forked from github/verilator
2997 lines
127 KiB
C++
2997 lines
127 KiB
C++
// -*- mode: C++; c-file-style: "cc-mode" -*-
|
|
//*************************************************************************
|
|
//
|
|
// Code available from: https://verilator.org
|
|
//
|
|
// Copyright 2003-2021 by Wilson Snyder. This program is free software; you can
|
|
// redistribute it and/or modify it under the terms of either the GNU
|
|
// Lesser General Public License Version 3 or the Perl Artistic License
|
|
// Version 2.0.
|
|
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
|
|
//
|
|
//*************************************************************************
|
|
///
|
|
/// \file
|
|
/// \brief Verilated common header, include for all Verilated C files
|
|
///
|
|
/// This file is included automatically by Verilator at the top of all C++
|
|
/// files it generates. It contains standard macros and classes required
|
|
/// by the Verilated code.
|
|
///
|
|
/// User wrapper code may need to include this to get appropriate
|
|
/// structures, however they would generally just include the
|
|
/// Verilated-model's header instead (which then includes this).
|
|
///
|
|
/// Those macro/function/variable starting or ending in _ are internal,
|
|
/// however many of the other function/macros here are also internal.
|
|
///
|
|
//*************************************************************************
|
|
|
|
#ifndef VERILATOR_VERILATED_H_
|
|
#define VERILATOR_VERILATED_H_
|
|
|
|
// clang-format off
|
|
#include "verilatedos.h"
|
|
#if VM_SC
|
|
# include "verilated_sc.h" // Get SYSTEMC_VERSION and time declarations
|
|
#endif
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstdarg>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
// <iostream> avoided to reduce compile time
|
|
// <map> avoided and instead in verilated_heavy.h to reduce compile time
|
|
// <string> avoided and instead in verilated_heavy.h to reduce compile time
|
|
#ifdef VL_THREADED
|
|
# include <atomic>
|
|
# include <mutex>
|
|
# include <thread>
|
|
#endif
|
|
|
|
// Allow user to specify their own include file
|
|
#ifdef VL_VERILATED_INCLUDE
|
|
// cppcheck-suppress preprocessorErrorDirective
|
|
# include VL_VERILATED_INCLUDE
|
|
#endif
|
|
// clang-format on
|
|
|
|
//=============================================================================
|
|
// Switches
|
|
|
|
// clang-format off
|
|
#if VM_TRACE // Verilator tracing requested
|
|
# define WAVES 1 // Set backward compatibility flag
|
|
#endif
|
|
|
|
// Version check
|
|
#if defined(SYSTEMC_VERSION) && (SYSTEMC_VERSION < 20111121)
|
|
# warning "Verilator requires SystemC 2.3.* or newer."
|
|
#endif
|
|
// clang-format on
|
|
|
|
class VerilatedContextImp;
|
|
class VerilatedContextImpData;
|
|
class VerilatedCovContext;
|
|
class VerilatedEvalMsgQueue;
|
|
class VerilatedFst;
|
|
class VerilatedFstC;
|
|
class VerilatedScope;
|
|
class VerilatedScopeNameMap;
|
|
class VerilatedVar;
|
|
class VerilatedVarNameMap;
|
|
class VerilatedVcd;
|
|
class VerilatedVcdC;
|
|
class VerilatedVcdSc;
|
|
|
|
//=========================================================================
|
|
// Basic types
|
|
|
|
// clang-format off
|
|
// P // Packed data of bit type (C/S/I/Q/W)
|
|
using CData = vluint8_t; ///< Data representing 'bit' of 1-8 packed bits
|
|
using SData = vluint16_t; ///< Data representing 'bit' of 9-16 packed bits
|
|
using IData = vluint32_t; ///< Data representing 'bit' of 17-32 packed bits
|
|
using QData = vluint64_t; ///< Data representing 'bit' of 33-64 packed bits
|
|
using EData = vluint32_t; ///< Data representing one element of WData array
|
|
using WData = EData; ///< Data representing >64 packed bits (used as pointer)
|
|
// F = float; // No typedef needed; Verilator uses float
|
|
// D = double; // No typedef needed; Verilator uses double
|
|
// N = std::string; // No typedef needed; Verilator uses string
|
|
// clang-format on
|
|
|
|
using WDataInP = const WData*; ///< 'bit' of >64 packed bits as array input to a function
|
|
using WDataOutP = WData*; ///< 'bit' of >64 packed bits as array output from a function
|
|
|
|
enum VerilatedVarType : vluint8_t {
|
|
VLVT_UNKNOWN = 0,
|
|
VLVT_PTR, // Pointer to something
|
|
VLVT_UINT8, // AKA CData
|
|
VLVT_UINT16, // AKA SData
|
|
VLVT_UINT32, // AKA IData
|
|
VLVT_UINT64, // AKA QData
|
|
VLVT_WDATA, // AKA WData
|
|
VLVT_STRING // C++ string
|
|
};
|
|
|
|
enum VerilatedVarFlags {
|
|
VLVD_0 = 0, // None
|
|
VLVD_IN = 1, // == vpiInput
|
|
VLVD_OUT = 2, // == vpiOutput
|
|
VLVD_INOUT = 3, // == vpiInOut
|
|
VLVD_NODIR = 5, // == vpiNoDirection
|
|
VLVF_MASK_DIR = 7, // Bit mask for above directions
|
|
// Flags
|
|
VLVF_PUB_RD = (1 << 8), // Public readable
|
|
VLVF_PUB_RW = (1 << 9), // Public writable
|
|
VLVF_DPI_CLAY = (1 << 10) // DPI compatible C standard layout
|
|
};
|
|
|
|
//=========================================================================
|
|
// Mutex and threading support
|
|
|
|
// Return current thread ID (or 0), not super fast, cache if needed
|
|
extern vluint32_t VL_THREAD_ID() VL_MT_SAFE;
|
|
|
|
#if VL_THREADED
|
|
|
|
#define VL_LOCK_SPINS 50000 /// Number of times to spin for a mutex before relaxing
|
|
|
|
/// Mutex, wrapped to allow -fthread_safety checks
|
|
class VL_CAPABILITY("mutex") VerilatedMutex final {
|
|
private:
|
|
std::mutex m_mutex; // Mutex
|
|
|
|
public:
|
|
/// Construct mutex (without locking it)
|
|
VerilatedMutex() = default;
|
|
~VerilatedMutex() = default;
|
|
const VerilatedMutex& operator!() const { return *this; } // For -fthread_safety
|
|
/// Acquire/lock mutex
|
|
void lock() VL_ACQUIRE() {
|
|
// Try to acquire the lock by spinning. If the wait is short,
|
|
// avoids a trap to the OS plus OS scheduler overhead.
|
|
if (VL_LIKELY(try_lock())) return; // Short circuit loop
|
|
for (int i = 0; i < VL_LOCK_SPINS; ++i) {
|
|
if (VL_LIKELY(try_lock())) return;
|
|
VL_CPU_RELAX();
|
|
}
|
|
// Spinning hasn't worked, pay the cost of blocking.
|
|
m_mutex.lock();
|
|
}
|
|
/// Release/unlock mutex
|
|
void unlock() VL_RELEASE() { m_mutex.unlock(); }
|
|
/// Try to acquire mutex. Returns true on success, and false on failure.
|
|
bool try_lock() VL_TRY_ACQUIRE(true) { return m_mutex.try_lock(); }
|
|
};
|
|
|
|
/// Lock guard for mutex (ala std::unique_lock), wrapped to allow -fthread_safety checks
|
|
class VL_SCOPED_CAPABILITY VerilatedLockGuard final {
|
|
VL_UNCOPYABLE(VerilatedLockGuard);
|
|
|
|
private:
|
|
VerilatedMutex& m_mutexr;
|
|
|
|
public:
|
|
/// Construct and hold given mutex lock until destruction or unlock()
|
|
explicit VerilatedLockGuard(VerilatedMutex& mutexr) VL_ACQUIRE(mutexr)
|
|
: m_mutexr(mutexr) { // Need () or GCC 4.8 false warning
|
|
m_mutexr.lock();
|
|
}
|
|
/// Destruct and unlock the mutex
|
|
~VerilatedLockGuard() VL_RELEASE() { m_mutexr.unlock(); }
|
|
/// Unlock the mutex
|
|
void lock() VL_ACQUIRE() { m_mutexr.lock(); }
|
|
/// Lock the mutex
|
|
void unlock() VL_RELEASE() { m_mutexr.unlock(); }
|
|
};
|
|
|
|
#else // !VL_THREADED
|
|
|
|
// Empty non-threaded mutex to avoid #ifdefs in consuming code
|
|
class VerilatedMutex final {
|
|
public:
|
|
void lock() {} // LCOV_EXCL_LINE
|
|
void unlock() {} // LCOV_EXCL_LINE
|
|
};
|
|
|
|
// Empty non-threaded lock guard to avoid #ifdefs in consuming code
|
|
class VerilatedLockGuard final {
|
|
VL_UNCOPYABLE(VerilatedLockGuard);
|
|
|
|
public:
|
|
explicit VerilatedLockGuard(VerilatedMutex&) {}
|
|
~VerilatedLockGuard() = default;
|
|
void lock() {} // LCOV_EXCL_LINE
|
|
void unlock() {} // LCOV_EXCL_LINE
|
|
};
|
|
|
|
#endif // VL_THREADED
|
|
|
|
// Internals: Remember the calling thread at construction time, and make
|
|
// sure later calls use same thread
|
|
|
|
class VerilatedAssertOneThread final {
|
|
// MEMBERS
|
|
#if defined(VL_THREADED) && defined(VL_DEBUG)
|
|
vluint32_t m_threadid; // Thread that is legal
|
|
public:
|
|
// CONSTRUCTORS
|
|
// The constructor establishes the thread id for all later calls.
|
|
// If necessary, a different class could be made that inits it otherwise.
|
|
VerilatedAssertOneThread()
|
|
: m_threadid{VL_THREAD_ID()} {}
|
|
~VerilatedAssertOneThread() { check(); }
|
|
// METHODS
|
|
// Check that the current thread ID is the same as the construction thread ID
|
|
void check() VL_MT_UNSAFE_ONE {
|
|
if (VL_UNCOVERABLE(m_threadid != VL_THREAD_ID())) {
|
|
if (m_threadid == 0) {
|
|
m_threadid = VL_THREAD_ID();
|
|
} else {
|
|
fatal_different(); // LCOV_EXCL_LINE
|
|
}
|
|
}
|
|
}
|
|
static void fatal_different() VL_MT_SAFE;
|
|
#else // !VL_THREADED || !VL_DEBUG
|
|
public:
|
|
void check() {}
|
|
#endif
|
|
};
|
|
|
|
//=========================================================================
|
|
/// Base class for all Verilated module classes.
|
|
|
|
class VerilatedModule VL_NOT_FINAL {
|
|
VL_UNCOPYABLE(VerilatedModule);
|
|
|
|
private:
|
|
const char* m_namep; // Module name
|
|
public:
|
|
explicit VerilatedModule(const char* namep); // Create module with given hierarchy name
|
|
~VerilatedModule();
|
|
const char* name() const { return m_namep; } ///< Return name of module
|
|
};
|
|
|
|
//=========================================================================
|
|
// Declare nets
|
|
|
|
#define VL_SIG8(name, msb, lsb) CData name ///< Declare signal, 1-8 bits
|
|
#define VL_SIG16(name, msb, lsb) SData name ///< Declare signal, 9-16 bits
|
|
#define VL_SIG64(name, msb, lsb) QData name ///< Declare signal, 33-64 bits
|
|
#define VL_SIG(name, msb, lsb) IData name ///< Declare signal, 17-32 bits
|
|
#define VL_SIGW(name, msb, lsb, words) WData name[words] ///< Declare signal, 65+ bits
|
|
#define VL_IN8(name, msb, lsb) CData name ///< Declare input signal, 1-8 bits
|
|
#define VL_IN16(name, msb, lsb) SData name ///< Declare input signal, 9-16 bits
|
|
#define VL_IN64(name, msb, lsb) QData name ///< Declare input signal, 33-64 bits
|
|
#define VL_IN(name, msb, lsb) IData name ///< Declare input signal, 17-32 bits
|
|
#define VL_INW(name, msb, lsb, words) WData name[words] ///< Declare input signal, 65+ bits
|
|
#define VL_INOUT8(name, msb, lsb) CData name ///< Declare bidir signal, 1-8 bits
|
|
#define VL_INOUT16(name, msb, lsb) SData name ///< Declare bidir signal, 9-16 bits
|
|
#define VL_INOUT64(name, msb, lsb) QData name ///< Declare bidir signal, 33-64 bits
|
|
#define VL_INOUT(name, msb, lsb) IData name ///< Declare bidir signal, 17-32 bits
|
|
#define VL_INOUTW(name, msb, lsb, words) WData name[words] ///< Declare bidir signal, 65+ bits
|
|
#define VL_OUT8(name, msb, lsb) CData name ///< Declare output signal, 1-8 bits
|
|
#define VL_OUT16(name, msb, lsb) SData name ///< Declare output signal, 9-16 bits
|
|
#define VL_OUT64(name, msb, lsb) QData name ///< Declare output signal, 33-64bits
|
|
#define VL_OUT(name, msb, lsb) IData name ///< Declare output signal, 17-32 bits
|
|
#define VL_OUTW(name, msb, lsb, words) WData name[words] ///< Declare output signal, 65+ bits
|
|
|
|
#define VL_CELL(instname, type) ///< Declare a cell, ala SP_CELL
|
|
|
|
///< Declare a module, ala SC_MODULE
|
|
#define VL_MODULE(modname) class modname VL_NOT_FINAL : public VerilatedModule
|
|
// Not class final in VL_MODULE, as users might be abstracting our models (--hierarchical)
|
|
|
|
//=========================================================================
|
|
// Functions overridable by user defines
|
|
// (Internals however must use VL_PRINTF_MT, which calls these.)
|
|
|
|
// clang-format off
|
|
#ifndef VL_PRINTF
|
|
# define VL_PRINTF printf ///< Print ala printf, called from main thread; redefine if desired
|
|
#endif
|
|
#ifndef VL_VPRINTF
|
|
# define VL_VPRINTF vprintf ///< Print ala vprintf, called from main thread; redefine if desired
|
|
#endif
|
|
// clang-format on
|
|
|
|
//===========================================================================
|
|
// Internal: Base class to allow virtual destruction
|
|
|
|
class VerilatedVirtualBase VL_NOT_FINAL {
|
|
public:
|
|
VerilatedVirtualBase() = default;
|
|
virtual ~VerilatedVirtualBase() = default;
|
|
};
|
|
|
|
//===========================================================================
|
|
/// Verilator simulation context
|
|
///
|
|
/// The VerilatedContext contains the information common across all models
|
|
/// that are interconnected, for example this contains the simulation time
|
|
/// and if $finish was executed.
|
|
///
|
|
/// VerilatedContexts maybe created by the user wrapper code and passed
|
|
/// when a model is created. If this is not done, then Verilator will use
|
|
/// the Verilated::defaultContextp()'s global context.
|
|
|
|
class VerilatedContext VL_NOT_FINAL {
|
|
friend class VerilatedContextImp;
|
|
|
|
protected:
|
|
// MEMBERS
|
|
// Slow path variables
|
|
mutable VerilatedMutex m_mutex; // Mutex for most s_s/s_ns members, when VL_THREADED
|
|
|
|
struct Serialized { // All these members serialized/deserialized
|
|
// No std::strings or pointers or will serialize badly!
