forked from github/verilator
887 lines
40 KiB
C++
887 lines
40 KiB
C++
// -*- mode: C++; c-file-style: "cc-mode" -*-
|
|
//*************************************************************************
|
|
// DESCRIPTION: Verilator: Merge branches/ternary ?:
|
|
//
|
|
// Code available from: https://verilator.org
|
|
//
|
|
//*************************************************************************
|
|
//
|
|
// Copyright 2003-2022 by Wilson Snyder. This program is free software; you
|
|
// can redistribute it and/or modify it under the terms of either the GNU
|
|
// Lesser General Public License Version 3 or the Perl Artistic License
|
|
// Version 2.0.
|
|
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
|
|
//
|
|
//*************************************************************************
|
|
// V3BranchMerge's Transformations:
|
|
//
|
|
// Look for sequences of assignments with ternary conditional on the right
|
|
// hand side with the same condition:
|
|
// lhs0 = cond ? then0 : else0;
|
|
// lhs1 = cond ? then1 : else1;
|
|
// lhs2 = cond ? then2 : else2;
|
|
//
|
|
// This seems to be a common pattern and can make the C compiler take a
|
|
// long time when compiling it with optimization. For us it's easy and fast
|
|
// to convert this to 'if' statements because we know the pattern is common:
|
|
// if (cond) {
|
|
// lhs0 = then0;
|
|
// lhs1 = then1;
|
|
// lhs2 = then2;
|
|
// } else {
|
|
// lhs0 = else0;
|
|
// lhs1 = else1;
|
|
// lhs2 = else2;
|
|
// }
|
|
//
|
|
// For 1-bit signals, we consider strength reduced forms to be conditionals,
|
|
// but only if we already encountered a true conditional we can merge with.
|
|
// If we did, then act as if:
|
|
// 'lhs = cond & value' is actually 'lhs = cond ? value : 1'd0'
|
|
// 'lhs = cond' is actually 'lhs = cond ? 1'd1 : 1'd0'.
|
|
//
|
|
// Also merges consecutive AstNodeIf statements with the same condition.
|
|
//
|
|
// Because this optimization has notable performance impact, we go further
|
|
// and perform code motion to try to move mergeable conditionals next to each
|
|
// other, which in turn enable us to merge more conditionals. To do this, we
|
|
// perform an analysis pass, followed by an optimization pass on the whole
|
|
// AstCFunc we are optimizing.
|
|
//
|
|
// The analysis pass gathers, for each statement in the tree, the information
|
|
// relevant for determining whether two statements can be swapped, and some
|
|
// other additional information that is useful during optimization.
|
|
//
|
|
// The optimization pass tries to move conditionals near each other, first by
|
|
// trying to move a conditional node backwards in the list, so it becomes the
|
|
// direct successor of another earlier conditional with the same condition.
|
|
// If this is not possible due to variable interference, then we additionally
|
|
// try to pull earlier conditionals with the same condition closer forward to
|
|
// be the immediate predecessor of the conditional node. We limit maximum
|
|
// distance a node can travel to an empirically chosen but otherwise arbitrary
|
|
// constant. This limits worst case complexity to be O(n) rather than O(n^2).
|
|
// The worst case complexity manifests when N/2 conditionals, all with unique
|
|
// conditions are succeeded by N/2 conditionals with the same unique
|
|
// conditions, such that each unique condition is used by exactly 2
|
|
// conditionals. In this case N/2 all nodes need to travel approx N/2 distance.
|
|
// Limiting the distance bounds the latter, hence limiting complexity.
|
|
//
|
|
// Once the analysis and optimization passes have been applied to the whole
|
|
// function, any merged conditionals will then undergo the same analysis,
|
|
// optimization, and merging again in their individual branches.
|
|
//
|
|
//*************************************************************************
|
|
|
|
#include "config_build.h"
|
|
#include "verilatedos.h"
|
|
|
|
#include "V3Global.h"
|
|
#include "V3MergeCond.h"
|
|
#include "V3Stats.h"
|
|
#include "V3Ast.h"
|
|
#include "V3AstUserAllocator.h"
|
|
#include "V3Hasher.h"
|
|
#include "V3DupFinder.h"
|
|
|
|
#include <queue>
|
|
#include <set>
|
|
|
|
namespace {
|
|
|
|
//######################################################################
|
|
// Utilities
|
|
|
|
// This function extracts the Cond node from the RHS of an assignment,
|
|
// if there is one and it is in a supported position, which are:
|
|
// - RHS is the Cond
|
|
// - RHS is And(Const, Cond). This And is inserted often by V3Clean.
|
|
AstNodeCond* extractCondFromRhs(AstNode* rhsp) {
|
|
if (AstNodeCond* const condp = VN_CAST(rhsp, NodeCond)) {
|
|
return condp;
|
|
} else if (const AstAnd* const andp = VN_CAST(rhsp, And)) {
|
|
if (AstNodeCond* const condp = VN_CAST(andp->rhsp(), NodeCond)) {
|
|
if (VN_IS(andp->lhsp(), Const)) return condp;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Predicate to check if two sets are disjoint. This is stable, as we only need
|
|
// to determine if the sets contain a shared element, which is a boolean
|
|
// property. It is also efficient as we use sorted sets, and therefore can
|
|
// enumerate elements in order (what the ordering is, is unimportant), meaning
|
|
// the worst case complexity is O(size of smaller set).
