSignals;
m_maxBits = std::max(m_maxBits, bits);
}
//=========================================================================
// Internals available to format specific implementations
template <> std::string VerilatedTrace<VL_DERIVED_T>::timeResStr() const {
return doubleToTimescale(m_timeRes);
}
//=========================================================================
// External interface to client code
template <> void VerilatedTrace<VL_DERIVED_T>::set_time_unit(const char* unitp) VL_MT_SAFE {
m_timeUnit = timescaleToDouble(unitp);
}
template <> void VerilatedTrace<VL_DERIVED_T>::set_time_unit(const std::string& unit) VL_MT_SAFE {
set_time_unit(unit.c_str());
}
template <> void VerilatedTrace<VL_DERIVED_T>::set_time_resolution(const char* unitp) VL_MT_SAFE {
m_timeRes = timescaleToDouble(unitp);
}
template <>
void VerilatedTrace<VL_DERIVED_T>::set_time_resolution(const std::string& unit) VL_MT_SAFE {
set_time_resolution(unit.c_str());
}
template <>
void VerilatedTrace<VL_DERIVED_T>::dump(vluint64_t timeui) VL_MT_SAFE_EXCLUDES(m_mutex) {
// Not really VL_MT_SAFE but more VL_MT_UNSAFE_ONE.
// This does get the mutex, but if multiple threads are trying to dump
// chances are the data being dumped will have other problems
const VerilatedLockGuard lock{m_mutex};
if (VL_UNCOVERABLE(m_timeLastDump && timeui <= m_timeLastDump)) { // LCOV_EXCL_START
VL_PRINTF_MT("%%Warning: previous dump at t=%" VL_PRI64 "u, requesting t=%" VL_PRI64
"u, dump call ignored\n",
m_timeLastDump, timeui);
return;
} // LCOV_EXCL_STOP
m_timeLastDump = timeui;
Verilated::quiesce();
// Call hook for format specific behaviour
if (VL_UNLIKELY(m_fullDump)) {
if (!preFullDump()) return;
} else {
if (!preChangeDump()) return;
}
#ifdef VL_TRACE_THREADED
// Currently only incremental dumps run on the worker thread
vluint32_t* bufferp = nullptr;
if (VL_LIKELY(!m_fullDump)) {
// Get the trace buffer we are about to fill
bufferp = getTraceBuffer();
m_traceBufferWritep = bufferp;
m_traceBufferEndp = bufferp + m_traceBufferSize;
// Tell worker to update time point
m_traceBufferWritep[0] = VerilatedTraceCommand::TIME_CHANGE;
*reinterpret_cast<vluint64_t*>(m_traceBufferWritep + 1) = timeui;
m_traceBufferWritep += 3;
} else {
// Update time point
flushBase();
emitTimeChange(timeui);
}
#else
// Update time point
emitTimeChange(timeui);
#endif
// Run the callbacks
if (VL_UNLIKELY(m_fullDump)) {
m_fullDump = false; // No more need for next dump to be full
for (vluint32_t i = 0; i < m_fullCbs.size(); ++i) {
const CallbackRecord& cbr = m_fullCbs[i];
cbr.m_dumpCb(cbr.m_userp, self());
}
} else {
for (vluint32_t i = 0; i < m_chgCbs.size(); ++i) {
const CallbackRecord& cbr = m_chgCbs[i];
cbr.m_dumpCb(cbr.m_userp, self());
}
}
for (vluint32_t i = 0; i < m_cleanupCbs.size(); ++i) {
const CallbackRecord& cbr = m_cleanupCbs[i];
cbr.m_dumpCb(cbr.m_userp, self());
}
#ifdef VL_TRACE_THREADED
if (VL_LIKELY(bufferp)) {
// Mark end of the trace buffer we just filled
*m_traceBufferWritep++ = VerilatedTraceCommand::END;
// Assert no buffer overflow
assert(m_traceBufferWritep - bufferp <= m_traceBufferSize);
// Pass it to the worker thread
m_buffersToWorker.put(bufferp);
}
#endif
}
//=============================================================================
// Non-hot path internal interface to Verilator generated code
template <>
void VerilatedTrace<VL_DERIVED_T>::addCallbackRecord(std::vector<CallbackRecord>& cbVec,
CallbackRecord& cbRec)
VL_MT_SAFE_EXCLUDES(m_mutex) {
const VerilatedLockGuard lock{m_mutex};
if (VL_UNCOVERABLE(timeLastDump() != 0)) { // LCOV_EXCL_START
const std::string msg = (std::string{"Internal: "} + __FILE__ + "::" + __FUNCTION__
+ " called with already open file");
VL_FATAL_MT(__FILE__, __LINE__, "", msg.c_str());
} // LCOV_EXCL_STOP
cbVec.push_back(cbRec);
}
template <> void VerilatedTrace<VL_DERIVED_T>::addInitCb(initCb_t cb, void* userp) VL_MT_SAFE {
CallbackRecord cbr{cb, userp};
addCallbackRecord(m_initCbs, cbr);
}
template <> void VerilatedTrace<VL_DERIVED_T>::addFullCb(dumpCb_t cb, void* userp) VL_MT_SAFE {