|
|
// Fast path
|
|
bool m_assertOn = true; // Assertions are enabled
|
|
bool m_calcUnusedSigs = false; // Waves file on, need all signals calculated
|
|
bool m_fatalOnError = true; // Fatal on $stop/non-fatal error
|
|
bool m_fatalOnVpiError = true; // Fatal on vpi error/unsupported
|
|
bool m_gotError = false; // A $finish statement executed
|
|
bool m_gotFinish = false; // A $finish or $stop statement executed
|
|
vluint64_t m_time = 0; // Current $time (unscaled), 0=at zero, or legacy
|
|
// Slow path
|
|
vlsint8_t m_timeunit; // Time unit as 0..15
|
|
vlsint8_t m_timeprecision; // Time precision as 0..15
|
|
int m_errorCount = 0; // Number of errors
|
|
int m_errorLimit = 1; // Stop on error number
|
|
int m_randReset = 0; // Random reset: 0=all 0s, 1=all 1s, 2=random
|
|
int m_randSeed = 0; // Random seed: 0=random
|
|
enum { UNITS_NONE = 99 }; // Default based on precision
|
|
int m_timeFormatUnits = UNITS_NONE; // $timeformat units
|
|
int m_timeFormatPrecision = 0; // $timeformat number of decimal places
|
|
int m_timeFormatWidth = 20; // $timeformat character width
|
|
// CONSTRUCTORS
|
|
Serialized();
|
|
~Serialized() = default;
|
|
} m_s;
|
|
|
|
mutable VerilatedMutex m_timeDumpMutex; // Protect misc slow strings
|
|
std::string m_timeFormatSuffix VL_GUARDED_BY(m_timeDumpMutex); // $timeformat printf format
|
|
std::string m_dumpfile VL_GUARDED_BY(m_timeDumpMutex); // $dumpfile setting
|
|
|
|
struct NonSerialized { // Non-serialized information
|
|
// These are reloaded from on command-line settings, so do not need to persist
|
|
// Fast path
|
|
vluint64_t m_profThreadsStart = 1; // +prof+threads starting time
|
|
vluint32_t m_profThreadsWindow = 2; // +prof+threads window size
|
|
// Slow path
|
|
std::string m_profThreadsFilename; // +prof+threads filename
|
|
} m_ns;
|
|
|
|
mutable VerilatedMutex m_argMutex; // Protect m_argVec, m_argVecLoaded
|
|
// no need to be save-restored (serialized) the
|
|
// assumption is that the restore is allowed to pass different arguments
|
|
struct NonSerializedCommandArgs {
|
|
// Medium speed
|
|
bool m_argVecLoaded = false; // Ever loaded argument list
|
|
std::vector<std::string> m_argVec; // Aargument list
|
|
} m_args VL_GUARDED_BY(m_argMutex);
|
|
|
|
// Implementation details
|
|
std::unique_ptr<VerilatedContextImpData> m_impdatap;
|
|
// Coverage access
|
|
std::unique_ptr<VerilatedVirtualBase> m_coveragep; // Pointer for coveragep()
|
|
|
|
// File I/O
|
|
// Not serialized
|
|
mutable VerilatedMutex m_fdMutex; // Protect m_fdps, m_fdFree
|
|
std::vector<FILE*> m_fdps VL_GUARDED_BY(m_fdMutex); // File descriptors
|
|
// List of free descriptors (SLOW - FOPEN/CLOSE only)
|
|
std::vector<IData> m_fdFree VL_GUARDED_BY(m_fdMutex);
|
|
// List of free descriptors in the MCT region [4, 32)
|
|
std::vector<IData> m_fdFreeMct VL_GUARDED_BY(m_fdMutex);
|
|
|
|
private:
|
|
// CONSTRUCTORS
|
|
VL_UNCOPYABLE(VerilatedContext);
|
|
|
|
public:
|
|
/// Construct context. Also sets Verilated::threadContextp to the created context.
|
|
VerilatedContext();
|
|
~VerilatedContext();
|
|
|
|
// METHODS - User called
|
|
|
|
/// Enable assertions
|
|
void assertOn(bool flag) VL_MT_SAFE;
|
|
/// Return if assertions enabled
|
|
bool assertOn() const VL_MT_SAFE { return m_s.m_assertOn; }
|
|
/// Enable calculation of unused signals (for traces)
|
|
void calcUnusedSigs(bool flag) VL_MT_SAFE;
|
|
/// Return if calculating of unused signals (for traces)
|
|
bool calcUnusedSigs() const VL_MT_SAFE { return m_s.m_calcUnusedSigs; }
|
|
/// Record command-line arguments, for retrieval by $test$plusargs/$value$plusargs,
|
|
/// and for parsing +verilator+ run-time arguments.
|
|
/// This should be called before the first model is created.
|
|
void commandArgs(int argc, const char** argv) VL_MT_SAFE_EXCLUDES(m_argMutex);
|
|
void commandArgs(int argc, char** argv) VL_MT_SAFE {
|
|
commandArgs(argc, const_cast<const char**>(argv));
|
|
}
|
|
/// Add a command-line argument to existing arguments
|
|
void commandArgsAdd(int argc, const char** argv) VL_MT_SAFE_EXCLUDES(m_argMutex);
|
|
/// Match plusargs with a given prefix. Returns static char* valid only for a single call
|
|
const char* commandArgsPlusMatch(const char* prefixp) VL_MT_SAFE_EXCLUDES(m_argMutex);
|
|
/// Return VerilatedCovContext, allocate if needed
|
|
/// Note if get unresolved reference then likely forgot to link verilated_cov.cpp
|
|
VerilatedCovContext* coveragep() VL_MT_SAFE;
|
|
/// Set debug level
|
|
/// Debug is currently global, but for forward compatibility have a per-context method
|
|
static void debug(int val) VL_MT_SAFE;
|
|
/// Return debug level
|
|
static int debug() VL_MT_SAFE;
|
|
/// Set current number of errors/assertions
|
|
void errorCount(int val) VL_MT_SAFE;
|
|
/// Increment current number of errors/assertions
|
|
void errorCountInc() VL_MT_SAFE;
|
|
/// Return current number of errors/assertions
|
|
int errorCount() const VL_MT_SAFE { return m_s.m_errorCount; }
|
|
/// Set number of errors/assertions before stop
|
|
void errorLimit(int val) VL_MT_SAFE;
|
|
/// Return number of errors/assertions before stop
|
|
int errorLimit() const VL_MT_SAFE { return m_s.m_errorLimit; }
|
|
/// Set to throw fatal error on $stop/non-fatal ettot
|
|
void fatalOnError(bool flag) VL_MT_SAFE;
|
|
/// Return if to throw fatal error on $stop/non-fatal
|
|
bool fatalOnError() const VL_MT_SAFE { return m_s.m_fatalOnError; }
|
|
/// Set to throw fatal error on VPI errors
|
|
void fatalOnVpiError(bool flag) VL_MT_SAFE;
|
|
/// Return if to throw fatal error on VPI errors
|
|
bool fatalOnVpiError() const VL_MT_SAFE { return m_s.m_fatalOnVpiError; }
|
|
/// Set if got a $stop or non-fatal error
|
|
void gotError(bool flag) VL_MT_SAFE;
|
|
/// Return if got a $stop or non-fatal error
|
|
bool gotError() const VL_MT_SAFE { return m_s.m_gotError; }
|
|
/// Set if got a $finish or $stop/error
|
|
void gotFinish(bool flag) VL_MT_SAFE;
|
|
/// Return if got a $finish or $stop/error
|
|
bool gotFinish() const VL_MT_SAFE { return m_s.m_gotFinish; }
|
|
/// Select initial value of otherwise uninitialized signals.
|
|
/// 0 = Set to zeros
|
|
/// 1 = Set all bits to one
|
|
/// 2 = Randomize all bits
|
|
void randReset(int val) VL_MT_SAFE;
|
|
/// Return randReset value
|
|
int randReset() VL_MT_SAFE { return m_s.m_randReset; }
|
|
/// Return default random seed
|
|
void randSeed(int val) VL_MT_SAFE;
|
|
/// Set default random seed, 0 = seed it automatically
|
|
int randSeed() const VL_MT_SAFE { return m_s.m_randSeed; }
|
|
|
|
// Time handling
|
|
/// Returns current simulation time.
|
|
///
|
|
/// How Verilator runtime gets the current simulation time:
|
|
///
|
|
/// * If using SystemC, time comes from the SystemC kernel-defined
|
|
/// sc_time_stamp64(). User's wrapper must not call
|
|
/// SimulationContext::time(value) nor timeInc(value).
|
|
///
|
|
/// * Else, if SimulationContext::time(value) or
|
|
/// SimulationContext::timeInc(value) is ever called with non-zero,
|
|
/// then time will come via the context. This allows multiple contexts
|
|
/// to exist and have different simulation times. This must not be used
|
|
/// with SystemC. Note Verilated::time(value) and
|
|
/// Verilated::timeInc(value) call into SimulationContext::time and
|
|
/// timeInc, operating on the thread's context.
|
|
///
|
|
/// * Else, if VL_TIME_STAMP64 is defined, time comes from the legacy
|
|
/// 'vluint64_t vl_time_stamp64()' which must a function be defined by
|
|
/// the user's wrapper.
|
|
///
|
|
/// * Else, time comes from the legacy 'double sc_time_stamp()' which
|
|
/// must be a function defined by the user's wrapper.
|
|
vluint64_t time() const VL_MT_SAFE;
|
|
/// Set current simulation time. See time() for side effect details
|
|
void time(vluint64_t value) VL_MT_SAFE { m_s.m_time = value; }
|
|
/// Advance current simulation time. See time() for side effect details
|
|
void timeInc(vluint64_t add) VL_MT_UNSAFE { m_s.m_time += add; }
|
|
/// Return time units as power-of-ten
|
|
int timeunit() const VL_MT_SAFE { return -m_s.m_timeunit; }
|
|
/// Set time units as power-of-ten
|
|
void timeunit(int value) VL_MT_SAFE;
|
|
/// Return time units as IEEE-standard text
|
|
const char* timeunitString() const VL_MT_SAFE;
|
|
/// Get time precision as power-of-ten
|
|
int timeprecision() const VL_MT_SAFE { return -m_s.m_timeprecision; }
|
|
/// Return time precision as power-of-ten
|
|
void timeprecision(int value) VL_MT_SAFE;
|
|
/// Get time precision as IEEE-standard text
|
|
const char* timeprecisionString() const VL_MT_SAFE;
|
|
|
|
/// Allow traces to at some point be enabled (disables some optimizations)
|
|
void traceEverOn(bool flag) VL_MT_SAFE {
|
|
if (flag) calcUnusedSigs(true);
|
|
}
|
|
|
|
/// For debugging, print much of the Verilator internal state.
|
|
/// The output of this function may change in future
|
|
/// releases - contact the authors before production use.
|
|
void internalsDump() const VL_MT_SAFE;
|
|
|
|
/// For debugging, print text list of all scope names with
|
|
/// dpiImport/Export context. This function may change in future
|
|
/// releases - contact the authors before production use.
|
|
void scopesDump() const VL_MT_SAFE;
|
|
|
|
public: // But for internal use only
|
|
// Internal: access to implementation class
|
|
VerilatedContextImp* impp() { return reinterpret_cast<VerilatedContextImp*>(this); }
|
|
const VerilatedContextImp* impp() const {
|
|
return reinterpret_cast<const VerilatedContextImp*>(this);
|
|
}
|
|
|
|
// Internal: $dumpfile
|
|
void dumpfile(const std::string& flag) VL_MT_SAFE_EXCLUDES(m_timeDumpMutex);
|
|
std::string dumpfile() const VL_MT_SAFE_EXCLUDES(m_timeDumpMutex);
|
|
std::string dumpfileCheck() const VL_MT_SAFE_EXCLUDES(m_timeDumpMutex);
|
|
|
|
// Internal: --prof-threads related settings
|
|
void profThreadsStart(vluint64_t flag) VL_MT_SAFE;
|
|
vluint64_t profThreadsStart() const VL_MT_SAFE { return m_ns.m_profThreadsStart; }
|
|
void profThreadsWindow(vluint64_t flag) VL_MT_SAFE;
|
|
vluint32_t profThreadsWindow() const VL_MT_SAFE { return m_ns.m_profThreadsWindow; }
|
|
void profThreadsFilename(const std::string& flag) VL_MT_SAFE;
|
|
std::string profThreadsFilename() const VL_MT_SAFE;
|
|
|
|
// Internal: Find scope
|
|
const VerilatedScope* scopeFind(const char* namep) const VL_MT_SAFE;
|
|
const VerilatedScopeNameMap* scopeNameMap() VL_MT_SAFE;
|
|
|
|
// Internal: Serialization setup
|
|
static constexpr size_t serialized1Size() VL_PURE { return sizeof(m_s); }
|
|
void* serialized1Ptr() VL_MT_UNSAFE { return &m_s; }
|
|
};
|
|
|
|
//===========================================================================
|
|
// Verilator symbol table base class
|
|
// Used for internal VPI implementation, and introspection into scopes
|
|
|
|
class VerilatedSyms VL_NOT_FINAL {
|
|
public: // But for internal use only
|
|
// MEMBERS
|
|
// Keep first so is at zero offset for fastest code
|
|
VerilatedContext* const _vm_contextp__; // Context for current model
|
|
#ifdef VL_THREADED
|
|
VerilatedEvalMsgQueue* __Vm_evalMsgQp;
|
|
#endif
|
|
explicit VerilatedSyms(VerilatedContext* contextp); // Pass null for default context
|
|
~VerilatedSyms();
|
|
};
|
|
|
|
//===========================================================================
|
|
// Verilator scope information class
|
|
// Used for internal VPI implementation, and introspection into scopes
|
|
|
|
class VerilatedScope final {
|
|
public:
|
|
enum Type : vluint8_t {
|
|
SCOPE_MODULE,
|
|
SCOPE_OTHER
|
|
}; // Type of a scope, currently module is only interesting
|
|
private:
|
|
// Fastpath:
|
|
VerilatedSyms* m_symsp = nullptr; // Symbol table
|
|
void** m_callbacksp = nullptr; // Callback table pointer (Fastpath)
|
|
int m_funcnumMax = 0; // Maxium function number stored (Fastpath)
|
|
// 4 bytes padding (on -m64), for rent.
|
|
VerilatedVarNameMap* m_varsp = nullptr; // Variable map
|
|
const char* m_namep = nullptr; // Scope name (Slowpath)
|
|
const char* m_identifierp = nullptr; // Identifier of scope (with escapes removed)
|
|
vlsint8_t m_timeunit = 0; // Timeunit in negative power-of-10
|
|
Type m_type = SCOPE_OTHER; // Type of the scope
|
|
|
|
public: // But internals only - called from VerilatedModule's
|
|
VerilatedScope() = default;
|
|
~VerilatedScope();
|
|
void configure(VerilatedSyms* symsp, const char* prefixp, const char* suffixp,
|
|
const char* identifier, vlsint8_t timeunit, const Type& type) VL_MT_UNSAFE;
|
|
void exportInsert(int finalize, const char* namep, void* cb) VL_MT_UNSAFE;
|
|
void varInsert(int finalize, const char* namep, void* datap, bool isParam,
|
|
VerilatedVarType vltype, int vlflags, int dims, ...) VL_MT_UNSAFE;
|
|
// ACCESSORS
|
|
const char* name() const { return m_namep; }
|
|
const char* identifier() const { return m_identifierp; }
|
|
vlsint8_t timeunit() const { return m_timeunit; }
|
|
inline VerilatedSyms* symsp() const { return m_symsp; }
|
|
VerilatedVar* varFind(const char* namep) const VL_MT_SAFE_POSTINIT;
|
|
VerilatedVarNameMap* varsp() const VL_MT_SAFE_POSTINIT { return m_varsp; }
|
|
void scopeDump() const;
|
|
void* exportFindError(int funcnum) const;
|
|
static void* exportFindNullError(int funcnum) VL_MT_SAFE;
|
|
static inline void* exportFind(const VerilatedScope* scopep, int funcnum) VL_MT_SAFE {
|
|
if (VL_UNLIKELY(!scopep)) return exportFindNullError(funcnum);
|
|
if (VL_LIKELY(funcnum < scopep->m_funcnumMax)) {
|
|
// m_callbacksp must be declared, as Max'es are > 0
|
|
return scopep->m_callbacksp[funcnum];
|
|
} else { // LCOV_EXCL_LINE
|
|
return scopep->exportFindError(funcnum); // LCOV_EXCL_LINE
|
|
}
|
|
}
|
|
Type type() const { return m_type; }
|
|
};
|
|
|
|
class VerilatedHierarchy final {
|
|
public:
|
|
static void add(VerilatedScope* fromp, VerilatedScope* top);
|
|
static void remove(VerilatedScope* fromp, VerilatedScope* top);
|
|
};
|
|
|
|
//===========================================================================
|
|
/// Verilator global static information class
|
|
|
|
class Verilated final {
|
|
// MEMBERS
|
|
|
|
// Internal Note: There should be no Serialized state in Verilated::,
|
|
// instead serialized state should all be in VerilatedContext:: as by
|
|
// definition it needs to vary per-simulation
|
|
|
|
// Internal note: Globals may multi-construct, see verilated.cpp top.