|
|
bool areDisjoint(const std::set<const AstVar*>& a, const std::set<const AstVar*>& b) {
|
|
if (a.empty() || b.empty()) return true;
|
|
const auto endA = a.end();
|
|
const auto endB = b.end();
|
|
auto itA = a.begin();
|
|
auto itB = b.begin();
|
|
while (true) {
|
|
if (*itA == *itB) return false;
|
|
if (std::less<const AstVar*>{}(*itA, *itB)) {
|
|
itA = std::lower_bound(++itA, endA, *itB);
|
|
if (itA == endA) return true;
|
|
} else {
|
|
itB = std::lower_bound(++itB, endB, *itA);
|
|
if (itB == endB) return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
//######################################################################
|
|
// Structure containing information required for code motion/merging
|
|
|
|
struct StmtProperties {
|
|
AstNode* m_condp = nullptr; // The condition expression, if a conditional node
|
|
std::set<const AstVar*> m_rdVars; // Variables read by this statement
|
|
std::set<const AstVar*> m_wrVars; // Variables writen by this statement
|
|
bool m_isFence = false; // Nothing should move across this statement, nor should it be merged
|
|
AstNodeStmt* m_prevWithSameCondp = nullptr; // Previous node in same list, with same condition
|
|
bool writesConditionVar() const {
|
|
// This relies on MarkVarsVisitor having been called on the condition node
|
|
for (const AstVar* const varp : m_wrVars) {
|
|
if (varp->user1()) return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
// We store the statement properties in user3 via AstUser3Allocator
|
|
using StmtPropertiesAllocator = AstUser3Allocator<AstNodeStmt, StmtProperties>;
|
|
|
|
//######################################################################
|
|
// Code motion analysis and implementation
|
|
|
|
// Pure analysis visitor that build the StmtProperties for each statement in the given
|
|
// AstNode list (following AstNode::nextp())
|
|
class CodeMotionAnalysisVisitor final : public VNVisitor {
|
|
// NODE STATE
|
|
// AstNodeStmt::user3 -> StmtProperties (accessed via m_stmtProperties, managed externally,
|
|
// see MergeCondVisitor::process)
|
|
// AstNode::user4 -> Used by V3Hasher
|
|
// AstNode::user5 -> AstNode*: Set on a condition node, points to the last conditional
|
|
// with that condition so far encountered in the same AstNode list
|
|
|
|
VNUser5InUse m_user5InUse;
|
|
|
|
StmtPropertiesAllocator& m_stmtProperties;
|
|
|
|
// MEMBERS
|
|
V3Hasher m_hasher; // Used by V3DupFinder
|
|
// Stack of a V3DupFinder used for finding identical condition expressions within one
|
|
// statement list.
|
|
std::vector<V3DupFinder> m_stack;
|
|
StmtProperties* m_propsp = nullptr; // StmtProperties structure of current AstNodeStmt
|
|
|
|
// Extract condition expression from a megeable conditional statement, if any
|
|
static AstNode* extractCondition(const AstNodeStmt* nodep) {
|
|
AstNode* conditionp = nullptr;
|
|
if (const AstNodeAssign* const assignp = VN_CAST(nodep, NodeAssign)) {
|
|
if (AstNodeCond* const conditionalp = extractCondFromRhs(assignp->rhsp())) {
|
|
conditionp = conditionalp->condp();
|
|
}
|
|
} else if (const AstNodeIf* const ifp = VN_CAST(nodep, NodeIf)) {
|
|
conditionp = ifp->condp();
|
|
}
|
|
while (AstCCast* const castp = VN_CAST(conditionp, CCast)) conditionp = castp->lhsp();
|
|
return conditionp;
|
|
}
|
|
|
|
void analyzeStmt(AstNodeStmt* nodep, bool tryCondMatch) {
|
|
VL_RESTORER(m_propsp);
|
|
// Keep hold of props of enclosing statement
|
|
StmtProperties* const outerPropsp = m_propsp;
|
|
// Grab the props of this statement
|
|
m_propsp = &m_stmtProperties(nodep);
|
|
|
|
// Extract condition from statement
|
|
if (AstNode* const condp = extractCondition(nodep)) {
|
|
// Remember condition node. We always need this as it is used in the later
|
|
// traversal.
|
|
m_propsp->m_condp = condp;
|
|
// If this is a conditional statement, try to find an earlier one with the same
|
|
// condition in the same list (unless we have been told not to bother because we know
|
|
// this node is in a singleton list).