CallbackRecord cbr{cb, userp};
addCallbackRecord(m_fullCbs, cbr);
}
template <> void VerilatedTrace<VL_DERIVED_T>::addChgCb(dumpCb_t cb, void* userp) VL_MT_SAFE {
CallbackRecord cbr{cb, userp};
addCallbackRecord(m_chgCbs, cbr);
}
template <> void VerilatedTrace<VL_DERIVED_T>::addCleanupCb(dumpCb_t cb, void* userp) VL_MT_SAFE {
CallbackRecord cbr{cb, userp};
addCallbackRecord(m_cleanupCbs, cbr);
}
template <> void VerilatedTrace<VL_DERIVED_T>::pushNamePrefix(const std::string& prefix) {
m_namePrefixStack.push_back(m_namePrefixStack.back() + prefix);
}
template <> void VerilatedTrace<VL_DERIVED_T>::popNamePrefix(unsigned count) {
while (count--) m_namePrefixStack.pop_back();
assert(!m_namePrefixStack.empty());
}
//=========================================================================
// Hot path internal interface to Verilator generated code
// These functions must write the new value back into the old value store,
// and subsequently call the format specific emit* implementations. Note
// that this file must be included in the format specific implementation, so
// the emit* functions can be inlined for performance.
template <> void VerilatedTrace<VL_DERIVED_T>::fullBit(vluint32_t* oldp, CData newval) {
*oldp = newval;
self()->emitBit(oldp - m_sigs_oldvalp, newval);
}
template <>
void VerilatedTrace<VL_DERIVED_T>::fullCData(vluint32_t* oldp, CData newval, int bits) {
*oldp = newval;
self()->emitCData(oldp - m_sigs_oldvalp, newval, bits);
}
template <>
void VerilatedTrace<VL_DERIVED_T>::fullSData(vluint32_t* oldp, SData newval, int bits) {
*oldp = newval;
self()->emitSData(oldp - m_sigs_oldvalp, newval, bits);
}
template <>
void VerilatedTrace<VL_DERIVED_T>::fullIData(vluint32_t* oldp, IData newval, int bits) {
*oldp = newval;
self()->emitIData(oldp - m_sigs_oldvalp, newval, bits);
}
template <>
void VerilatedTrace<VL_DERIVED_T>::fullQData(vluint32_t* oldp, QData newval, int bits) {
*reinterpret_cast<QData*>(oldp) = newval;
self()->emitQData(oldp - m_sigs_oldvalp, newval, bits);
}
template <>
void VerilatedTrace<VL_DERIVED_T>::fullWData(vluint32_t* oldp, const WData* newvalp, int bits) {
for (int i = 0; i < VL_WORDS_I(bits); ++i) oldp[i] = newvalp[i];
self()->emitWData(oldp - m_sigs_oldvalp, newvalp, bits);
}
template <> void VerilatedTrace<VL_DERIVED_T>::fullDouble(vluint32_t* oldp, double newval) {
// cppcheck-suppress invalidPointerCast
*reinterpret_cast<double*>(oldp) = newval;
self()->emitDouble(oldp - m_sigs_oldvalp, newval);
}
//=========================================================================
// Primitives converting binary values to strings...
// All of these take a destination pointer where the string will be emitted,
// and a value to convert. There are a couple of variants for efficiency.
static inline void cvtCDataToStr(char* dstp, CData value) {
#ifdef VL_HAVE_SSE2
// Similar to cvtSDataToStr but only the bottom 8 byte lanes are used
const __m128i a = _mm_cvtsi32_si128(value);
const __m128i b = _mm_unpacklo_epi8(a, a);
const __m128i c = _mm_shufflelo_epi16(b, 0);
const __m128i m = _mm_set1_epi64x(0x0102040810204080);
const __m128i d = _mm_cmpeq_epi8(_mm_and_si128(c, m), m);
const __m128i result = _mm_sub_epi8(_mm_set1_epi8('0'), d);
_mm_storel_epi64(reinterpret_cast<__m128i*>(dstp), result);
#else
dstp[0] = '0' | static_cast<char>((value >> 7) & 1);
dstp[1] = '0' | static_cast<char>((value >> 6) & 1);
dstp[2] = '0' | static_cast<char>((value >> 5) & 1);
dstp[3] = '0' | static_cast<char>((value >> 4) & 1);
dstp[4] = '0' | static_cast<char>((value >> 3) & 1);
dstp[5] = '0' | static_cast<char>((value >> 2) & 1);
dstp[6] = '0' | static_cast<char>((value >> 1) & 1);
dstp[7] = '0' | static_cast<char>(value & 1);
#endif
}
static inline void cvtSDataToStr(char* dstp, SData value) {
#ifdef VL_HAVE_SSE2
// We want each bit in the 16-bit input value to end up in a byte lane
// within the 128-bit XMM register. Note that x86 is little-endian and we
// want the MSB of the input at the low address, so we will bit-reverse
// at the same time.