|
|
|
|
// Debug is reloaded from on command-line settings, so do not need to persist
|
|
static int s_debug; // See accessors... only when VL_DEBUG set
|
|
|
|
static VerilatedContext* s_lastContextp; // Last context constructed/attached
|
|
|
|
// Not covered by mutex, as per-thread
|
|
static VL_THREAD_LOCAL struct ThreadLocal {
|
|
// No non-POD objects here due to this:
|
|
// Internal note: Globals may multi-construct, see verilated.cpp top.
|
|
|
|
// Fast path
|
|
VerilatedContext* t_contextp = nullptr; // Thread's context
|
|
#ifdef VL_THREADED
|
|
vluint32_t t_mtaskId = 0; // mtask# executing on this thread
|
|
// Messages maybe pending on thread, needs end-of-eval calls
|
|
vluint32_t t_endOfEvalReqd = 0;
|
|
#endif
|
|
const VerilatedScope* t_dpiScopep = nullptr; // DPI context scope
|
|
const char* t_dpiFilename = nullptr; // DPI context filename
|
|
int t_dpiLineno = 0; // DPI context line number
|
|
|
|
ThreadLocal() = default;
|
|
~ThreadLocal() = default;
|
|
} t_s;
|
|
|
|
friend struct VerilatedInitializer;
|
|
|
|
// CONSTRUCTORS
|
|
VL_UNCOPYABLE(Verilated);
|
|
|
|
public:
|
|
// METHODS - User called
|
|
|
|
/// Enable debug of internal verilated code
|
|
static void debug(int level) VL_MT_SAFE;
|
|
#ifdef VL_DEBUG
|
|
/// Return debug level
|
|
/// When multithreaded this may not immediately react to another thread
|
|
/// changing the level (no mutex)
|
|
static inline int debug() VL_MT_SAFE { return s_debug; }
|
|
#else
|
|
/// Return constant 0 debug level, so C++'s optimizer rips up
|
|
static constexpr int debug() VL_PURE { return 0; }
|
|
#endif
|
|
|
|
/// Set the last VerilatedContext accessed
|
|
/// Generally threadContextp(value) should be called instead
|
|
static void lastContextp(VerilatedContext* contextp) VL_MT_SAFE { s_lastContextp = contextp; }
|
|
/// Return the last VerilatedContext accessed
|
|
/// Generally threadContextp() should be called instead
|
|
static VerilatedContext* lastContextp() VL_MT_SAFE {
|
|
if (!s_lastContextp) lastContextp(defaultContextp());
|
|
return s_lastContextp;
|
|
}
|
|
/// Set the VerilatedContext used by the current thread
|
|
|
|
/// If using multiple contexts, and threads are created by the user's
|
|
/// wrapper (not Verilator itself) then this must be called to set the
|
|
/// context that applies to each thread
|
|
static void threadContextp(VerilatedContext* contextp) VL_MT_SAFE {
|
|
t_s.t_contextp = contextp;
|
|
lastContextp(contextp);
|
|
}
|
|
/// Return the VerilatedContext for the current thread
|
|
static VerilatedContext* threadContextp() {
|
|
if (VL_UNLIKELY(!t_s.t_contextp)) t_s.t_contextp = lastContextp();
|
|
return t_s.t_contextp;
|
|
}
|
|
/// Return the global VerilatedContext, used if none created by user
|
|
static VerilatedContext* defaultContextp() VL_MT_SAFE {
|
|
static VerilatedContext s_s;
|
|
return &s_s;
|
|
}
|
|
|
|
#ifndef VL_NO_LEGACY
|
|
/// Call VerilatedContext::assertOn using current thread's VerilatedContext
|
|
static void assertOn(bool flag) VL_MT_SAFE { Verilated::threadContextp()->assertOn(flag); }
|
|
/// Return VerilatedContext::assertOn() using current thread's VerilatedContext
|
|
static bool assertOn() VL_MT_SAFE { return Verilated::threadContextp()->assertOn(); }
|
|
/// Call VerilatedContext::calcUnusedSigs using current thread's VerilatedContext
|
|
static void calcUnusedSigs(bool flag) VL_MT_SAFE {
|
|
Verilated::threadContextp()->calcUnusedSigs(flag);
|
|
}
|
|
/// Return VerilatedContext::calcUnusedSigs using current thread's VerilatedContext
|
|
static bool calcUnusedSigs() VL_MT_SAFE {
|
|
return Verilated::threadContextp()->calcUnusedSigs();
|
|
}
|
|
/// Call VerilatedContext::commandArgs using current thread's VerilatedContext
|
|
static void commandArgs(int argc, const char** argv) VL_MT_SAFE {
|
|
Verilated::threadContextp()->commandArgs(argc, argv);
|
|
}
|
|
static void commandArgs(int argc, char** argv) VL_MT_SAFE {
|
|
commandArgs(argc, const_cast<const char**>(argv));
|
|
}
|
|
/// Call VerilatedContext::commandArgsAdd using current thread's VerilatedContext
|
|
static void commandArgsAdd(int argc, const char** argv) {
|
|
Verilated::threadContextp()->commandArgsAdd(argc, argv);
|
|
}
|
|
/// Return VerilatedContext::commandArgsPlusMatch using current thread's VerilatedContext
|
|
static const char* commandArgsPlusMatch(const char* prefixp) VL_MT_SAFE {
|
|
return Verilated::threadContextp()->commandArgsPlusMatch(prefixp);
|
|
}
|
|
/// Call VerilatedContext::errorLimit using current thread's VerilatedContext
|
|
static void errorLimit(int val) VL_MT_SAFE { Verilated::threadContextp()->errorLimit(val); }
|
|
/// Return VerilatedContext::errorLimit using current thread's VerilatedContext
|
|
static int errorLimit() VL_MT_SAFE { return Verilated::threadContextp()->errorLimit(); }
|
|
/// Call VerilatedContext::fatalOnError using current thread's VerilatedContext
|
|
static void fatalOnError(bool flag) VL_MT_SAFE {
|
|
Verilated::threadContextp()->fatalOnError(flag);
|
|
}
|
|
/// Return VerilatedContext::fatalOnError using current thread's VerilatedContext
|
|
static bool fatalOnError() VL_MT_SAFE { return Verilated::threadContextp()->fatalOnError(); }
|
|
/// Call VerilatedContext::fatalOnVpiError using current thread's VerilatedContext
|
|
static void fatalOnVpiError(bool flag) VL_MT_SAFE {
|
|
Verilated::threadContextp()->fatalOnVpiError(flag);
|
|
}
|
|
/// Return VerilatedContext::fatalOnVpiError using current thread's VerilatedContext
|
|
static bool fatalOnVpiError() VL_MT_SAFE {
|
|
return Verilated::threadContextp()->fatalOnVpiError();
|
|
}
|
|
/// Call VerilatedContext::gotError using current thread's VerilatedContext
|
|
static void gotError(bool flag) VL_MT_SAFE { Verilated::threadContextp()->gotError(flag); }
|
|
/// Return VerilatedContext::gotError using current thread's VerilatedContext
|
|
static bool gotError() VL_MT_SAFE { return Verilated::threadContextp()->gotError(); }
|
|
/// Call VerilatedContext::gotFinish using current thread's VerilatedContext
|
|
static void gotFinish(bool flag) VL_MT_SAFE { Verilated::threadContextp()->gotFinish(flag); }
|
|
/// Return VerilatedContext::gotFinish using current thread's VerilatedContext
|
|
static bool gotFinish() VL_MT_SAFE { return Verilated::threadContextp()->gotFinish(); }
|
|
/// Call VerilatedContext::randReset using current thread's VerilatedContext
|
|
static void randReset(int val) VL_MT_SAFE { Verilated::threadContextp()->randReset(val); }
|
|
/// Return VerilatedContext::randReset using current thread's VerilatedContext
|
|
static int randReset() VL_MT_SAFE { return Verilated::threadContextp()->randReset(); }
|
|
/// Call VerilatedContext::randSeed using current thread's VerilatedContext
|
|
static void randSeed(int val) VL_MT_SAFE { Verilated::threadContextp()->randSeed(val); }
|
|
/// Return VerilatedContext::randSeed using current thread's VerilatedContext
|
|
static int randSeed() VL_MT_SAFE { return Verilated::threadContextp()->randSeed(); }
|
|
/// Call VerilatedContext::time using current thread's VerilatedContext
|
|
static void time(vluint64_t val) VL_MT_SAFE { Verilated::threadContextp()->time(val); }
|
|
/// Return VerilatedContext::time using current thread's VerilatedContext
|
|
static vluint64_t time() VL_MT_SAFE { return Verilated::threadContextp()->time(); }
|
|
/// Call VerilatedContext::timeInc using current thread's VerilatedContext
|
|
static void timeInc(vluint64_t add) VL_MT_UNSAFE { Verilated::threadContextp()->timeInc(add); }
|
|
// Deprecated
|
|
static int timeunit() VL_MT_SAFE { return Verilated::threadContextp()->timeunit(); }
|
|
static int timeprecision() VL_MT_SAFE { return Verilated::threadContextp()->timeprecision(); }
|
|
/// Call VerilatedContext::tracesEverOn using current thread's VerilatedContext
|
|
static void traceEverOn(bool flag) VL_MT_SAFE {
|
|
Verilated::threadContextp()->traceEverOn(flag);
|
|
}
|
|
#endif
|
|
|
|
/// Callback typedef for addFlushCb, addExitCb
|
|
using VoidPCb = void (*)(void*);
|
|
/// Add callback to run on global flush
|
|
static void addFlushCb(VoidPCb cb, void* datap) VL_MT_SAFE;
|
|
/// Remove callback to run on global flush
|
|
static void removeFlushCb(VoidPCb cb, void* datap) VL_MT_SAFE;
|
|
/// Run flush callbacks registered with addFlushCb
|
|
static void runFlushCallbacks() VL_MT_SAFE;
|
|
#ifndef VL_NO_LEGACY
|
|
static void flushCall() VL_MT_SAFE { runFlushCallbacks(); } // Deprecated
|
|
#endif
|
|
/// Add callback to run prior to exit termination
|
|
static void addExitCb(VoidPCb cb, void* datap) VL_MT_SAFE;
|
|
/// Remove callback to run prior to exit termination
|
|
static void removeExitCb(VoidPCb cb, void* datap) VL_MT_SAFE;
|
|
/// Run exit callbacks registered with addExitCb
|
|
static void runExitCallbacks() VL_MT_SAFE;
|
|
|
|
/// Return product name for (at least) VPI
|
|
static const char* productName() VL_PURE;
|
|
/// Return product version for (at least) VPI
|
|
static const char* productVersion() VL_PURE;
|
|
|
|
/// Call OS to make a directory
|
|
static void mkdir(const char* dirname) VL_MT_UNSAFE;
|
|
|
|
/// When multithreaded, quiesce the model to prepare for trace/saves/coverage
|
|
/// This may only be called when no locks are held.
|
|
static void quiesce() VL_MT_SAFE;
|
|
|
|
#ifndef VL_NO_LEGACY
|
|
/// For debugging, print much of the Verilator internal state.
|
|
/// The output of this function may change in future
|
|
/// releases - contact the authors before production use.
|
|
static void internalsDump() VL_MT_SAFE { Verilated::threadContextp()->internalsDump(); }
|
|
/// For debugging, print text list of all scope names with
|
|
/// dpiImport/Export context. This function may change in future
|
|
/// releases - contact the authors before production use.
|
|
static void scopesDump() VL_MT_SAFE { Verilated::threadContextp()->scopesDump(); }
|
|
// Internal: Find scope
|
|
static const VerilatedScope* scopeFind(const char* namep) VL_MT_SAFE {
|
|
return Verilated::threadContextp()->scopeFind(namep);
|
|
}
|
|
static const VerilatedScopeNameMap* scopeNameMap() VL_MT_SAFE {
|
|
return Verilated::threadContextp()->scopeNameMap();
|
|
}
|
|
#endif
|
|
|
|
public:
|
|
// METHODS - INTERNAL USE ONLY (but public due to what uses it)
|
|
// Internal: Create a new module name by concatenating two strings
|
|
static const char* catName(const char* n1, const char* n2, int scopet = 0,
|
|
const char* delimiter = "."); // Returns static data
|
|
|
|
// Internal: Throw signal assertion
|
|
static void nullPointerError(const char* filename, int linenum) VL_ATTR_NORETURN VL_MT_SAFE;
|
|
static void overWidthError(const char* signame) VL_ATTR_NORETURN VL_MT_SAFE;
|
|
|
|
// Internal: Get and set DPI context
|
|
static const VerilatedScope* dpiScope() VL_MT_SAFE { return t_s.t_dpiScopep; }
|
|
static void dpiScope(const VerilatedScope* scopep) VL_MT_SAFE { t_s.t_dpiScopep = scopep; }
|
|
static void dpiContext(const VerilatedScope* scopep, const char* filenamep,
|
|
int lineno) VL_MT_SAFE {
|
|
t_s.t_dpiScopep = scopep;
|
|
t_s.t_dpiFilename = filenamep;
|
|
t_s.t_dpiLineno = lineno;
|
|
}
|
|
static void dpiClearContext() VL_MT_SAFE { t_s.t_dpiScopep = nullptr; }
|
|
static bool dpiInContext() VL_MT_SAFE { return t_s.t_dpiScopep != nullptr; }
|
|
static const char* dpiFilenamep() VL_MT_SAFE { return t_s.t_dpiFilename; }
|
|
static int dpiLineno() VL_MT_SAFE { return t_s.t_dpiLineno; }
|
|
static int exportFuncNum(const char* namep) VL_MT_SAFE;
|
|
|
|
#ifdef VL_THREADED
|
|
// Internal: Set the mtaskId, called when an mtask starts
|
|
// Per thread, so no need to be in VerilatedContext
|
|
static void mtaskId(vluint32_t id) VL_MT_SAFE { t_s.t_mtaskId = id; }
|
|
static vluint32_t mtaskId() VL_MT_SAFE { return t_s.t_mtaskId; }
|
|
static void endOfEvalReqdInc() VL_MT_SAFE { ++t_s.t_endOfEvalReqd; }
|
|
static void endOfEvalReqdDec() VL_MT_SAFE { --t_s.t_endOfEvalReqd; }
|
|
|
|
// Internal: Called at end of each thread mtask, before finishing eval
|
|
static void endOfThreadMTask(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE {
|
|
if (VL_UNLIKELY(t_s.t_endOfEvalReqd)) endOfThreadMTaskGuts(evalMsgQp);
|
|
}
|
|
// Internal: Called at end of eval loop
|
|
static void endOfEval(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE;
|
|
#endif
|
|
|
|
private:
|
|
#ifdef VL_THREADED
|
|
static void endOfThreadMTaskGuts(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE;
|
|
#endif
|
|
};
|
|
|
|
inline void VerilatedContext::debug(int val) VL_MT_SAFE { Verilated::debug(val); }
|
|
inline int VerilatedContext::debug() VL_MT_SAFE { return Verilated::debug(); }
|
|
|
|
//=========================================================================
|
|
// Extern functions -- User may override -- See verilated.cpp
|
|
|
|
/// Routine to call for $finish
|
|
/// User code may wish to replace this function, to do so, define VL_USER_FINISH.