|
|
if (tryCondMatch) {
|
|
// Grab the duplicate finder of this list
|
|
V3DupFinder& dupFinder = m_stack.back();
|
|
// Find a duplicate condition
|
|
const V3DupFinder::iterator& dit = dupFinder.findDuplicate(condp);
|
|
if (dit == dupFinder.end()) {
|
|
// First time seeing this condition in the current list
|
|
dupFinder.insert(condp);
|
|
// Remember last statement with this condition (which is this statement)
|
|
condp->user5p(nodep);
|
|
} else {
|
|
// Seen a conditional with the same condition earlier in the current list
|
|
AstNode* const firstp = dit->second;
|
|
// Add to properties for easy retrieval during optimization
|
|
m_propsp->m_prevWithSameCondp = static_cast<AstNodeStmt*>(firstp->user5p());
|
|
// Remember last statement with this condition (which is this statement)
|
|
firstp->user5p(nodep);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Analyse this statement
|
|
analyzeNode(nodep);
|
|
|
|
// If there is an enclosing statement, propagate properties upwards
|
|
if (outerPropsp) {
|
|
// Add all rd/wr vars to outer statement
|
|
outerPropsp->m_rdVars.insert(m_propsp->m_rdVars.cbegin(), m_propsp->m_rdVars.cend());
|
|
outerPropsp->m_wrVars.insert(m_propsp->m_wrVars.cbegin(), m_propsp->m_wrVars.cend());
|
|
// If this statement is impure, the enclosing statement is also impure
|
|
if (m_propsp->m_isFence) outerPropsp->m_isFence = true;
|
|
}
|
|
}
|
|
|
|
void analyzeVarRef(AstVarRef* nodep) {
|
|
const VAccess access = nodep->access();
|
|
AstVar* const varp = nodep->varp();
|
|
// Gather read and written variables
|
|
if (access.isReadOrRW()) m_propsp->m_rdVars.insert(varp);
|
|
if (access.isWriteOrRW()) m_propsp->m_wrVars.insert(varp);
|
|
}
|
|
|
|
void analyzeNode(AstNode* nodep) {
|
|
// If an impure node under a statement, mark that statement as impure
|
|
if (m_propsp && !nodep->isPure()) m_propsp->m_isFence = true;
|
|
// Analyze children
|
|
iterateChildrenConst(nodep);
|
|
}
|
|
|
|
// VISITORS
|
|
void visit(AstNode* nodep) override {
|
|
// Push a new stack entry at the start of a list, but only if the list is not a
|
|
// single element (this saves a lot of allocations in expressions)
|
|
bool singletonListStart = false;
|
|
if (nodep->backp()->nextp() != nodep) { // If at head of list
|
|
singletonListStart = nodep->nextp() == nullptr;
|
|
if (!singletonListStart) m_stack.emplace_back(m_hasher);
|
|
}
|
|
|
|
// Analyse node
|
|
if (AstNodeStmt* const stmtp = VN_CAST(nodep, NodeStmt)) {
|
|
analyzeStmt(stmtp, /*tryCondMatch:*/ !singletonListStart);
|
|
} else if (AstVarRef* const vrefp = VN_CAST(nodep, VarRef)) {
|
|
analyzeVarRef(vrefp);
|
|
} else {
|
|
analyzeNode(nodep);
|
|
}
|
|
|
|
// Pop the stack at the end of a list
|
|
if (!singletonListStart && !nodep->nextp()) m_stack.pop_back();
|
|
}
|
|
|
|
// CONSTRUCTOR
|
|
CodeMotionAnalysisVisitor(AstNode* nodep, StmtPropertiesAllocator& stmtProperties)
|
|
: m_stmtProperties(stmtProperties) {
|
|
iterateAndNextConstNull(nodep);
|
|
}
|
|
|
|
public:
|
|
// Analyse the statement list starting at nodep, filling in stmtProperties.
|
|
static void analyze(AstNode* nodep, StmtPropertiesAllocator& stmtProperties) {
|
|
CodeMotionAnalysisVisitor{nodep, stmtProperties};
|
|
}
|
|
};
|
|
|
|
class CodeMotionOptimizeVisitor final : public VNVisitor {
|
|
// Do not move a node more than this many statements.
|
|
// This bounds complexity at O(N), rather than O(N^2).
|
|
static constexpr unsigned MAX_DISTANCE = 500;
|
|
|
|
// NODE STATE
|
|
// AstNodeStmt::user3 -> StmtProperties (accessed via m_stmtProperties, managed externally,
|
|
// see MergeCondVisitor::process)
|
|
// AstNodeStmt::user4 -> bool: Already processed this node
|
|
|
|
VNUser4InUse m_user4InUse;
|
|
|
|
const StmtPropertiesAllocator& m_stmtProperties;
|
|
|
|
// MEMBERS
|
|
|
|
// Predicate that checks if the order of two statements can be swapped
|
|
bool areSwappable(const AstNodeStmt* ap, const AstNodeStmt* bp) const {
|
|
const StmtProperties& aProps = m_stmtProperties(ap);
|
|
const StmtProperties& bProps = m_stmtProperties(bp);
|
|
// Don't move across fences
|
|
if (aProps.m_isFence) return false;
|
|
if (bProps.m_isFence) return false;
|
|
// If either statement writes a variable that the other reads, they are not swappable
|
|
if (!areDisjoint(aProps.m_rdVars, bProps.m_wrVars)) return false;
|
|
if (!areDisjoint(bProps.m_rdVars, aProps.m_wrVars)) return false;
|
|
// If they both write to the same variable, they are not swappable
|
|
if (!areDisjoint(aProps.m_wrVars, bProps.m_wrVars)) return false;
|
|
// Otherwise good to go
|
|
return true;
|
|
}
|
|
|
|
// VISITORS
|
|
void visit(AstNodeStmt* nodep) override {
|
|
// Process only on first encounter
|
|
if (nodep->user4SetOnce()) return;
|
|
// First re-order children
|
|
iterateChildren(nodep);
|
|
// Grab hold of previous node with same condition
|
|
AstNodeStmt* prevp = m_stmtProperties(nodep).m_prevWithSameCondp;
|
|
// If no previous node with same condition, we are done
|
|
if (!prevp) return;
|
|
#ifdef VL_DEBUG
|
|
{ // Sanity check, only in debug build, otherwise expensive
|
|
const AstNode* currp = prevp;
|
|
while (currp && currp != nodep) currp = currp->nextp();
|
|
UASSERT_OBJ(currp, nodep, "Predecessor not in same list as " << currp);
|
|
}
|
|
#endif
|
|
// Otherwise try to move this node backwards, as close as we can to the previous node
|
|
// with the same condition
|
|
if (AstNodeStmt* predp = VN_CAST(nodep->backp(), NodeStmt)) {
|
|
// 'predp' is the newly computed predecessor node of 'nodep', which is initially
|
|
// (without movement) the 'backp' of the node.