// Put value in bottom of 128-bit register a[15:0] = value
const __m128i a = _mm_cvtsi32_si128(value);
// Interleave bytes with themselves
// b[15: 0] = {2{a[ 7:0]}} == {2{value[ 7:0]}}
// b[31:16] = {2{a[15:8]}} == {2{value[15:8]}}
const __m128i b = _mm_unpacklo_epi8(a, a);
// Shuffle bottom 64 bits, note swapping high bytes with low bytes
// c[31: 0] = {2{b[31:16]}} == {4{value[15:8}}
// c[63:32] = {2{b[15: 0]}} == {4{value[ 7:0}}
const __m128i c = _mm_shufflelo_epi16(b, 0x05);
// Shuffle whole register
// d[ 63: 0] = {2{c[31: 0]}} == {8{value[15:8}}
// d[126:54] = {2{c[63:32]}} == {8{value[ 7:0}}
const __m128i d = _mm_shuffle_epi32(c, 0x50);
// Test each bit within the bytes, this sets each byte lane to 0
// if the bit for that lane is 0 and to 0xff if the bit is 1.
const __m128i m = _mm_set1_epi64x(0x0102040810204080);
const __m128i e = _mm_cmpeq_epi8(_mm_and_si128(d, m), m);
// Convert to ASCII by subtracting the masks from ASCII '0':
// '0' - 0 is '0', '0' - -1 is '1'
const __m128i result = _mm_sub_epi8(_mm_set1_epi8('0'), e);
// Store the 16 characters to the un-aligned buffer
_mm_storeu_si128(reinterpret_cast<__m128i*>(dstp), result);
#else
cvtCDataToStr(dstp, value >> 8);
cvtCDataToStr(dstp + 8, value);
#endif
}
static inline void cvtIDataToStr(char* dstp, IData value) {
#ifdef VL_HAVE_AVX2
// Similar to cvtSDataToStr but the bottom 16-bits are processed in the
// top half of the YMM registerss
const __m256i a = _mm256_insert_epi32(_mm256_undefined_si256(), value, 0);
const __m256i b = _mm256_permute4x64_epi64(a, 0);
const __m256i s = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3);
const __m256i c = _mm256_shuffle_epi8(b, s);
const __m256i m = _mm256_set1_epi64x(0x0102040810204080);
const __m256i d = _mm256_cmpeq_epi8(_mm256_and_si256(c, m), m);
const __m256i result = _mm256_sub_epi8(_mm256_set1_epi8('0'), d);
_mm256_storeu_si256(reinterpret_cast<__m256i*>(dstp), result);
#else
cvtSDataToStr(dstp, value >> 16);
cvtSDataToStr(dstp + 16, value);
#endif
}
static inline void cvtQDataToStr(char* dstp, QData value) {
cvtIDataToStr(dstp, value >> 32);
cvtIDataToStr(dstp + 32, value);
}
#define cvtEDataToStr cvtIDataToStr
//=============================================================================
#ifdef VERILATED_VCD_TEST
void verilated_trace_imp_selftest() {
#define SELF_CHECK(got, exp) \
do { \
if ((got) != (exp)) VL_FATAL_MT(__FILE__, __LINE__, "", "%Error: selftest\n"); \
} while (0)
#define SELF_CHECK_TS(scale) \
SELF_CHECK(doubleToTimescale(timescaleToDouble(scale)), std::string{scale});
SELF_CHECK_TS("100s");
SELF_CHECK_TS("10s");
SELF_CHECK_TS("1s");
SELF_CHECK_TS("100ms");
SELF_CHECK_TS("10ms");
SELF_CHECK_TS("1ms");
SELF_CHECK_TS("100us");
SELF_CHECK_TS("10us");
SELF_CHECK_TS("1us");
SELF_CHECK_TS("100ns");
SELF_CHECK_TS("10ns");
SELF_CHECK_TS("1ns");
SELF_CHECK_TS("100ps");
SELF_CHECK_TS("10ps");
SELF_CHECK_TS("1ps");
SELF_CHECK_TS("100fs");
SELF_CHECK_TS("10fs");
SELF_CHECK_TS("1fs");
SELF_CHECK_TS("100as");
SELF_CHECK_TS("10as");
SELF_CHECK_TS("1as");
}
#endif
#endif // VL_CPPCHECK