|
|
/// This code does not have to be thread safe.
|
|
/// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this.
|
|
extern void vl_finish(const char* filename, int linenum, const char* hier);
|
|
|
|
/// Routine to call for $stop and non-fatal error
|
|
/// User code may wish to replace this function, to do so, define VL_USER_STOP.
|
|
/// This code does not have to be thread safe.
|
|
/// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this.
|
|
extern void vl_stop(const char* filename, int linenum, const char* hier);
|
|
|
|
/// Routine to call for a couple of fatal messages
|
|
/// User code may wish to replace this function, to do so, define VL_USER_FATAL.
|
|
/// This code does not have to be thread safe.
|
|
/// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this.
|
|
extern void vl_fatal(const char* filename, int linenum, const char* hier, const char* msg);
|
|
|
|
//=========================================================================
|
|
// Extern functions -- Slow path
|
|
|
|
/// Multithread safe wrapper for calls to $finish
|
|
extern void VL_FINISH_MT(const char* filename, int linenum, const char* hier) VL_MT_SAFE;
|
|
/// Multithread safe wrapper for calls to $stop
|
|
extern void VL_STOP_MT(const char* filename, int linenum, const char* hier,
|
|
bool maybe = true) VL_MT_SAFE;
|
|
/// Multithread safe wrapper to call for a couple of fatal messages
|
|
extern void VL_FATAL_MT(const char* filename, int linenum, const char* hier,
|
|
const char* msg) VL_MT_SAFE;
|
|
|
|
// clang-format off
|
|
/// Print a string, multithread safe. Eventually VL_PRINTF will get called.
|
|
#ifdef VL_THREADED
|
|
extern void VL_PRINTF_MT(const char* formatp, ...) VL_ATTR_PRINTF(1) VL_MT_SAFE;
|
|
#else
|
|
# define VL_PRINTF_MT VL_PRINTF // The following parens will take care of themselves
|
|
#endif
|
|
// clang-format on
|
|
|
|
/// Print a debug message from internals with standard prefix, with printf style format
|
|
extern void VL_DBG_MSGF(const char* formatp, ...) VL_ATTR_PRINTF(1) VL_MT_SAFE;
|
|
|
|
extern vluint64_t vl_rand64() VL_MT_SAFE;
|
|
inline IData VL_RANDOM_I(int obits) VL_MT_SAFE { return vl_rand64() & VL_MASK_I(obits); }
|
|
inline QData VL_RANDOM_Q(int obits) VL_MT_SAFE { return vl_rand64() & VL_MASK_Q(obits); }
|
|
#ifndef VL_NO_LEGACY
|
|
extern WDataOutP VL_RANDOM_W(int obits, WDataOutP outwp);
|
|
#endif
|
|
extern IData VL_RANDOM_SEEDED_II(int obits, IData seed) VL_MT_SAFE;
|
|
inline IData VL_URANDOM_RANGE_I(IData hi, IData lo) {
|
|
vluint64_t rnd = vl_rand64();
|
|
if (VL_LIKELY(hi > lo)) {
|
|
// Modulus isn't very fast but it's common that hi-low is power-of-two
|
|
return (rnd % (hi - lo + 1)) + lo;
|
|
} else {
|
|
return (rnd % (lo - hi + 1)) + hi;
|
|
}
|
|
}
|
|
|
|
// These are init time only, so slow is fine
|
|
/// Random reset a signal of given width
|
|
extern IData VL_RAND_RESET_I(int obits);
|
|
/// Random reset a signal of given width
|
|
extern QData VL_RAND_RESET_Q(int obits);
|
|
/// Random reset a signal of given width
|
|
extern WDataOutP VL_RAND_RESET_W(int obits, WDataOutP outwp);
|
|
/// Zero reset a signal (slow - else use VL_ZERO_W)
|
|
extern WDataOutP VL_ZERO_RESET_W(int obits, WDataOutP outwp);
|
|
|
|
#if VL_THREADED
|
|
/// Return high-precision counter for profiling, or 0x0 if not available
|
|
inline QData VL_RDTSC_Q() {
|
|
vluint64_t val;
|
|
VL_RDTSC(val);
|
|
return val;
|
|
}
|
|
#endif
|
|
|
|
extern void VL_PRINTTIMESCALE(const char* namep, const char* timeunitp,
|
|
const VerilatedContext* contextp) VL_MT_SAFE;
|
|
|
|
extern WDataOutP _vl_moddiv_w(int lbits, WDataOutP owp, WDataInP lwp, WDataInP rwp,
|
|
bool is_modulus);
|
|
|
|
extern IData VL_FGETS_IXI(int obits, void* destp, IData fpi);
|
|
|
|
extern void VL_FFLUSH_I(IData fdi);
|
|
extern IData VL_FSEEK_I(IData fdi, IData offset, IData origin);
|
|
extern IData VL_FTELL_I(IData fdi);
|
|
extern void VL_FCLOSE_I(IData fdi);
|
|
|
|
extern IData VL_FREAD_I(int width, int array_lsb, int array_size, void* memp, IData fpi,
|
|
IData start, IData count);
|
|
|
|
extern void VL_WRITEF(const char* formatp, ...);
|
|
extern void VL_FWRITEF(IData fpi, const char* formatp, ...);
|
|
|
|
extern IData VL_FSCANF_IX(IData fpi, const char* formatp, ...);
|
|
extern IData VL_SSCANF_IIX(int lbits, IData ld, const char* formatp, ...);
|
|
extern IData VL_SSCANF_IQX(int lbits, QData ld, const char* formatp, ...);
|
|
extern IData VL_SSCANF_IWX(int lbits, WDataInP lwp, const char* formatp, ...);
|
|
|
|
extern void VL_SFORMAT_X(int obits, CData& destr, const char* formatp, ...);
|
|
extern void VL_SFORMAT_X(int obits, SData& destr, const char* formatp, ...);
|
|
extern void VL_SFORMAT_X(int obits, IData& destr, const char* formatp, ...);
|
|
extern void VL_SFORMAT_X(int obits, QData& destr, const char* formatp, ...);
|
|
extern void VL_SFORMAT_X(int obits, void* destp, const char* formatp, ...);
|
|
|
|
extern IData VL_SYSTEM_IW(int lhswords, WDataInP lhsp);
|
|
extern IData VL_SYSTEM_IQ(QData lhs);
|
|
inline IData VL_SYSTEM_II(IData lhs) VL_MT_SAFE { return VL_SYSTEM_IQ(lhs); }
|
|
|
|
extern IData VL_TESTPLUSARGS_I(const char* formatp);
|
|
extern const char* vl_mc_scan_plusargs(const char* prefixp); // PLIish
|
|
|
|
//=========================================================================
|
|
// Base macros
|
|
|
|
// Return true if data[bit] set; not 0/1 return, but 0/non-zero return.
|
|
#define VL_BITISSET_I(data, bit) ((data) & (VL_UL(1) << VL_BITBIT_I(bit)))
|
|
#define VL_BITISSET_Q(data, bit) ((data) & (1ULL << VL_BITBIT_Q(bit)))
|
|
#define VL_BITISSET_E(data, bit) ((data) & (VL_EUL(1) << VL_BITBIT_E(bit)))
|
|
#define VL_BITISSET_W(data, bit) ((data)[VL_BITWORD_E(bit)] & (VL_EUL(1) << VL_BITBIT_E(bit)))
|
|
#define VL_BITISSETLIMIT_W(data, width, bit) (((bit) < (width)) && VL_BITISSET_W(data, bit))
|
|
|
|
// Shift appropriate word by bit. Does not account for wrapping between two words
|
|
#define VL_BITRSHIFT_W(data, bit) ((data)[VL_BITWORD_E(bit)] >> VL_BITBIT_E(bit))
|
|
|
|
// Create two 32-bit words from quadword
|
|
// WData is always at least 2 words; does not clean upper bits
|
|
#define VL_SET_WQ(owp, data) \
|
|
do { \
|
|
(owp)[0] = static_cast<IData>(data); \
|
|
(owp)[1] = static_cast<IData>((data) >> VL_EDATASIZE); \
|
|
} while (false)
|
|
#define VL_SET_WI(owp, data) \
|
|
do { \
|
|
(owp)[0] = static_cast<IData>(data); \
|
|
(owp)[1] = 0; \
|
|
} while (false)
|
|
#define VL_SET_QW(lwp) \
|
|
((static_cast<QData>((lwp)[0])) \
|
|
| (static_cast<QData>((lwp)[1]) << (static_cast<QData>(VL_EDATASIZE))))
|
|
#define VL_SET_QII(ld, rd) ((static_cast<QData>(ld) << 32ULL) | static_cast<QData>(rd))
|
|
|
|
// Return FILE* from IData
|
|
extern FILE* VL_CVT_I_FP(IData lhs) VL_MT_SAFE;
|
|
|
|
// clang-format off
|
|
// Use a union to avoid cast-to-different-size warnings
|
|
// Return void* from QData
|
|
static inline void* VL_CVT_Q_VP(QData lhs) VL_PURE {
|
|
union { void* fp; QData q; } u;
|
|
u.q = lhs;
|
|
return u.fp;
|
|
}
|
|
// Return QData from const void*
|
|
static inline QData VL_CVT_VP_Q(const void* fp) VL_PURE {
|
|
union { const void* fp; QData q; } u;
|
|
u.q = 0;
|
|
u.fp = fp;
|
|
return u.q;
|
|
}
|
|
// Return double from QData (bits, not numerically)
|
|
static inline double VL_CVT_D_Q(QData lhs) VL_PURE {
|
|
union { double d; QData q; } u;
|
|
u.q = lhs;
|
|
return u.d;
|
|
}
|
|
// Return QData from double (bits, not numerically)
|
|
static inline QData VL_CVT_Q_D(double lhs) VL_PURE {
|
|
union { double d; QData q; } u;
|
|
u.d = lhs;
|
|
return u.q;
|
|
}
|
|
// clang-format on
|
|
|
|
// Return double from lhs (numeric) unsigned
|
|
double VL_ITOR_D_W(int lbits, WDataInP lwp) VL_PURE;
|
|
static inline double VL_ITOR_D_I(int, IData lhs) VL_PURE {
|
|
return static_cast<double>(static_cast<vluint32_t>(lhs));
|
|
}
|
|
static inline double VL_ITOR_D_Q(int, QData lhs) VL_PURE {
|
|
return static_cast<double>(static_cast<vluint64_t>(lhs));
|
|
}
|
|
// Return double from lhs (numeric) signed
|
|
double VL_ISTOR_D_W(int lbits, WDataInP lwp) VL_PURE;
|
|
static inline double VL_ISTOR_D_I(int lbits, IData lhs) VL_PURE {
|
|
if (lbits == 32) return static_cast<double>(static_cast<vlsint32_t>(lhs));
|
|
WData lwp[VL_WQ_WORDS_E];
|
|
VL_SET_WI(lwp, lhs);
|
|
return VL_ISTOR_D_W(lbits, lwp);
|
|
}
|
|
static inline double VL_ISTOR_D_Q(int lbits, QData lhs) VL_PURE {
|
|
if (lbits == 64) return static_cast<double>(static_cast<vlsint64_t>(lhs));
|
|
WData lwp[VL_WQ_WORDS_E];
|
|
VL_SET_WQ(lwp, lhs);
|
|
return VL_ISTOR_D_W(lbits, lwp);
|
|
}
|
|
// Return QData from double (numeric)
|
|
static inline IData VL_RTOI_I_D(double lhs) VL_PURE {
|
|
return static_cast<vlsint32_t>(VL_TRUNC(lhs));
|
|
}
|
|
|
|
// Sign extend such that if MSB set, we get ffff_ffff, else 0s
|
|
// (Requires clean input)
|
|
#define VL_SIGN_I(nbits, lhs) ((lhs) >> VL_BITBIT_I((nbits)-VL_UL(1)))
|
|
#define VL_SIGN_Q(nbits, lhs) ((lhs) >> VL_BITBIT_Q((nbits)-1ULL))
|
|
#define VL_SIGN_E(nbits, lhs) ((lhs) >> VL_BITBIT_E((nbits)-VL_EUL(1)))
|
|
#define VL_SIGN_W(nbits, rwp) \
|
|
((rwp)[VL_BITWORD_E((nbits)-VL_EUL(1))] >> VL_BITBIT_E((nbits)-VL_EUL(1)))
|
|
#define VL_SIGNONES_E(nbits, lhs) (-(VL_SIGN_E(nbits, lhs)))
|
|
|
|
// Sign bit extended up to MSB, doesn't include unsigned portion
|
|
// Optimization bug in GCC 3.3 returns different bitmasks to later states for
|
|
static inline IData VL_EXTENDSIGN_I(int lbits, IData lhs) VL_PURE {
|
|
return (-((lhs) & (VL_UL(1) << (lbits - 1))));
|
|
}
|
|
static inline QData VL_EXTENDSIGN_Q(int lbits, QData lhs) VL_PURE {
|
|
return (-((lhs) & (1ULL << (lbits - 1))));
|
|
}
|
|
|
|
// Debugging prints
|
|
extern void _vl_debug_print_w(int lbits, WDataInP iwp);
|
|
|
|
//=========================================================================
|
|
// Pli macros
|
|
|
|
extern int VL_TIME_STR_CONVERT(const char* strp) VL_PURE;
|
|
|
|
// These are deprecated and used only to establish the default precision/units.
|
|
// Use Verilator timescale-override for better control.
|
|
// clang-format off
|
|
#ifndef VL_TIME_PRECISION
|
|
# ifdef VL_TIME_PRECISION_STR
|
|
# define VL_TIME_PRECISION VL_TIME_STR_CONVERT(VL_STRINGIFY(VL_TIME_PRECISION_STR))
|
|
# else
|
|
# define VL_TIME_PRECISION (-12) ///< Timescale default units if not in Verilog - picoseconds
|
|
# endif
|
|
#endif
|
|
#ifndef VL_TIME_UNIT
|
|
# ifdef VL_TIME_UNIT_STR
|
|
# define VL_TIME_UNIT VL_TIME_STR_CONVERT(VL_STRINGIFY(VL_TIME_PRECISION_STR))
|
|
# else
|
|
# define VL_TIME_UNIT (-12) ///< Timescale default units if not in Verilog - picoseconds
|
|
# endif
|
|
#endif
|
|
|
|
#if defined(SYSTEMC_VERSION)
|
|
/// Return current simulation time
|
|
// Already defined: extern sc_time sc_time_stamp();
|
|
inline vluint64_t vl_time_stamp64() { return sc_time_stamp().value(); }
|
|
#else // Non-SystemC
|
|
# if !defined(VL_TIME_CONTEXT) && !defined(VL_NO_LEGACY)
|
|
# ifdef VL_TIME_STAMP64
|
|
// vl_time_stamp64() may be optionally defined by the user to return time.
|
|
// On MSVC++ weak symbols are not supported so must be declared, or define
|
|
// VL_TIME_CONTEXT.
|
|
extern vluint64_t vl_time_stamp64() VL_ATTR_WEAK;
|
|
# else
|
|
// sc_time_stamp() may be optionally defined by the user to return time.
|
|
// On MSVC++ weak symbols are not supported so must be declared, or define
|
|
// VL_TIME_CONTEXT.