|
|
for (unsigned i = MAX_DISTANCE; i; --i) {
|
|
// If the predecessor is the previous node with the same condition, job done
|
|
if (predp == prevp) break;
|
|
// Don't move past a non-statement (e.g.: AstVar), or end of list
|
|
AstNodeStmt* const backp = VN_CAST(predp->backp(), NodeStmt);
|
|
if (!backp) break;
|
|
// Don't swap statements if doing so would change program semantics
|
|
if (!areSwappable(predp, nodep)) break;
|
|
// Otherwise move 'nodep' back
|
|
predp = backp;
|
|
}
|
|
|
|
// If we decided that 'nodep' should be moved back
|
|
if (nodep->backp() != predp) {
|
|
// Move the current node to directly follow the computed predecessor
|
|
nodep->unlinkFrBack();
|
|
predp->addNextHere(nodep);
|
|
// If the predecessor is the previous node with the same condition, job done
|
|
if (predp == prevp) return;
|
|
}
|
|
}
|
|
// If we reach here, it means we were unable to move the current node all the way back
|
|
// such that it immediately follows the previous statement with the same condition. Now
|
|
// try to move all previous statements with the same condition forward, in the hope of
|
|
// compacting the list further.
|
|
for (AstNodeStmt* currp = nodep; prevp;
|
|
currp = prevp, prevp = m_stmtProperties(currp).m_prevWithSameCondp) {
|
|
// Move prevp (previous statement with same condition) towards currp
|
|
if (AstNodeStmt* succp = VN_CAST(prevp->nextp(), NodeStmt)) {
|
|
// 'succp' is the newly computed successor node of 'prevp', which is initially
|
|
// (without movement) the 'nextp' of the node.
|
|
for (unsigned i = MAX_DISTANCE; --i;) {
|
|
// If the successor of the previous statement with same condition is the
|
|
// target node, we are done with this predecessor
|
|
if (succp == currp) break;
|
|
// Don't move past a non-statement (e.g.: AstVar), or end of list
|
|
AstNodeStmt* const nextp = VN_CAST(succp->nextp(), NodeStmt);
|
|
if (!nextp) break;
|
|
// Don't swap statements if doing so would change program semantics
|
|
if (!areSwappable(prevp, succp)) break;
|
|
// Otherwise move further forward
|
|
succp = nextp;
|
|
}
|
|
|
|
// If we decided that 'prevp' should be moved forward
|
|
if (prevp->nextp() != succp) {
|
|
// Move the current node to directly before the computed successor
|
|
prevp->unlinkFrBack();
|
|
succp->addHereThisAsNext(prevp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void visit(AstNode* nodep) override {} // Ignore all non-statements
|
|
|
|
// CONSTRUCTOR
|
|
CodeMotionOptimizeVisitor(AstNode* nodep, const StmtPropertiesAllocator& stmtProperties)
|
|
: m_stmtProperties(stmtProperties) {
|
|
// We assert the given node is at the head of the list otherwise we might move a node
|
|
// before the given node. This is easy to fix in the above iteration with a check on a
|
|
// boundary node we should not move past, if we ever need to do so.
|
|
// Note: we will do iterateAndNextNull which requires nodep->backp() != nullptr anyway
|
|
UASSERT_OBJ(nodep->backp()->nextp() != nodep, nodep, "Must be at head of list");
|
|
// Optimize the list
|
|
iterateAndNextNull(nodep);
|
|
}
|
|
|
|
public:
|
|
// Given an AstNode list (held via AstNode::nextp()), move conditional statements as close
|
|
// together as possible
|
|
static AstNode* optimize(AstNode* nodep, const StmtPropertiesAllocator& stmtProperties) {
|
|
CodeMotionOptimizeVisitor{nodep, stmtProperties};
|
|
// It is possible for the head of the list to be moved later such that it is no longer
|
|
// in head position. If so, rewind the list and return the new head.
|
|
while (nodep->backp()->nextp() == nodep) nodep = nodep->backp();
|
|
return nodep;
|
|
}
|
|
};
|
|
|
|
//######################################################################
|
|
// Conditional merging
|
|
|
|
class MergeCondVisitor final : public VNVisitor {
|
|
private:
|
|
// NODE STATE
|
|
// AstVar::user1 -> bool: Set for variables referenced by m_mgCondp
|
|
// (Only below MergeCondVisitor::process).
|
|
// AstNode::user2 -> bool: Marking node as included in merge because cheap to
|
|
// duplicate
|
|
// (Only below MergeCondVisitor::process).
|
|
// AstNodeStmt::user3 -> StmtProperties
|
|
// (Only below MergeCondVisitor::process).
|
|
// AstNode::user4 -> See CodeMotionAnalysisVisitor/CodeMotionOptimizeVisitor
|
|
// AstNode::user5 -> See CodeMotionAnalysisVisitor
|
|
|
|
// STATE
|
|
VDouble0 m_statMerges; // Statistic tracking
|
|
VDouble0 m_statMergedItems; // Statistic tracking
|
|
VDouble0 m_statLongestList; // Statistic tracking
|
|
|
|
AstNode* m_mgFirstp = nullptr; // First node in merged sequence
|
|
AstNode* m_mgCondp = nullptr; // The condition of the first node
|
|
const AstNode* m_mgLastp = nullptr; // Last node in merged sequence
|
|
const AstNode* m_mgNextp = nullptr; // Next node in list being examined
|
|
uint32_t m_listLenght = 0; // Length of current list
|
|
|
|
std::queue<AstNode*>* m_workQueuep = nullptr; // Node lists (via AstNode::nextp()) to merge
|
|
// Statement properties for code motion and merging
|
|
StmtPropertiesAllocator* m_stmtPropertiesp = nullptr;
|
|
|
|
// METHODS
|
|
VL_DEBUG_FUNC; // Declare debug()
|
|
|
|
// Function that processes a whole sub-tree
|
|
void process(AstNode* nodep) {
|
|
// Set up work queue
|
|
std::queue<AstNode*> workQueue;
|
|
m_workQueuep = &workQueue;
|
|
m_workQueuep->push(nodep);
|
|
|
|
do {
|
|
// Set up user* for this iteration
|
|
const VNUser1InUse user1InUse;
|
|
const VNUser2InUse user2InUse;
|
|
const VNUser3InUse user3InUse;
|
|
// Statement properties only preserved for this iteration,
|
|
// then memory is released immediately.