|
|
extern double sc_time_stamp() VL_ATTR_WEAK; // Verilator 4.032 and newer
|
|
inline vluint64_t vl_time_stamp64() {
|
|
// clang9.0.1 requires & although we really do want the weak symbol value
|
|
return VL_LIKELY(&sc_time_stamp) ? static_cast<vluint64_t>(sc_time_stamp()) : 0;
|
|
}
|
|
# endif
|
|
# endif
|
|
#endif
|
|
|
|
inline vluint64_t VerilatedContext::time() const VL_MT_SAFE {
|
|
// When using non-default context, fastest path is return time
|
|
if (VL_LIKELY(m_s.m_time)) return m_s.m_time;
|
|
#if defined(SYSTEMC_VERSION) || (!defined(VL_TIME_CONTEXT) && !defined(VL_NO_LEGACY))
|
|
// Zero time could mean really at zero, or using callback
|
|
// clang9.0.1 requires & although we really do want the weak symbol value
|
|
if (VL_LIKELY(&vl_time_stamp64)) { // else is weak symbol that is not defined
|
|
return vl_time_stamp64();
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
#define VL_TIME_Q() (Verilated::threadContextp()->time())
|
|
#define VL_TIME_D() (static_cast<double>(VL_TIME_Q()))
|
|
|
|
// Time scaled from 1-per-precision into a module's time units ("Unit"-ed, not "United")
|
|
// Optimized assuming scale is always constant.
|
|
// Can't use multiply in Q flavor, as might lose precision
|
|
#define VL_TIME_UNITED_Q(scale) (VL_TIME_Q() / static_cast<QData>(scale))
|
|
#define VL_TIME_UNITED_D(scale) (VL_TIME_D() / static_cast<double>(scale))
|
|
|
|
// Return time precision as multiplier of time units
|
|
double vl_time_multiplier(int scale) VL_PURE;
|
|
|
|
#ifdef VL_DEBUG
|
|
/// Evaluate statement if Verilated::debug() enabled
|
|
# define VL_DEBUG_IF(stmt) \
|
|
do { \
|
|
if (VL_UNLIKELY(Verilated::debug())) {stmt} \
|
|
} while (false)
|
|
#else
|
|
// We intentionally do not compile the stmt to improve compile speed
|
|
# define VL_DEBUG_IF(stmt) do {} while (false)
|
|
#endif
|
|
|
|
// clang-format on
|
|
|
|
//=========================================================================
|
|
// Functional macros/routines
|
|
// These all take the form
|
|
// VL_func_IW(bits, bits, op, op)
|
|
// VL_func_WW(bits, bits, out, op, op)
|
|
// The I/W indicates if it's a integer or wide for the output and each operand.
|
|
// The bits indicate the bit width of the output and each operand.
|
|
// If wide output, a temporary storage location is specified.
|
|
|
|
//===================================================================
|
|
// SETTING OPERATORS
|
|
|
|
// Output clean
|
|
// EMIT_RULE: VL_CLEAN: oclean=clean; obits=lbits;
|
|
#define VL_CLEAN_II(obits, lbits, lhs) ((lhs)&VL_MASK_I(obits))
|
|
#define VL_CLEAN_QQ(obits, lbits, lhs) ((lhs)&VL_MASK_Q(obits))
|
|
|
|
// EMIT_RULE: VL_ASSIGNCLEAN: oclean=clean; obits==lbits;
|
|
#define VL_ASSIGNCLEAN_W(obits, owp, lwp) VL_CLEAN_WW((obits), (obits), (owp), (lwp))
|
|
static inline WDataOutP _vl_clean_inplace_w(int obits, WDataOutP owp) VL_MT_SAFE {
|
|
int words = VL_WORDS_I(obits);
|
|
owp[words - 1] &= VL_MASK_E(obits);
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_CLEAN_WW(int obits, int, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
|
|
int words = VL_WORDS_I(obits);
|
|
for (int i = 0; (i < (words - 1)); ++i) owp[i] = lwp[i];
|
|
owp[words - 1] = lwp[words - 1] & VL_MASK_E(obits);
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_ZERO_W(int obits, WDataOutP owp) VL_MT_SAFE {
|
|
int words = VL_WORDS_I(obits);
|
|
for (int i = 0; i < words; ++i) owp[i] = 0;
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_ALLONES_W(int obits, WDataOutP owp) VL_MT_SAFE {
|
|
int words = VL_WORDS_I(obits);
|
|
for (int i = 0; i < (words - 1); ++i) owp[i] = ~VL_EUL(0);
|
|
owp[words - 1] = VL_MASK_E(obits);
|
|
return owp;
|
|
}
|
|
|
|
// EMIT_RULE: VL_ASSIGN: oclean=rclean; obits==lbits;
|
|
// For now, we always have a clean rhs.
|
|
// Note: If a ASSIGN isn't clean, use VL_ASSIGNCLEAN instead to do the same thing.
|
|
static inline WDataOutP VL_ASSIGN_W(int obits, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
|
|
int words = VL_WORDS_I(obits);
|
|
for (int i = 0; i < words; ++i) owp[i] = lwp[i];
|
|
return owp;
|
|
}
|
|
|
|
// EMIT_RULE: VL_ASSIGNBIT: rclean=clean;
|
|
static inline void VL_ASSIGNBIT_II(int, int bit, CData& lhsr, IData rhs) VL_PURE {
|
|
lhsr = ((lhsr & ~(VL_UL(1) << VL_BITBIT_I(bit))) | (rhs << VL_BITBIT_I(bit)));
|
|
}
|
|
static inline void VL_ASSIGNBIT_II(int, int bit, SData& lhsr, IData rhs) VL_PURE {
|
|
lhsr = ((lhsr & ~(VL_UL(1) << VL_BITBIT_I(bit))) | (rhs << VL_BITBIT_I(bit)));
|
|
}
|
|
static inline void VL_ASSIGNBIT_II(int, int bit, IData& lhsr, IData rhs) VL_PURE {
|
|
lhsr = ((lhsr & ~(VL_UL(1) << VL_BITBIT_I(bit))) | (rhs << VL_BITBIT_I(bit)));
|
|
}
|
|
static inline void VL_ASSIGNBIT_QI(int, int bit, QData& lhsr, QData rhs) VL_PURE {
|
|
lhsr = ((lhsr & ~(1ULL << VL_BITBIT_Q(bit))) | (static_cast<QData>(rhs) << VL_BITBIT_Q(bit)));
|
|
}
|
|
static inline void VL_ASSIGNBIT_WI(int, int bit, WDataOutP owp, IData rhs) VL_MT_SAFE {
|
|
EData orig = owp[VL_BITWORD_E(bit)];
|
|
owp[VL_BITWORD_E(bit)] = ((orig & ~(VL_EUL(1) << VL_BITBIT_E(bit)))
|
|
| (static_cast<EData>(rhs) << VL_BITBIT_E(bit)));
|
|
}
|
|
// Alternative form that is an instruction faster when rhs is constant one.
|
|
static inline void VL_ASSIGNBIT_IO(int, int bit, CData& lhsr, IData) VL_PURE {
|
|
lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit)));
|
|
}
|
|
static inline void VL_ASSIGNBIT_IO(int, int bit, SData& lhsr, IData) VL_PURE {
|
|
lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit)));
|
|
}
|
|
static inline void VL_ASSIGNBIT_IO(int, int bit, IData& lhsr, IData) VL_PURE {
|
|
lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit)));
|
|
}
|
|
static inline void VL_ASSIGNBIT_QO(int, int bit, QData& lhsr, IData) VL_PURE {
|
|
lhsr = (lhsr | (1ULL << VL_BITBIT_Q(bit)));
|
|
}
|
|
static inline void VL_ASSIGNBIT_WO(int, int bit, WDataOutP owp, IData) VL_MT_SAFE {
|
|
EData orig = owp[VL_BITWORD_E(bit)];
|
|
owp[VL_BITWORD_E(bit)] = (orig | (VL_EUL(1) << VL_BITBIT_E(bit)));
|
|
}
|
|
|
|
//===================================================================
|
|
// SYSTEMC OPERATORS
|
|
// Copying verilog format to systemc integers and bit vectors.
|
|
// Get a SystemC variable
|
|
|
|
#define VL_ASSIGN_ISI(obits, vvar, svar) \
|
|
{ (vvar) = VL_CLEAN_II((obits), (obits), (svar).read()); }
|
|
#define VL_ASSIGN_QSQ(obits, vvar, svar) \
|
|
{ (vvar) = VL_CLEAN_QQ((obits), (obits), (svar).read()); }
|
|
|
|
#define VL_ASSIGN_ISW(obits, od, svar) \
|
|
{ (od) = ((svar).read().get_word(0)) & VL_MASK_I(obits); }
|
|
#define VL_ASSIGN_QSW(obits, od, svar) \
|
|
{ \
|
|
(od) = ((static_cast<QData>((svar).read().get_word(1))) << VL_IDATASIZE \
|
|
| (svar).read().get_word(0)) \
|
|
& VL_MASK_Q(obits); \
|
|
}
|
|
#define VL_ASSIGN_WSW(obits, owp, svar) \
|
|
{ \
|
|
int words = VL_WORDS_I(obits); \
|
|
for (int i = 0; i < words; ++i) (owp)[i] = (svar).read().get_word(i); \
|
|
(owp)[words - 1] &= VL_MASK_E(obits); \
|
|
}
|
|
|
|
#define VL_ASSIGN_ISU(obits, vvar, svar) \
|
|
{ (vvar) = VL_CLEAN_II((obits), (obits), (svar).read().to_uint()); }
|
|
#define VL_ASSIGN_QSU(obits, vvar, svar) \
|
|
{ (vvar) = VL_CLEAN_QQ((obits), (obits), (svar).read().to_uint64()); }
|
|
#define VL_ASSIGN_WSB(obits, owp, svar) \
|
|
{ \
|
|
int words = VL_WORDS_I(obits); \
|
|
sc_biguint<(obits)> _butemp = (svar).read(); \
|
|
for (int i = 0; i < words; ++i) { \
|
|
int msb = ((i + 1) * VL_IDATASIZE) - 1; \
|
|
msb = (msb >= (obits)) ? ((obits)-1) : msb; \
|
|
(owp)[i] = _butemp.range(msb, i * VL_IDATASIZE).to_uint(); \
|
|
} \
|
|
(owp)[words - 1] &= VL_MASK_E(obits); \
|
|
}
|
|
|
|
// Copying verilog format from systemc integers and bit vectors.
|
|
// Set a SystemC variable
|
|
|
|
#define VL_ASSIGN_SII(obits, svar, vvar) \
|
|
{ (svar).write(vvar); }
|
|
#define VL_ASSIGN_SQQ(obits, svar, vvar) \
|
|
{ (svar).write(vvar); }
|
|
|
|
#define VL_ASSIGN_SWI(obits, svar, rd) \
|
|
{ \
|
|
sc_bv<(obits)> _bvtemp; \
|
|
_bvtemp.set_word(0, (rd)); \
|
|
(svar).write(_bvtemp); \
|
|
}
|
|
#define VL_ASSIGN_SWQ(obits, svar, rd) \
|
|
{ \
|
|
sc_bv<(obits)> _bvtemp; \
|
|
_bvtemp.set_word(0, static_cast<IData>(rd)); \
|
|
_bvtemp.set_word(1, static_cast<IData>((rd) >> VL_IDATASIZE)); \
|
|
(svar).write(_bvtemp); \
|
|
}
|
|
#define VL_ASSIGN_SWW(obits, svar, rwp) \
|
|
{ \
|
|
sc_bv<(obits)> _bvtemp; \
|
|
for (int i = 0; i < VL_WORDS_I(obits); ++i) _bvtemp.set_word(i, (rwp)[i]); \
|
|
(svar).write(_bvtemp); \
|
|
}
|
|
|
|
#define VL_ASSIGN_SUI(obits, svar, rd) \
|
|
{ (svar).write(rd); }
|
|
#define VL_ASSIGN_SUQ(obits, svar, rd) \
|
|
{ (svar).write(rd); }
|
|
#define VL_ASSIGN_SBI(obits, svar, rd) \
|
|
{ (svar).write(rd); }
|
|
#define VL_ASSIGN_SBQ(obits, svar, rd) \
|
|
{ (svar).write(rd); }
|
|
#define VL_ASSIGN_SBW(obits, svar, rwp) \
|
|
{ \
|
|
sc_biguint<(obits)> _butemp; \
|
|
for (int i = 0; i < VL_WORDS_I(obits); ++i) { \
|
|
int msb = ((i + 1) * VL_IDATASIZE) - 1; \
|
|
msb = (msb >= (obits)) ? ((obits)-1) : msb; \
|
|
_butemp.range(msb, i* VL_IDATASIZE) = (rwp)[i]; \
|
|
} \
|
|
(svar).write(_butemp); \
|
|
}
|
|
|
|
//===================================================================
|
|
// Extending sizes
|
|
|
|
// CAREFUL, we're width changing, so obits!=lbits
|
|
|
|
// Right must be clean because otherwise size increase would pick up bad bits
|
|
// EMIT_RULE: VL_EXTEND: oclean=clean; rclean==clean;
|
|
#define VL_EXTEND_II(obits, lbits, lhs) ((lhs))
|
|
#define VL_EXTEND_QI(obits, lbits, lhs) (static_cast<QData>(lhs))
|
|
#define VL_EXTEND_QQ(obits, lbits, lhs) ((lhs))
|
|
|
|
static inline WDataOutP VL_EXTEND_WI(int obits, int, WDataOutP owp, IData ld) VL_MT_SAFE {
|
|
// Note for extracts that obits != lbits
|
|
owp[0] = ld;
|
|
for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_EXTEND_WQ(int obits, int, WDataOutP owp, QData ld) VL_MT_SAFE {
|
|
VL_SET_WQ(owp, ld);
|
|
for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_EXTEND_WW(int obits, int lbits, WDataOutP owp,
|
|
WDataInP lwp) VL_MT_SAFE {
|
|
for (int i = 0; i < VL_WORDS_I(lbits); ++i) owp[i] = lwp[i];
|
|
for (int i = VL_WORDS_I(lbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
|
|
return owp;
|
|
}
|
|
|
|
// EMIT_RULE: VL_EXTENDS: oclean=*dirty*; obits=lbits;
|
|
// Sign extension; output dirty
|
|
static inline IData VL_EXTENDS_II(int, int lbits, IData lhs) VL_PURE {
|
|
return VL_EXTENDSIGN_I(lbits, lhs) | lhs;
|
|
}
|
|
static inline QData VL_EXTENDS_QI(int, int lbits, QData lhs /*Q_as_need_extended*/) VL_PURE {
|
|
return VL_EXTENDSIGN_Q(lbits, lhs) | lhs;
|
|
}
|
|
static inline QData VL_EXTENDS_QQ(int, int lbits, QData lhs) VL_PURE {
|
|
return VL_EXTENDSIGN_Q(lbits, lhs) | lhs;
|
|
}
|
|
|
|
static inline WDataOutP VL_EXTENDS_WI(int obits, int lbits, WDataOutP owp, IData ld) VL_MT_SAFE {
|
|
EData sign = VL_SIGNONES_E(lbits, static_cast<EData>(ld));
|
|
owp[0] = ld | (sign & ~VL_MASK_E(lbits));
|
|
for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_EXTENDS_WQ(int obits, int lbits, WDataOutP owp, QData ld) VL_MT_SAFE {
|
|
VL_SET_WQ(owp, ld);
|
|
EData sign = VL_SIGNONES_E(lbits, owp[1]);
|
|
owp[1] |= sign & ~VL_MASK_E(lbits);
|
|
for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_EXTENDS_WW(int obits, int lbits, WDataOutP owp,
|
|
WDataInP lwp) VL_MT_SAFE {
|
|
for (int i = 0; i < VL_WORDS_I(lbits) - 1; ++i) owp[i] = lwp[i];
|
|
int lmsw = VL_WORDS_I(lbits) - 1;
|
|
EData sign = VL_SIGNONES_E(lbits, lwp[lmsw]);
|
|
owp[lmsw] = lwp[lmsw] | (sign & ~VL_MASK_E(lbits));
|
|
for (int i = VL_WORDS_I(lbits); i < VL_WORDS_I(obits); ++i) owp[i] = sign;
|
|
return owp;
|
|
}
|
|
|
|
//===================================================================
|
|
// REDUCTION OPERATORS
|
|
|
|
// EMIT_RULE: VL_REDAND: oclean=clean; lclean==clean; obits=1;
|
|
#define VL_REDAND_II(obits, lbits, lhs) ((lhs) == VL_MASK_I(lbits))
|
|
#define VL_REDAND_IQ(obits, lbits, lhs) ((lhs) == VL_MASK_Q(lbits))
|
|
static inline IData VL_REDAND_IW(int, int lbits, WDataInP lwp) VL_MT_SAFE {
|
|
int words = VL_WORDS_I(lbits);
|
|
EData combine = lwp[0];
|
|
for (int i = 1; i < words - 1; ++i) combine &= lwp[i];
|
|
combine &= ~VL_MASK_E(lbits) | lwp[words - 1];
|
|
return ((~combine) == 0);
|
|
}
|
|
|
|
// EMIT_RULE: VL_REDOR: oclean=clean; lclean==clean; obits=1;
|
|
#define VL_REDOR_I(lhs) ((lhs) != 0)
|
|
#define VL_REDOR_Q(lhs) ((lhs) != 0)
|
|
static inline IData VL_REDOR_W(int words, WDataInP lwp) VL_MT_SAFE {
|
|
EData equal = 0;
|
|
for (int i = 0; i < words; ++i) equal |= lwp[i];
|
|
return (equal != 0);
|
|
}
|
|
|
|
// EMIT_RULE: VL_REDXOR: oclean=dirty; obits=1;
|
|
static inline IData VL_REDXOR_2(IData r) VL_PURE {
|
|
// Experiments show VL_REDXOR_2 is faster than __builtin_parityl
|
|
r = (r ^ (r >> 1));
|
|
return r;
|
|
}
|
|
static inline IData VL_REDXOR_4(IData r) VL_PURE {
|
|
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
|
|
return __builtin_parityl(r);
|
|
#else
|
|
r = (r ^ (r >> 1));
|
|
r = (r ^ (r >> 2));
|
|
return r;
|
|
#endif
|
|
}
|
|
static inline IData VL_REDXOR_8(IData r) VL_PURE {
|
|
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
|
|
return __builtin_parityl(r);
|
|
#else
|
|
r = (r ^ (r >> 1));
|
|
r = (r ^ (r >> 2));
|
|
r = (r ^ (r >> 4));
|
|
return r;
|
|
#endif
|
|
}
|
|
static inline IData VL_REDXOR_16(IData r) VL_PURE {
|
|
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
|
|
return __builtin_parityl(r);
|
|
#else
|
|
r = (r ^ (r >> 1));
|
|
r = (r ^ (r >> 2));
|
|
r = (r ^ (r >> 4));
|
|
r = (r ^ (r >> 8));
|
|
return r;
|
|
#endif
|
|
}
|
|
static inline IData VL_REDXOR_32(IData r) VL_PURE {
|
|
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
|
|
return __builtin_parityl(r);
|
|
#else
|
|
r = (r ^ (r >> 1));
|
|
r = (r ^ (r >> 2));
|
|
r = (r ^ (r >> 4));
|
|
r = (r ^ (r >> 8));
|
|
r = (r ^ (r >> 16));
|
|
return r;
|
|
#endif
|
|
}
|
|
static inline IData VL_REDXOR_64(QData r) VL_PURE {
|
|
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
|
|
return __builtin_parityll(r);
|
|
#else
|
|
r = (r ^ (r >> 1));
|
|
r = (r ^ (r >> 2));
|
|
r = (r ^ (r >> 4));
|
|
r = (r ^ (r >> 8));
|
|
r = (r ^ (r >> 16));
|
|
r = (r ^ (r >> 32));
|
|
return static_cast<IData>(r);
|
|
#endif
|
|
}
|
|
static inline IData VL_REDXOR_W(int words, WDataInP lwp) VL_MT_SAFE {
|
|
EData r = lwp[0];
|
|
for (int i = 1; i < words; ++i) r ^= lwp[i];
|
|
return VL_REDXOR_32(r);
|
|
}
|
|
|
|
// EMIT_RULE: VL_COUNTONES_II: oclean = false; lhs clean
|
|
static inline IData VL_COUNTONES_I(IData lhs) VL_PURE {
|
|
// This is faster than __builtin_popcountl
|
|
IData r = lhs - ((lhs >> 1) & 033333333333) - ((lhs >> 2) & 011111111111);
|
|
r = (r + (r >> 3)) & 030707070707;
|
|
r = (r + (r >> 6));
|
|
r = (r + (r >> 12) + (r >> 24)) & 077;
|
|
return r;
|
|
}
|
|
static inline IData VL_COUNTONES_Q(QData lhs) VL_PURE {
|
|
return VL_COUNTONES_I(static_cast<IData>(lhs)) + VL_COUNTONES_I(static_cast<IData>(lhs >> 32));
|
|
}
|
|
#define VL_COUNTONES_E VL_COUNTONES_I
|
|
static inline IData VL_COUNTONES_W(int words, WDataInP lwp) VL_MT_SAFE {
|
|
EData r = 0;
|
|
for (int i = 0; i < words; ++i) r += VL_COUNTONES_E(lwp[i]);
|
|
return r;
|
|
}
|
|
|
|
// EMIT_RULE: VL_COUNTBITS_II: oclean = false; lhs clean
|
|
static inline IData VL_COUNTBITS_I(int lbits, IData lhs, IData ctrl0, IData ctrl1,
|
|
IData ctrl2) VL_PURE {
|
|
int ctrlSum = (ctrl0 & 0x1) + (ctrl1 & 0x1) + (ctrl2 & 0x1);
|
|
if (ctrlSum == 3) {
|
|
return VL_COUNTONES_I(lhs);
|
|
} else if (ctrlSum == 0) {
|
|
IData mask = (lbits == 32) ? -1 : ((1 << lbits) - 1);
|
|
return VL_COUNTONES_I(~lhs & mask);
|
|
} else {
|
|
return (lbits == 32) ? 32 : lbits;
|
|
}
|
|
}
|
|
static inline IData VL_COUNTBITS_Q(int lbits, QData lhs, IData ctrl0, IData ctrl1,
|
|
IData ctrl2) VL_PURE {
|
|
return VL_COUNTBITS_I(32, static_cast<IData>(lhs), ctrl0, ctrl1, ctrl2)
|
|
+ VL_COUNTBITS_I(lbits - 32, static_cast<IData>(lhs >> 32), ctrl0, ctrl1, ctrl2);
|
|
}
|
|
#define VL_COUNTBITS_E VL_COUNTBITS_I
|
|
static inline IData VL_COUNTBITS_W(int lbits, int words, WDataInP lwp, IData ctrl0, IData ctrl1,
|
|
IData ctrl2) VL_MT_SAFE {
|
|
EData r = 0;
|
|
IData wordLbits = 32;
|
|
for (int i = 0; i < words; ++i) {
|
|
if (i == words - 1) wordLbits = lbits % 32;
|
|
r += VL_COUNTBITS_E(wordLbits, lwp[i], ctrl0, ctrl1, ctrl2);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static inline IData VL_ONEHOT_I(IData lhs) VL_PURE {
|
|
return (((lhs & (lhs - 1)) == 0) & (lhs != 0));
|
|
}
|
|
static inline IData VL_ONEHOT_Q(QData lhs) VL_PURE {
|
|
return (((lhs & (lhs - 1)) == 0) & (lhs != 0));
|
|
}
|
|
static inline IData VL_ONEHOT_W(int words, WDataInP lwp) VL_MT_SAFE {
|
|
EData one = 0;
|
|
for (int i = 0; (i < words); ++i) {
|
|
if (lwp[i]) {
|
|
if (one) return 0;
|
|
one = 1;
|
|
if (lwp[i] & (lwp[i] - 1)) return 0;
|
|
}
|
|
}
|
|
return one;
|
|
}
|
|
|
|
static inline IData VL_ONEHOT0_I(IData lhs) VL_PURE { return ((lhs & (lhs - 1)) == 0); }
|
|
static inline IData VL_ONEHOT0_Q(QData lhs) VL_PURE { return ((lhs & (lhs - 1)) == 0); }
|
|
static inline IData VL_ONEHOT0_W(int words, WDataInP lwp) VL_MT_SAFE {
|
|
bool one = false;
|
|
for (int i = 0; (i < words); ++i) {
|
|
if (lwp[i]) {
|
|
if (one) return 0;
|
|
one = true;
|
|
if (lwp[i] & (lwp[i] - 1)) return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static inline IData VL_CLOG2_I(IData lhs) VL_PURE {
|
|
// There are faster algorithms, or fls GCC4 builtins, but rarely used
|
|
if (VL_UNLIKELY(!lhs)) return 0;
|
|
lhs--;
|
|
int shifts = 0;
|
|
for (; lhs != 0; ++shifts) lhs = lhs >> 1;
|
|
return shifts;
|
|
}
|
|
static inline IData VL_CLOG2_Q(QData lhs) VL_PURE {
|
|
if (VL_UNLIKELY(!lhs)) return 0;
|
|
lhs--;
|
|
int shifts = 0;
|
|
for (; lhs != 0; ++shifts) lhs = lhs >> 1ULL;
|
|
return shifts;
|
|
}
|
|
static inline IData VL_CLOG2_W(int words, WDataInP lwp) VL_MT_SAFE {
|
|
EData adjust = (VL_COUNTONES_W(words, lwp) == 1) ? 0 : 1;
|
|
for (int i = words - 1; i >= 0; --i) {
|
|
if (VL_UNLIKELY(lwp[i])) { // Shorter worst case if predict not taken
|
|
for (int bit = VL_EDATASIZE - 1; bit >= 0; --bit) {
|
|
if (VL_UNLIKELY(VL_BITISSET_E(lwp[i], bit))) {
|
|
return i * VL_EDATASIZE + bit + adjust;
|
|
}
|
|
}
|
|
// Can't get here - one bit must be set
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline IData VL_MOSTSETBITP1_W(int words, WDataInP lwp) VL_MT_SAFE {
|
|
// MSB set bit plus one; similar to FLS. 0=value is zero
|
|
for (int i = words - 1; i >= 0; --i) {
|
|
if (VL_UNLIKELY(lwp[i])) { // Shorter worst case if predict not taken
|
|
for (int bit = VL_EDATASIZE - 1; bit >= 0; --bit) {
|
|
if (VL_UNLIKELY(VL_BITISSET_E(lwp[i], bit))) return i * VL_EDATASIZE + bit + 1;
|
|
}
|
|
// Can't get here - one bit must be set
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
//===================================================================
|
|
// SIMPLE LOGICAL OPERATORS
|
|
|
|
// EMIT_RULE: VL_AND: oclean=lclean||rclean; obits=lbits; lbits==rbits;
|
|
static inline WDataOutP VL_AND_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
|
|
for (int i = 0; (i < words); ++i) owp[i] = (lwp[i] & rwp[i]);
|
|
return owp;
|
|
}
|
|
// EMIT_RULE: VL_OR: oclean=lclean&&rclean; obits=lbits; lbits==rbits;
|
|
static inline WDataOutP VL_OR_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
|
|
for (int i = 0; (i < words); ++i) owp[i] = (lwp[i] | rwp[i]);
|
|
return owp;
|
|
}
|
|
// EMIT_RULE: VL_CHANGEXOR: oclean=1; obits=32; lbits==rbits;
|
|
static inline IData VL_CHANGEXOR_W(int words, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
|
|
IData od = 0;
|
|
for (int i = 0; (i < words); ++i) od |= (lwp[i] ^ rwp[i]);
|
|
return od;
|
|
}
|
|
// EMIT_RULE: VL_XOR: oclean=lclean&&rclean; obits=lbits; lbits==rbits;
|
|
static inline WDataOutP VL_XOR_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
|
|
for (int i = 0; (i < words); ++i) owp[i] = (lwp[i] ^ rwp[i]);
|
|
return owp;
|
|
}
|
|
// EMIT_RULE: VL_NOT: oclean=dirty; obits=lbits;
|
|
static inline WDataOutP VL_NOT_W(int words, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
|
|
for (int i = 0; i < words; ++i) owp[i] = ~(lwp[i]);
|
|
return owp;
|
|
}
|
|
|
|
//=========================================================================
|
|
// Logical comparisons
|
|
|
|
// EMIT_RULE: VL_EQ: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
|
|
// EMIT_RULE: VL_NEQ: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
|
|
// EMIT_RULE: VL_LT: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
|
|
// EMIT_RULE: VL_GT: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
|
|
// EMIT_RULE: VL_GTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
|
|
// EMIT_RULE: VL_LTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
|
|
#define VL_NEQ_W(words, lwp, rwp) (!VL_EQ_W(words, lwp, rwp))
|
|
#define VL_LT_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) < 0)
|
|
#define VL_LTE_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) <= 0)
|
|
#define VL_GT_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) > 0)
|
|
#define VL_GTE_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) >= 0)
|
|
|
|
// Output clean, <lhs> AND <rhs> MUST BE CLEAN
|
|
static inline IData VL_EQ_W(int words, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
|
|
EData nequal = 0;
|
|
for (int i = 0; (i < words); ++i) nequal |= (lwp[i] ^ rwp[i]);
|
|
return (nequal == 0);
|
|
}
|
|
|
|
// Internal usage
|
|
static inline int _vl_cmp_w(int words, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
|
|
for (int i = words - 1; i >= 0; --i) {
|
|
if (lwp[i] > rwp[i]) return 1;
|
|
if (lwp[i] < rwp[i]) return -1;
|
|
}
|
|
return 0; // ==
|
|
}
|
|
|
|
#define VL_LTS_IWW(obits, lbits, rbbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) < 0)
|
|
#define VL_LTES_IWW(obits, lbits, rbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) <= 0)
|
|
#define VL_GTS_IWW(obits, lbits, rbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) > 0)
|
|
#define VL_GTES_IWW(obits, lbits, rbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) >= 0)
|
|
|
|
static inline IData VL_GTS_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
|
|
// For lbits==32, this becomes just a single instruction, otherwise ~5.