|
|
StmtPropertiesAllocator stmtProperties;
|
|
m_stmtPropertiesp = &stmtProperties;
|
|
|
|
// Pop off current work item
|
|
AstNode* currp = m_workQueuep->front();
|
|
m_workQueuep->pop();
|
|
|
|
// Analyse sub-tree list for code motion and conditional merging
|
|
CodeMotionAnalysisVisitor::analyze(currp, stmtProperties);
|
|
// Perform the code motion within the whole sub-tree list
|
|
if (v3Global.opt.fMergeCondMotion()) {
|
|
currp = CodeMotionOptimizeVisitor::optimize(currp, stmtProperties);
|
|
}
|
|
|
|
// Merge conditionals in the whole sub-tree list (this might create new work items)
|
|
iterateAndNextNull(currp);
|
|
|
|
// Close pending merge, if there is one at the end of the whole sub-tree list
|
|
if (m_mgFirstp) mergeEnd();
|
|
} while (!m_workQueuep->empty());
|
|
}
|
|
|
|
// Skip past AstArraySel and AstWordSel with const index
|
|
static AstNode* skipConstSels(AstNode* nodep) {
|
|
while (const AstArraySel* const aselp = VN_CAST(nodep, ArraySel)) {
|
|
// ArraySel index is not constant, so might be expensive
|
|
if (!VN_IS(aselp->bitp(), Const)) return nodep;
|
|
nodep = aselp->fromp();
|
|
}
|
|
while (const AstWordSel* const wselp = VN_CAST(nodep, WordSel)) {
|
|
// WordSel index is not constant, so might be expensive
|
|
if (!VN_IS(wselp->bitp(), Const)) return nodep;
|
|
nodep = wselp->fromp();
|
|
}
|
|
return nodep;
|
|
}
|
|
|
|
// Check if this node is cheap enough that duplicating it in two branches of an
|
|
// AstIf is not likely to cause a performance degradation.
|
|
static bool isCheapNode(AstNode* nodep) {
|
|
// Comments are cheap
|
|
if (VN_IS(nodep, Comment)) return true;
|
|
// So are some assignments
|
|
if (const AstNodeAssign* const assignp = VN_CAST(nodep, NodeAssign)) {
|
|
// Check LHS
|
|
AstNode* const lhsp = skipConstSels(assignp->lhsp());
|
|
// LHS is not a VarRef, so might be expensive
|
|
if (!VN_IS(lhsp, VarRef)) return false;
|
|
|
|
// Check RHS
|
|
AstNode* const rhsp = skipConstSels(assignp->rhsp());
|
|
// RHS is not a VarRef or Constant so might be expensive
|
|
if (!VN_IS(rhsp, VarRef) && !VN_IS(rhsp, Const)) return false;
|
|
|
|
// Otherwise it is a cheap assignment
|
|
return true;
|
|
}
|
|
// Others are not
|
|
return false;
|
|
}
|
|
|
|
// Predicate to check if an expression yields only 0 or 1 (i.e.: a 1-bit value)
|
|
static bool yieldsOneOrZero(const AstNode* nodep) {
|
|
UASSERT_OBJ(!nodep->isWide(), nodep, "Cannot handle wide nodes");
|
|
if (const AstConst* const constp = VN_CAST(nodep, Const)) {
|
|
return constp->num().toUQuad() <= 1;
|
|
}
|
|
if (const AstVarRef* const vrefp = VN_CAST(nodep, VarRef)) {
|
|
const AstVar* const varp = vrefp->varp();
|
|
return varp->widthMin() == 1 && !varp->dtypep()->isSigned();
|
|
}
|
|
if (const AstShiftR* const shiftp = VN_CAST(nodep, ShiftR)) {
|
|
// Shift right by width - 1 or more
|
|
if (const AstConst* const constp = VN_CAST(shiftp->rhsp(), Const)) {
|
|
const AstVarRef* const vrefp = VN_CAST(shiftp->lhsp(), VarRef);
|
|
const int width = vrefp && !vrefp->varp()->dtypep()->isSigned()
|
|
? vrefp->varp()->widthMin()
|
|
: shiftp->width();
|
|
if (constp->toSInt() >= width - 1) return true;
|
|
}
|
|
return false;
|
|
}
|
|
if (VN_IS(nodep, Eq) || VN_IS(nodep, Neq) || VN_IS(nodep, Lt) || VN_IS(nodep, Lte)
|
|
|| VN_IS(nodep, Gt) || VN_IS(nodep, Gte)) {
|
|
return true;
|
|
}
|
|
if (const AstNodeBiop* const biopp = VN_CAST(nodep, NodeBiop)) {
|
|
if (VN_IS(nodep, And))
|
|
return yieldsOneOrZero(biopp->lhsp()) || yieldsOneOrZero(biopp->rhsp());
|
|
if (VN_IS(nodep, Or) || VN_IS(nodep, Xor))
|
|
return yieldsOneOrZero(biopp->lhsp()) && yieldsOneOrZero(biopp->rhsp());
|
|
return false;
|
|
}
|
|
if (const AstNodeCond* const condp = VN_CAST(nodep, NodeCond)) {
|
|
return yieldsOneOrZero(condp->expr1p()) && yieldsOneOrZero(condp->expr2p());
|
|
}
|
|
if (const AstCCast* const castp = VN_CAST(nodep, CCast)) {
|
|
// Cast never sign extends
|
|
return yieldsOneOrZero(castp->lhsp());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Apply (1'b1 & _) cleaning mask if necessary. This is required because this pass is after
|
|
// V3Clean, and sometimes we have an AstAnd with a 1-bit condition on one side, but a more
|
|
// than 1-bit value on the other side, so we need to keep only the LSB.