|
|
// GCC 3.3.4 sign extension bugs on AMD64 architecture force us to use quad logic
|
|
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
|
|
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
|
|
return lhs_signed > rhs_signed;
|
|
}
|
|
static inline IData VL_GTS_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
|
|
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
|
|
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
|
|
return lhs_signed > rhs_signed;
|
|
}
|
|
|
|
static inline IData VL_GTES_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
|
|
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
|
|
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
|
|
return lhs_signed >= rhs_signed;
|
|
}
|
|
static inline IData VL_GTES_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
|
|
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
|
|
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
|
|
return lhs_signed >= rhs_signed;
|
|
}
|
|
|
|
static inline IData VL_LTS_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
|
|
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
|
|
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
|
|
return lhs_signed < rhs_signed;
|
|
}
|
|
static inline IData VL_LTS_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
|
|
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
|
|
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
|
|
return lhs_signed < rhs_signed;
|
|
}
|
|
|
|
static inline IData VL_LTES_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
|
|
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
|
|
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
|
|
return lhs_signed <= rhs_signed;
|
|
}
|
|
static inline IData VL_LTES_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
|
|
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
|
|
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
|
|
return lhs_signed <= rhs_signed;
|
|
}
|
|
|
|
static inline int _vl_cmps_w(int lbits, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
|
|
int words = VL_WORDS_I(lbits);
|
|
int i = words - 1;
|
|
// We need to flip sense if negative comparison
|
|
EData lsign = VL_SIGN_E(lbits, lwp[i]);
|
|
EData rsign = VL_SIGN_E(lbits, rwp[i]);
|
|
if (!lsign && rsign) return 1; // + > -
|
|
if (lsign && !rsign) return -1; // - < +
|
|
for (; i >= 0; --i) {
|
|
if (lwp[i] > rwp[i]) return 1;
|
|
if (lwp[i] < rwp[i]) return -1;
|
|
}
|
|
return 0; // ==
|
|
}
|
|
|
|
//=========================================================================
|
|
// Math
|
|
|
|
// Output NOT clean
|
|
static inline WDataOutP VL_NEGATE_W(int words, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
|
|
EData carry = 1;
|
|
for (int i = 0; i < words; ++i) {
|
|
owp[i] = ~lwp[i] + carry;
|
|
carry = (owp[i] < ~lwp[i]);
|
|
}
|
|
return owp;
|
|
}
|
|
static void VL_NEGATE_INPLACE_W(int words, WDataOutP owp_lwp) VL_MT_SAFE {
|
|
EData carry = 1;
|
|
for (int i = 0; i < words; ++i) {
|
|
EData word = ~owp_lwp[i] + carry;
|
|
carry = (word < ~owp_lwp[i]);
|
|
owp_lwp[i] = word;
|
|
}
|
|
}
|
|
|
|
// EMIT_RULE: VL_MUL: oclean=dirty; lclean==clean; rclean==clean;
|
|
// EMIT_RULE: VL_DIV: oclean=dirty; lclean==clean; rclean==clean;
|
|
// EMIT_RULE: VL_MODDIV: oclean=dirty; lclean==clean; rclean==clean;
|
|
#define VL_DIV_III(lbits, lhs, rhs) (((rhs) == 0) ? 0 : (lhs) / (rhs))
|
|
#define VL_DIV_QQQ(lbits, lhs, rhs) (((rhs) == 0) ? 0 : (lhs) / (rhs))
|
|
#define VL_DIV_WWW(lbits, owp, lwp, rwp) (_vl_moddiv_w(lbits, owp, lwp, rwp, 0))
|
|
#define VL_MODDIV_III(lbits, lhs, rhs) (((rhs) == 0) ? 0 : (lhs) % (rhs))
|
|
#define VL_MODDIV_QQQ(lbits, lhs, rhs) (((rhs) == 0) ? 0 : (lhs) % (rhs))
|
|
#define VL_MODDIV_WWW(lbits, owp, lwp, rwp) (_vl_moddiv_w(lbits, owp, lwp, rwp, 1))
|
|
|
|
static inline WDataOutP VL_ADD_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
|
|
QData carry = 0;
|
|
for (int i = 0; i < words; ++i) {
|
|
carry = carry + static_cast<QData>(lwp[i]) + static_cast<QData>(rwp[i]);
|
|
owp[i] = (carry & 0xffffffffULL);
|
|
carry = (carry >> 32ULL) & 0xffffffffULL;
|
|
}
|
|
// Last output word is dirty
|
|
return owp;
|
|
}
|
|
|
|
static inline WDataOutP VL_SUB_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
|
|
QData carry = 0;
|
|
for (int i = 0; i < words; ++i) {
|
|
carry = (carry + static_cast<QData>(lwp[i])
|
|
+ static_cast<QData>(static_cast<IData>(~rwp[i])));
|
|
if (i == 0) ++carry; // Negation of rwp
|
|
owp[i] = (carry & 0xffffffffULL);
|
|
carry = (carry >> 32ULL) & 0xffffffffULL;
|
|
}
|
|
// Last output word is dirty
|
|
return owp;
|
|
}
|
|
|
|
static inline WDataOutP VL_MUL_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
|
|
for (int i = 0; i < words; ++i) owp[i] = 0;
|
|
for (int lword = 0; lword < words; ++lword) {
|
|
for (int rword = 0; rword < words; ++rword) {
|
|
QData mul = static_cast<QData>(lwp[lword]) * static_cast<QData>(rwp[rword]);
|
|
for (int qword = lword + rword; qword < words; ++qword) {
|
|
mul += static_cast<QData>(owp[qword]);
|
|
owp[qword] = (mul & 0xffffffffULL);
|
|
mul = (mul >> 32ULL) & 0xffffffffULL;
|
|
}
|
|
}
|
|
}
|
|
// Last output word is dirty
|
|
return owp;
|
|
}
|
|
|
|
static inline IData VL_MULS_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
|
|
vlsint32_t lhs_signed = VL_EXTENDS_II(32, lbits, lhs);
|
|
vlsint32_t rhs_signed = VL_EXTENDS_II(32, lbits, rhs);
|
|
return lhs_signed * rhs_signed;
|
|
}
|
|
static inline QData VL_MULS_QQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
|
|
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
|
|
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
|
|
return lhs_signed * rhs_signed;
|
|
}
|
|
|
|
static inline WDataOutP VL_MULS_WWW(int, int lbits, int, WDataOutP owp, WDataInP lwp,
|
|
WDataInP rwp) VL_MT_SAFE {
|
|
int words = VL_WORDS_I(lbits);
|
|
// cppcheck-suppress variableScope
|
|
WData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
|
|
// cppcheck-suppress variableScope
|
|
WData rwstore[VL_MULS_MAX_WORDS];
|
|
WDataInP lwusp = lwp;
|
|
WDataInP rwusp = rwp;
|
|
EData lneg = VL_SIGN_E(lbits, lwp[words - 1]);
|
|
if (lneg) { // Negate lhs
|
|
lwusp = lwstore;
|
|
VL_NEGATE_W(words, lwstore, lwp);
|
|
lwstore[words - 1] &= VL_MASK_E(lbits); // Clean it
|
|
}
|
|
EData rneg = VL_SIGN_E(lbits, rwp[words - 1]);
|
|
if (rneg) { // Negate rhs
|
|
rwusp = rwstore;
|
|
VL_NEGATE_W(words, rwstore, rwp);
|
|
rwstore[words - 1] &= VL_MASK_E(lbits); // Clean it
|
|
}
|
|
VL_MUL_W(words, owp, lwusp, rwusp);
|
|
owp[words - 1] &= VL_MASK_E(
|
|
lbits); // Clean. Note it's ok for the multiply to overflow into the sign bit
|
|
if ((lneg ^ rneg) & 1) { // Negate output (not using NEGATE, as owp==lwp)
|
|
QData carry = 0;
|
|
for (int i = 0; i < words; ++i) {
|
|
carry = carry + static_cast<QData>(static_cast<IData>(~owp[i]));
|
|
if (i == 0) ++carry; // Negation of temp2
|
|
owp[i] = (carry & 0xffffffffULL);
|
|
carry = (carry >> 32ULL) & 0xffffffffULL;
|
|
}
|
|
// Not needed: owp[words-1] |= 1<<VL_BITBIT_E(lbits-1); // Set sign bit
|
|
}
|
|
// Last output word is dirty
|
|
return owp;
|
|
}
|
|
|
|
static inline IData VL_DIVS_III(int lbits, IData lhs, IData rhs) VL_PURE {
|
|
if (VL_UNLIKELY(rhs == 0)) return 0;
|
|
// -MAX / -1 cannot be represented in twos complement, and will cause SIGFPE
|
|
if (VL_UNLIKELY(lhs == 0x80000000 && rhs == 0xffffffff)) return 0;
|
|
vlsint32_t lhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, lhs);
|
|
vlsint32_t rhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, rhs);
|
|
return lhs_signed / rhs_signed;
|
|
}
|
|
static inline QData VL_DIVS_QQQ(int lbits, QData lhs, QData rhs) VL_PURE {
|
|
if (VL_UNLIKELY(rhs == 0)) return 0;
|
|
// -MAX / -1 cannot be represented in twos complement, and will cause SIGFPE
|
|
if (VL_UNLIKELY(lhs == 0x8000000000000000ULL && rhs == 0xffffffffffffffffULL)) return 0;
|
|
vlsint64_t lhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, lhs);
|
|
vlsint64_t rhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, rhs);
|
|
return lhs_signed / rhs_signed;
|
|
}
|
|
static inline IData VL_MODDIVS_III(int lbits, IData lhs, IData rhs) VL_PURE {
|
|
if (VL_UNLIKELY(rhs == 0)) return 0;
|
|
if (VL_UNLIKELY(lhs == 0x80000000 && rhs == 0xffffffff)) return 0;
|
|
vlsint32_t lhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, lhs);
|
|
vlsint32_t rhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, rhs);
|
|
return lhs_signed % rhs_signed;
|
|
}
|
|
static inline QData VL_MODDIVS_QQQ(int lbits, QData lhs, QData rhs) VL_PURE {
|
|
if (VL_UNLIKELY(rhs == 0)) return 0;
|
|
if (VL_UNLIKELY(lhs == 0x8000000000000000ULL && rhs == 0xffffffffffffffffULL)) return 0;
|
|
vlsint64_t lhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, lhs);
|
|
vlsint64_t rhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, rhs);
|
|
return lhs_signed % rhs_signed;
|
|
}
|
|
|
|
static inline WDataOutP VL_DIVS_WWW(int lbits, WDataOutP owp, WDataInP lwp,
|
|
WDataInP rwp) VL_MT_SAFE {
|
|
int words = VL_WORDS_I(lbits);
|
|
EData lsign = VL_SIGN_E(lbits, lwp[words - 1]);
|
|
EData rsign = VL_SIGN_E(lbits, rwp[words - 1]);
|
|
// cppcheck-suppress variableScope
|
|
WData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
|
|
// cppcheck-suppress variableScope
|
|
WData rwstore[VL_MULS_MAX_WORDS];
|
|
WDataInP ltup = lwp;
|
|
WDataInP rtup = rwp;
|
|
if (lsign) ltup = _vl_clean_inplace_w(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), lwstore, lwp));
|
|
if (rsign) rtup = _vl_clean_inplace_w(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), rwstore, rwp));
|
|
if ((lsign && !rsign) || (!lsign && rsign)) {
|
|
WData qNoSign[VL_MULS_MAX_WORDS];
|
|
VL_DIV_WWW(lbits, qNoSign, ltup, rtup);
|
|
_vl_clean_inplace_w(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), owp, qNoSign));
|
|
return owp;
|
|
} else {
|
|
return VL_DIV_WWW(lbits, owp, ltup, rtup);
|
|
}
|
|
}
|
|
static inline WDataOutP VL_MODDIVS_WWW(int lbits, WDataOutP owp, WDataInP lwp,
|
|
WDataInP rwp) VL_MT_SAFE {
|
|
int words = VL_WORDS_I(lbits);
|
|
EData lsign = VL_SIGN_E(lbits, lwp[words - 1]);
|
|
EData rsign = VL_SIGN_E(lbits, rwp[words - 1]);
|
|
// cppcheck-suppress variableScope
|
|
WData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
|
|
// cppcheck-suppress variableScope
|
|
WData rwstore[VL_MULS_MAX_WORDS];
|
|
WDataInP ltup = lwp;
|
|
WDataInP rtup = rwp;
|
|
if (lsign) ltup = _vl_clean_inplace_w(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), lwstore, lwp));
|
|
if (rsign) rtup = _vl_clean_inplace_w(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), rwstore, rwp));
|
|
if (lsign) { // Only dividend sign matters for modulus
|
|
WData qNoSign[VL_MULS_MAX_WORDS];
|
|
VL_MODDIV_WWW(lbits, qNoSign, ltup, rtup);
|
|
_vl_clean_inplace_w(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), owp, qNoSign));
|
|
return owp;
|
|
} else {
|
|
return VL_MODDIV_WWW(lbits, owp, ltup, rtup);
|
|
}
|
|
}
|
|
|
|
#define VL_POW_IIQ(obits, lbits, rbits, lhs, rhs) VL_POW_QQQ(obits, lbits, rbits, lhs, rhs)
|
|
#define VL_POW_IIW(obits, lbits, rbits, lhs, rwp) VL_POW_QQW(obits, lbits, rbits, lhs, rwp)
|
|
#define VL_POW_QQI(obits, lbits, rbits, lhs, rhs) VL_POW_QQQ(obits, lbits, rbits, lhs, rhs)
|
|
#define VL_POW_WWI(obits, lbits, rbits, owp, lwp, rhs) \
|
|
VL_POW_WWQ(obits, lbits, rbits, owp, lwp, rhs)
|
|
|
|
static inline IData VL_POW_III(int, int, int rbits, IData lhs, IData rhs) VL_PURE {
|
|
if (VL_UNLIKELY(rhs == 0)) return 1;
|
|
if (VL_UNLIKELY(lhs == 0)) return 0;
|
|
IData power = lhs;
|
|
IData out = 1;
|
|
for (int i = 0; i < rbits; ++i) {
|
|
if (i > 0) power = power * power;
|
|
if (rhs & (1ULL << i)) out *= power;
|
|
}
|
|
return out;
|
|
}
|
|
static inline QData VL_POW_QQQ(int, int, int rbits, QData lhs, QData rhs) VL_PURE {
|
|
if (VL_UNLIKELY(rhs == 0)) return 1;
|
|
if (VL_UNLIKELY(lhs == 0)) return 0;
|
|
QData power = lhs;
|
|
QData out = 1ULL;
|
|
for (int i = 0; i < rbits; ++i) {
|
|
if (i > 0) power = power * power;
|
|
if (rhs & (1ULL << i)) out *= power;
|
|
}
|
|
return out;
|
|
}
|
|
WDataOutP VL_POW_WWW(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, WDataInP rwp);
|
|
WDataOutP VL_POW_WWQ(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, QData rhs);
|
|
QData VL_POW_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp);
|
|
|
|
#define VL_POWSS_IIQ(obits, lbits, rbits, lhs, rhs, lsign, rsign) \
|
|
VL_POWSS_QQQ(obits, lbits, rbits, lhs, rhs, lsign, rsign)
|
|
#define VL_POWSS_IIQ(obits, lbits, rbits, lhs, rhs, lsign, rsign) \
|
|
VL_POWSS_QQQ(obits, lbits, rbits, lhs, rhs, lsign, rsign)
|
|
#define VL_POWSS_IIW(obits, lbits, rbits, lhs, rwp, lsign, rsign) \
|
|
VL_POWSS_QQW(obits, lbits, rbits, lhs, rwp, lsign, rsign)
|
|
#define VL_POWSS_QQI(obits, lbits, rbits, lhs, rhs, lsign, rsign) \
|
|
VL_POWSS_QQQ(obits, lbits, rbits, lhs, rhs, lsign, rsign)
|
|
#define VL_POWSS_WWI(obits, lbits, rbits, owp, lwp, rhs, lsign, rsign) \