|
|
static AstNode* maskLsb(AstNode* nodep) {
|
|
if (yieldsOneOrZero(nodep)) return nodep;
|
|
// Otherwise apply masking
|
|
AstNode* const maskp = new AstConst{nodep->fileline(), AstConst::BitTrue()};
|
|
// Mask on left, as conventional
|
|
return new AstAnd{nodep->fileline(), maskp, nodep};
|
|
}
|
|
|
|
// Fold the RHS expression of an assignment assuming the given condition state.
|
|
// Unlink bits from the RHS which is only used once, and can be reused (is an unomdified
|
|
// sub-tree). What remains of the RHS is expected to be deleted by the caller.
|
|
AstNode* foldAndUnlink(AstNode* rhsp, bool condTrue) {
|
|
if (rhsp->sameTree(m_mgCondp)) {
|
|
return new AstConst{rhsp->fileline(), AstConst::BitTrue{}, condTrue};
|
|
} else if (const AstNodeCond* const condp = extractCondFromRhs(rhsp)) {
|
|
AstNode* const resp
|
|
= condTrue ? condp->expr1p()->unlinkFrBack() : condp->expr2p()->unlinkFrBack();
|
|
if (condp == rhsp) return resp;
|
|
if (const AstAnd* const andp = VN_CAST(rhsp, And)) {
|
|
UASSERT_OBJ(andp->rhsp() == condp, rhsp, "Should not try to fold this");
|
|
return new AstAnd{andp->fileline(), andp->lhsp()->cloneTree(false), resp};
|
|
}
|
|
} else if (const AstAnd* const andp = VN_CAST(rhsp, And)) {
|
|
if (andp->lhsp()->sameTree(m_mgCondp)) {
|
|
return condTrue ? maskLsb(andp->rhsp()->unlinkFrBack())
|
|
: new AstConst{rhsp->fileline(), AstConst::BitFalse()};
|
|
} else {
|
|
UASSERT_OBJ(andp->rhsp()->sameTree(m_mgCondp), rhsp,
|
|
"AstAnd doesn't hold condition expression");
|
|
return condTrue ? maskLsb(andp->lhsp()->unlinkFrBack())
|
|
: new AstConst{rhsp->fileline(), AstConst::BitFalse()};
|
|
}
|
|
} else if (VN_IS(rhsp, ArraySel) || VN_IS(rhsp, WordSel) || VN_IS(rhsp, VarRef)
|
|
|| VN_IS(rhsp, Const)) {
|
|
return rhsp->cloneTree(false);
|
|
}
|
|
// LCOV_EXCL_START
|
|
if (debug()) rhsp->dumpTree("Don't know how to fold expression: ");
|
|
rhsp->v3fatalSrc("Should not try to fold this during conditional merging");
|
|
// LCOV_EXCL_STOP
|
|
}
|
|
|
|
void mergeEnd() {
|
|
UASSERT(m_mgFirstp, "mergeEnd without list");
|
|
// Drop leading cheap nodes. These were only added in the hope of finding
|
|
// an earlier reduced form, but we failed to do so.
|
|
while (m_mgFirstp->user2() && m_mgFirstp != m_mgLastp) {
|
|
const AstNode* const backp = m_mgFirstp;
|
|
m_mgFirstp = m_mgFirstp->nextp();
|
|
--m_listLenght;
|
|
UASSERT_OBJ(m_mgFirstp && m_mgFirstp->backp() == backp, m_mgLastp,
|
|
"The list should have a non-cheap element");
|
|
}
|
|
// Drop trailing cheap nodes. These were only added in the hope of finding
|
|
// a later conditional to merge, but we failed to do so.
|
|
while (m_mgLastp->user2() && m_mgFirstp != m_mgLastp) {
|
|
const AstNode* const nextp = m_mgLastp;
|
|
m_mgLastp = m_mgLastp->backp();
|
|
--m_listLenght;
|
|
UASSERT_OBJ(m_mgLastp && m_mgLastp->nextp() == nextp, m_mgFirstp,
|
|
"Cheap statement should not be at the front of the list");
|
|
}
|
|
// If the list contains a single AstNodeIf, we will want to merge its branches.
|
|
// If so, keep hold of the AstNodeIf in this variable.
|
|
AstNodeIf* recursivep = nullptr;
|
|
// Merge if list is longer than one node
|
|
if (m_mgFirstp != m_mgLastp) {
|
|
UINFO(6, "MergeCond - First: " << m_mgFirstp << " Last: " << m_mgLastp << endl);
|
|
++m_statMerges;
|
|
if (m_listLenght > m_statLongestList) m_statLongestList = m_listLenght;
|
|
|
|
// We need a copy of the condition in the new equivalent 'if' statement,
|
|
// and we also need to keep track of it for comparisons later.
|
|
m_mgCondp = m_mgCondp->cloneTree(false);
|
|
// Create equivalent 'if' statement and insert it before the first node
|
|
AstIf* const resultp = new AstIf{m_mgCondp->fileline(), m_mgCondp};
|
|
m_mgFirstp->addHereThisAsNext(resultp);
|
|
// Unzip the list and insert under branches
|
|
AstNode* nextp = m_mgFirstp;
|
|
do {
|
|
// Grab next pointer and unlink
|
|
AstNode* const currp = nextp;
|
|
nextp = currp != m_mgLastp ? currp->nextp() : nullptr;
|
|
currp->unlinkFrBack();
|
|
// Skip over comments
|
|
if (VN_IS(currp, Comment)) {
|
|
VL_DO_DANGLING(currp->deleteTree(), currp);
|
|
continue;
|
|
}
|
|
// Count
|
|
++m_statMergedItems;
|
|
if (AstNodeAssign* const assignp = VN_CAST(currp, NodeAssign)) {
|
|
// Unlink RHS and clone to get the 2 assignments (reusing assignp)
|
|
AstNode* const rhsp = assignp->rhsp()->unlinkFrBack();
|
|
AstNodeAssign* const thenp = assignp;
|
|
AstNodeAssign* const elsep = assignp->cloneTree(false);
|
|
// Construct the new RHSs and add to branches
|
|
thenp->rhsp(foldAndUnlink(rhsp, true));
|
|
elsep->rhsp(foldAndUnlink(rhsp, false));
|
|
resultp->addIfsp(thenp);
|
|
resultp->addElsesp(elsep);
|
|
// Cleanup
|
|
VL_DO_DANGLING(rhsp->deleteTree(), rhsp);
|
|
} else {
|
|
AstNodeIf* const ifp = VN_AS(currp, NodeIf);
|
|
UASSERT_OBJ(ifp, currp, "Must be AstNodeIf");
|
|
// Move branch contents under new if
|
|
if (AstNode* const listp = ifp->ifsp()) {
|
|
resultp->addIfsp(listp->unlinkFrBackWithNext());
|
|
}
|
|
if (AstNode* const listp = ifp->elsesp()) {
|
|
resultp->addElsesp(listp->unlinkFrBackWithNext());
|
|
}
|
|
// Cleanup
|
|
VL_DO_DANGLING(ifp->deleteTree(), ifp);
|
|
}
|
|
} while (nextp);
|
|
// Merge the branches of the resulting AstIf after re-analysis
|
|
if (resultp->ifsp()) m_workQueuep->push(resultp->ifsp());
|
|
if (resultp->elsesp()) m_workQueuep->push(resultp->elsesp());
|
|
} else if (AstNodeIf* const ifp = VN_CAST(m_mgFirstp, NodeIf)) {
|
|
// There was nothing to merge this AstNodeIf with, so try to merge its branches.
|
|
// No re-analysis is required for this, so do it directly below
|
|
recursivep = ifp;
|
|
}
|
|
// Reset state
|
|
m_mgFirstp = nullptr;
|
|
m_mgCondp = nullptr;
|
|
m_mgLastp = nullptr;
|
|
m_mgNextp = nullptr;
|
|
AstNode::user1ClearTree(); // Clear marked variables
|
|
AstNode::user2ClearTree();
|
|
// Merge recursively within the branches of an un-merged AstNodeIF
|
|
if (recursivep) {
|
|
iterateAndNextNull(recursivep->ifsp());
|
|
iterateAndNextNull(recursivep->elsesp());
|
|
// Close a pending merge to ensure merge state is
|
|
// reset as expected at the end of this function
|
|
if (m_mgFirstp) mergeEnd();
|
|
}
|
|
}
|
|
|
|
// Check if the node can be simplified if included under the if
|
|
bool isSimplifiableNode(AstNode* nodep) {
|
|
UASSERT_OBJ(m_mgFirstp, nodep, "Cannot check with empty list");
|
|
if (const AstNodeAssign* const assignp = VN_CAST(nodep, NodeAssign)) {
|
|
// If it's an assignment to a 1-bit signal, try reduced forms
|
|
if (assignp->lhsp()->widthMin() == 1) {
|
|
// Is it a 'lhs = cond & value' or 'lhs = value & cond'?
|
|
if (const AstAnd* const andp = VN_CAST(assignp->rhsp(), And)) {
|
|
if (andp->lhsp()->sameTree(m_mgCondp) || andp->rhsp()->sameTree(m_mgCondp)) {
|
|
return true;
|
|
}
|
|
}
|
|
// Is it 'lhs = cond'?
|
|
if (assignp->rhsp()->sameTree(m_mgCondp)) return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool addToList(AstNodeStmt* nodep, AstNode* condp) {
|
|
// Set up head of new list if node is first in list
|
|
if (!m_mgFirstp) {
|
|
UASSERT_OBJ(condp, nodep, "Cannot start new list without condition");
|
|
// Mark variable references in the condition
|
|
condp->foreach<AstVarRef>([](const AstVarRef* nodep) { nodep->varp()->user1(1); });
|
|
// Now check again if mergeable. We need this to pick up assignments to conditions,
|
|
// e.g.: 'c = c ? a : b' at the beginning of the list, which is in fact not mergeable
|
|
// because it updates the condition. We simply bail on these.
|
|
if ((*m_stmtPropertiesp)(nodep).writesConditionVar()) {
|
|
// Clear marked variables
|
|
AstNode::user1ClearTree();
|
|
// We did not add to the list
|
|
return false;
|
|
}
|
|
m_mgFirstp = nodep;
|
|
m_mgCondp = condp;
|
|
m_listLenght = 0;
|
|
// Add any preceding nodes to the list that would allow us to extend the merge
|
|
// range
|
|
while (true) {
|
|
AstNodeStmt* const backp = VN_CAST(m_mgFirstp->backp(), NodeStmt);
|
|
if (!backp || backp->nextp() != m_mgFirstp) break; // Don't move up the tree
|
|
const StmtProperties& props = (*m_stmtPropertiesp)(backp);
|
|
if (props.m_isFence || props.writesConditionVar()) break;
|
|
if (isSimplifiableNode(backp)) {
|
|
++m_listLenght;
|
|
m_mgFirstp = backp;
|
|
} else if (isCheapNode(backp)) {
|
|
backp->user2(1);
|
|
++m_listLenght;
|
|
m_mgFirstp = backp;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Add node
|
|
++m_listLenght;
|
|
// Track end of list
|
|
m_mgLastp = nodep;
|
|
// Set up expected next node in list.
|
|
m_mgNextp = nodep->nextp();
|
|
// If last under parent, done with current list
|
|
if (!m_mgNextp) mergeEnd();
|
|
// We did add to the list
|
|
return true;
|
|
}
|
|
|
|
// If this node is the next expected node and is helpful to add to the list, do so,
|
|
// otherwise end the current merge. Return ture if added, false if ended merge.
|
|
bool addIfHelpfulElseEndMerge(AstNodeStmt* nodep) {
|
|
UASSERT_OBJ(m_mgFirstp, nodep, "List must be open");
|
|
if (!checkOrMakeMergeable(nodep)) return false;
|
|
if (!m_mgFirstp) return false; // If 'checkOrMakeMergeable' closed the list
|
|
if (m_mgNextp == nodep) {
|
|
if (isSimplifiableNode(nodep)) {
|
|
if (addToList(nodep, nullptr)) return true;
|
|
} else if (isCheapNode(nodep)) {
|
|
nodep->user2(1);
|
|
if (addToList(nodep, nullptr)) return true;
|
|
}
|
|
}
|
|
// Not added to list, so we are done with the current list
|
|
mergeEnd();
|
|
return false;
|
|
}
|
|
|
|
bool checkOrMakeMergeable(const AstNodeStmt* nodep) {
|
|
const StmtProperties& props = (*m_stmtPropertiesp)(nodep);
|
|
if (props.m_isFence) return false; // Fence node never mergeable
|
|
// If the statement writes a condition variable of a pending merge,
|
|
// we must end the pending merge
|
|
if (m_mgFirstp && props.writesConditionVar()) mergeEnd();
|
|
return true; // Now surely mergeable
|
|
}
|
|
|
|
void mergeEndIfIncompatible(const AstNode* nodep, const AstNode* condp) {
|
|
if (m_mgFirstp && (m_mgNextp != nodep || !condp->sameTree(m_mgCondp))) {
|
|
// Node in different list, or has different condition. Finish current list.
|
|
mergeEnd();
|
|
}
|
|
}
|
|
|
|
// VISITORS
|
|
virtual void visit(AstNodeAssign* nodep) override {
|
|
if (AstNode* const condp = (*m_stmtPropertiesp)(nodep).m_condp) {
|
|
// Check if mergeable
|
|
if (!checkOrMakeMergeable(nodep)) return;
|
|
// Close potentially incompatible pending merge
|
|
mergeEndIfIncompatible(nodep, condp);
|
|
// Add current node
|
|
addToList(nodep, condp);
|
|
} else if (m_mgFirstp) {
|
|
addIfHelpfulElseEndMerge(nodep);
|
|
}
|
|
}
|
|
|
|
virtual void visit(AstNodeIf* nodep) override {
|
|
// Check if mergeable
|
|
if (!checkOrMakeMergeable(nodep)) {
|
|
// If not mergeable, try to merge the branches
|
|
iterateAndNextNull(nodep->ifsp());
|
|
iterateAndNextNull(nodep->elsesp());
|
|
return;
|
|
}
|
|
// Close potentially incompatible pending merge
|
|
mergeEndIfIncompatible(nodep, nodep->condp());
|
|
// Add current node
|
|
addToList(nodep, nodep->condp());
|
|
}
|
|
|
|
virtual void visit(AstNodeStmt* nodep) override {
|
|
if (m_mgFirstp && addIfHelpfulElseEndMerge(nodep)) return;
|
|
iterateChildren(nodep);
|
|
}
|
|
|
|
virtual void visit(AstCFunc* nodep) override {
|
|
// Merge function body
|
|
if (nodep->stmtsp()) process(nodep->stmtsp());
|
|
}
|
|
|
|
// For speed, only iterate what is necessary.
|
|
virtual void visit(AstNetlist* nodep) override { iterateAndNextNull(nodep->modulesp()); }
|
|
virtual void visit(AstNodeModule* nodep) override { iterateAndNextNull(nodep->stmtsp()); }
|
|
virtual void visit(AstNode* nodep) override {}
|
|
|
|
public:
|
|
// CONSTRUCTORS
|
|
explicit MergeCondVisitor(AstNetlist* nodep) { iterate(nodep); }
|
|
virtual ~MergeCondVisitor() override {
|
|
V3Stats::addStat("Optimizations, MergeCond merges", m_statMerges);
|
|
V3Stats::addStat("Optimizations, MergeCond merged items", m_statMergedItems);
|
|
V3Stats::addStat("Optimizations, MergeCond longest merge", m_statLongestList);
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//######################################################################
|
|
// MergeConditionals class functions
|
|
|
|
void V3MergeCond::mergeAll(AstNetlist* nodep) {
|
|
UINFO(2, __FUNCTION__ << ": " << endl);
|
|
{ MergeCondVisitor{nodep}; }
|
|
V3Global::dumpCheckGlobalTree("merge_cond", 0, v3Global.opt.dumpTreeLevel(__FILE__) >= 6);
|
|
}
|