|
|
VL_POWSS_WWQ(obits, lbits, rbits, owp, lwp, rhs, lsign, rsign)
|
|
|
|
static inline IData VL_POWSS_III(int obits, int, int rbits, IData lhs, IData rhs, bool lsign,
|
|
bool rsign) VL_MT_SAFE {
|
|
if (VL_UNLIKELY(rhs == 0)) return 1;
|
|
if (rsign && VL_SIGN_I(rbits, rhs)) {
|
|
if (lhs == 0) {
|
|
return 0; // "X"
|
|
} else if (lhs == 1) {
|
|
return 1;
|
|
} else if (lsign && lhs == VL_MASK_I(obits)) { // -1
|
|
if (rhs & 1) {
|
|
return VL_MASK_I(obits); // -1^odd=-1
|
|
} else {
|
|
return 1; // -1^even=1
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
return VL_POW_III(obits, rbits, rbits, lhs, rhs);
|
|
}
|
|
static inline QData VL_POWSS_QQQ(int obits, int, int rbits, QData lhs, QData rhs, bool lsign,
|
|
bool rsign) VL_MT_SAFE {
|
|
if (VL_UNLIKELY(rhs == 0)) return 1;
|
|
if (rsign && VL_SIGN_Q(rbits, rhs)) {
|
|
if (lhs == 0) {
|
|
return 0; // "X"
|
|
} else if (lhs == 1) {
|
|
return 1;
|
|
} else if (lsign && lhs == VL_MASK_Q(obits)) { // -1
|
|
if (rhs & 1) {
|
|
return VL_MASK_Q(obits); // -1^odd=-1
|
|
} else {
|
|
return 1; // -1^even=1
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
return VL_POW_QQQ(obits, rbits, rbits, lhs, rhs);
|
|
}
|
|
WDataOutP VL_POWSS_WWW(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, WDataInP rwp,
|
|
bool lsign, bool rsign);
|
|
WDataOutP VL_POWSS_WWQ(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, QData rhs,
|
|
bool lsign, bool rsign);
|
|
QData VL_POWSS_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp, bool lsign, bool rsign);
|
|
|
|
//===================================================================
|
|
// Concat/replication
|
|
|
|
// INTERNAL: Stuff LHS bit 0++ into OUTPUT at specified offset
|
|
// ld may be "dirty", output is clean
|
|
static inline void _vl_insert_II(int, CData& lhsr, IData ld, int hbit, int lbit,
|
|
int rbits) VL_PURE {
|
|
IData cleanmask = VL_MASK_I(rbits);
|
|
IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit;
|
|
lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask));
|
|
}
|
|
static inline void _vl_insert_II(int, SData& lhsr, IData ld, int hbit, int lbit,
|
|
int rbits) VL_PURE {
|
|
IData cleanmask = VL_MASK_I(rbits);
|
|
IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit;
|
|
lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask));
|
|
}
|
|
static inline void _vl_insert_II(int, IData& lhsr, IData ld, int hbit, int lbit,
|
|
int rbits) VL_PURE {
|
|
IData cleanmask = VL_MASK_I(rbits);
|
|
IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit;
|
|
lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask));
|
|
}
|
|
static inline void _vl_insert_QQ(int, QData& lhsr, QData ld, int hbit, int lbit,
|
|
int rbits) VL_PURE {
|
|
QData cleanmask = VL_MASK_Q(rbits);
|
|
QData insmask = (VL_MASK_Q(hbit - lbit + 1)) << lbit;
|
|
lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask));
|
|
}
|
|
static inline void _vl_insert_WI(int, WDataOutP owp, IData ld, int hbit, int lbit,
|
|
int rbits = 0) VL_MT_SAFE {
|
|
int hoffset = VL_BITBIT_E(hbit);
|
|
int loffset = VL_BITBIT_E(lbit);
|
|
int roffset = VL_BITBIT_E(rbits);
|
|
int hword = VL_BITWORD_E(hbit);
|
|
int lword = VL_BITWORD_E(lbit);
|
|
int rword = VL_BITWORD_E(rbits);
|
|
EData cleanmask = hword == rword ? VL_MASK_E(roffset) : VL_MASK_E(0);
|
|
|
|
if (hoffset == VL_SIZEBITS_E && loffset == 0) {
|
|
// Fast and common case, word based insertion
|
|
owp[VL_BITWORD_E(lbit)] = ld & cleanmask;
|
|
} else {
|
|
EData lde = static_cast<EData>(ld);
|
|
if (hword == lword) { // know < EData bits because above checks it
|
|
// Assignment is contained within one word of destination
|
|
EData insmask = (VL_MASK_E(hoffset - loffset + 1)) << loffset;
|
|
owp[lword] = (owp[lword] & ~insmask) | ((lde << loffset) & (insmask & cleanmask));
|
|
} else {
|
|
// Assignment crosses a word boundary in destination
|
|
EData hinsmask = (VL_MASK_E(hoffset - 0 + 1)) << 0;
|
|
EData linsmask = (VL_MASK_E((VL_EDATASIZE - 1) - loffset + 1)) << loffset;
|
|
int nbitsonright = VL_EDATASIZE - loffset; // bits that end up in lword
|
|
owp[lword] = (owp[lword] & ~linsmask) | ((lde << loffset) & linsmask);
|
|
owp[hword]
|
|
= (owp[hword] & ~hinsmask) | ((lde >> nbitsonright) & (hinsmask & cleanmask));
|
|
}
|
|
}
|
|
}
|
|
|
|
// INTERNAL: Stuff large LHS bit 0++ into OUTPUT at specified offset
|
|
// lwp may be "dirty"
|
|
static inline void _vl_insert_WW(int, WDataOutP owp, WDataInP lwp, int hbit, int lbit,
|
|
int rbits = 0) VL_MT_SAFE {
|
|
int hoffset = VL_BITBIT_E(hbit);
|
|
int loffset = VL_BITBIT_E(lbit);
|
|
int roffset = VL_BITBIT_E(rbits);
|
|
int lword = VL_BITWORD_E(lbit);
|
|
int hword = VL_BITWORD_E(hbit);
|
|
int rword = VL_BITWORD_E(rbits);
|
|
int words = VL_WORDS_I(hbit - lbit + 1);
|
|
// Cleaning mask, only applied to top word of the assignment. Is a no-op
|
|
// if we don't assign to the top word of the destination.
|
|
EData cleanmask = hword == rword ? VL_MASK_E(roffset) : VL_MASK_E(0);
|
|
|
|
if (hoffset == VL_SIZEBITS_E && loffset == 0) {
|
|
// Fast and common case, word based insertion
|
|
for (int i = 0; i < (words - 1); ++i) owp[lword + i] = lwp[i];
|
|
owp[hword] = lwp[words - 1] & cleanmask;
|
|
} else if (loffset == 0) {
|
|
// Non-32bit, but nicely aligned, so stuff all but the last word
|
|
for (int i = 0; i < (words - 1); ++i) owp[lword + i] = lwp[i];
|
|
// Know it's not a full word as above fast case handled it
|
|
EData hinsmask = (VL_MASK_E(hoffset - 0 + 1));
|
|
owp[hword] = (owp[hword] & ~hinsmask) | (lwp[words - 1] & (hinsmask & cleanmask));
|
|
} else {
|
|
EData hinsmask = (VL_MASK_E(hoffset - 0 + 1)) << 0;
|
|
EData linsmask = (VL_MASK_E((VL_EDATASIZE - 1) - loffset + 1)) << loffset;
|
|
int nbitsonright = VL_EDATASIZE - loffset; // bits that end up in lword (know loffset!=0)
|
|
// Middle words
|
|
for (int i = 0; i < words; ++i) {
|
|
{ // Lower word
|
|
int oword = lword + i;
|
|
EData d = lwp[i] << loffset;
|
|
EData od = (owp[oword] & ~linsmask) | (d & linsmask);
|
|
if (oword == hword) {
|
|
owp[oword] = (owp[oword] & ~hinsmask) | (od & (hinsmask & cleanmask));
|
|
} else {
|
|
owp[oword] = od;
|
|
}
|
|
}
|
|
{ // Upper word
|
|
int oword = lword + i + 1;
|
|
if (oword <= hword) {
|
|
EData d = lwp[i] >> nbitsonright;
|
|
EData od = (d & ~linsmask) | (owp[oword] & linsmask);
|
|
if (oword == hword) {
|
|
owp[oword] = (owp[oword] & ~hinsmask) | (od & (hinsmask & cleanmask));
|
|
} else {
|
|
owp[oword] = od;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void _vl_insert_WQ(int obits, WDataOutP owp, QData ld, int hbit, int lbit,
|
|
int rbits = 0) VL_MT_SAFE {
|
|
WData lwp[VL_WQ_WORDS_E];
|
|
VL_SET_WQ(lwp, ld);
|
|
_vl_insert_WW(obits, owp, lwp, hbit, lbit, rbits);
|
|
}
|
|
|
|
// EMIT_RULE: VL_REPLICATE: oclean=clean>width32, dirty<=width32; lclean=clean; rclean==clean;
|
|
// RHS MUST BE CLEAN CONSTANT.
|
|
#define VL_REPLICATE_IOI(obits, lbits, rbits, ld, rep) (-(ld)) // Iff lbits==1
|
|
#define VL_REPLICATE_QOI(obits, lbits, rbits, ld, rep) (-(static_cast<QData>(ld))) // Iff lbits==1
|
|
|
|
static inline IData VL_REPLICATE_III(int, int lbits, int, IData ld, IData rep) VL_PURE {
|
|
IData returndata = ld;
|
|
for (unsigned i = 1; i < rep; ++i) {
|
|
returndata = returndata << lbits;
|
|
returndata |= ld;
|
|
}
|
|
return returndata;
|
|
}
|
|
static inline QData VL_REPLICATE_QII(int, int lbits, int, IData ld, IData rep) VL_PURE {
|
|
QData returndata = ld;
|
|
for (unsigned i = 1; i < rep; ++i) {
|
|
returndata = returndata << lbits;
|
|
returndata |= static_cast<QData>(ld);
|
|
}
|
|
return returndata;
|
|
}
|
|
static inline WDataOutP VL_REPLICATE_WII(int obits, int lbits, int, WDataOutP owp, IData ld,
|
|
IData rep) VL_MT_SAFE {
|
|
owp[0] = ld;
|
|
for (unsigned i = 1; i < rep; ++i) {
|
|
_vl_insert_WI(obits, owp, ld, i * lbits + lbits - 1, i * lbits);
|
|
}
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_REPLICATE_WQI(int obits, int lbits, int, WDataOutP owp, QData ld,
|
|
IData rep) VL_MT_SAFE {
|
|
VL_SET_WQ(owp, ld);
|
|
for (unsigned i = 1; i < rep; ++i) {
|
|
_vl_insert_WQ(obits, owp, ld, i * lbits + lbits - 1, i * lbits);
|
|
}
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_REPLICATE_WWI(int obits, int lbits, int, WDataOutP owp, WDataInP lwp,
|
|
IData rep) VL_MT_SAFE {
|
|
for (int i = 0; i < VL_WORDS_I(lbits); ++i) owp[i] = lwp[i];
|
|
for (unsigned i = 1; i < rep; ++i) {
|
|
_vl_insert_WW(obits, owp, lwp, i * lbits + lbits - 1, i * lbits);
|
|
}
|
|
return owp;
|
|
}
|
|
|
|
// Left stream operator. Output will always be clean. LHS and RHS must be clean.
|
|
// Special "fast" versions for slice sizes that are a power of 2. These use
|
|
// shifts and masks to execute faster than the slower for-loop approach where a
|
|
// subset of bits is copied in during each iteration.
|
|
static inline IData VL_STREAML_FAST_III(int, int lbits, int, IData ld, IData rd_log2) VL_PURE {
|
|
// Pre-shift bits in most-significant slice:
|
|
//
|
|
// If lbits is not a multiple of the slice size (i.e., lbits % rd != 0),
|
|
// then we end up with a "gap" in our reversed result. For example, if we
|
|
// have a 5-bit Verlilog signal (lbits=5) in an 8-bit C data type:
|
|
//
|
|
// ld = ---43210
|
|
//
|
|
// (where numbers are the Verilog signal bit numbers and '-' is an unused bit).
|
|
// Executing the switch statement below with a slice size of two (rd=2,
|
|
// rd_log2=1) produces:
|
|
//
|
|
// ret = 1032-400
|
|
//
|
|
// Pre-shifting the bits in the most-significant slice allows us to avoid
|
|
// this gap in the shuffled data:
|
|
//
|
|
// ld_adjusted = --4-3210
|
|
// ret = 10324---
|
|
IData ret = ld;
|
|
if (rd_log2) {
|
|
vluint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2); // max multiple of rd <= lbits
|
|
vluint32_t lbitsRem = lbits - lbitsFloor; // number of bits in most-sig slice (MSS)
|
|
IData msbMask = VL_MASK_I(lbitsRem) << lbitsFloor; // mask to sel only bits in MSS
|
|
ret = (ret & ~msbMask) | ((ret & msbMask) << ((VL_UL(1) << rd_log2) - lbitsRem));
|
|
}
|
|
switch (rd_log2) {
|
|
case 0: ret = ((ret >> 1) & VL_UL(0x55555555)) | ((ret & VL_UL(0x55555555)) << 1); // FALLTHRU
|
|
case 1: ret = ((ret >> 2) & VL_UL(0x33333333)) | ((ret & VL_UL(0x33333333)) << 2); // FALLTHRU
|
|
case 2: ret = ((ret >> 4) & VL_UL(0x0f0f0f0f)) | ((ret & VL_UL(0x0f0f0f0f)) << 4); // FALLTHRU
|
|
case 3: ret = ((ret >> 8) & VL_UL(0x00ff00ff)) | ((ret & VL_UL(0x00ff00ff)) << 8); // FALLTHRU
|
|
case 4: ret = ((ret >> 16) | (ret << 16)); // FALLTHRU
|
|
default:;
|
|
}
|
|
return ret >> (VL_IDATASIZE - lbits);
|
|
}
|
|
|
|
static inline QData VL_STREAML_FAST_QQI(int, int lbits, int, QData ld, IData rd_log2) VL_PURE {
|
|
// Pre-shift bits in most-significant slice (see comment in VL_STREAML_FAST_III)
|
|
QData ret = ld;
|
|
if (rd_log2) {
|
|
vluint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2);
|
|
vluint32_t lbitsRem = lbits - lbitsFloor;
|
|
QData msbMask = VL_MASK_Q(lbitsRem) << lbitsFloor;
|
|
ret = (ret & ~msbMask) | ((ret & msbMask) << ((1ULL << rd_log2) - lbitsRem));
|
|
}
|
|
switch (rd_log2) {
|
|
case 0:
|
|
ret = (((ret >> 1) & 0x5555555555555555ULL)
|
|
| ((ret & 0x5555555555555555ULL) << 1)); // FALLTHRU
|
|
case 1:
|
|
ret = (((ret >> 2) & 0x3333333333333333ULL)
|
|
| ((ret & 0x3333333333333333ULL) << 2)); // FALLTHRU
|
|
case 2:
|
|
ret = (((ret >> 4) & 0x0f0f0f0f0f0f0f0fULL)
|
|
| ((ret & 0x0f0f0f0f0f0f0f0fULL) << 4)); // FALLTHRU
|
|
case 3:
|
|
ret = (((ret >> 8) & 0x00ff00ff00ff00ffULL)
|
|
| ((ret & 0x00ff00ff00ff00ffULL) << 8)); // FALLTHRU
|
|
case 4:
|
|
ret = (((ret >> 16) & 0x0000ffff0000ffffULL)
|
|
| ((ret & 0x0000ffff0000ffffULL) << 16)); // FALLTHRU
|
|
case 5: ret = ((ret >> 32) | (ret << 32)); // FALLTHRU
|
|
default:;
|
|
}
|
|
return ret >> (VL_QUADSIZE - lbits);
|
|
}
|
|
|
|
// Regular "slow" streaming operators
|
|
static inline IData VL_STREAML_III(int, int lbits, int, IData ld, IData rd) VL_PURE {
|
|
IData ret = 0;
|
|
// Slice size should never exceed the lhs width
|
|
IData mask = VL_MASK_I(rd);
|
|
for (int istart = 0; istart < lbits; istart += rd) {
|
|
int ostart = lbits - rd - istart;
|
|
ostart = ostart > 0 ? ostart : 0;
|
|
ret |= ((ld >> istart) & mask) << ostart;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline QData VL_STREAML_QQI(int, int lbits, int, QData ld, IData rd) VL_PURE {
|
|
QData ret = 0;
|
|
// Slice size should never exceed the lhs width
|
|
QData mask = VL_MASK_Q(rd);
|
|
for (int istart = 0; istart < lbits; istart += rd) {
|
|
int ostart = lbits - rd - istart;
|
|
ostart = ostart > 0 ? ostart : 0;
|
|
ret |= ((ld >> istart) & mask) << ostart;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline WDataOutP VL_STREAML_WWI(int, int lbits, int, WDataOutP owp, WDataInP lwp,
|
|
IData rd) VL_MT_SAFE {
|
|
VL_ZERO_W(lbits, owp);
|
|
// Slice size should never exceed the lhs width
|
|
int ssize = (rd < static_cast<IData>(lbits)) ? rd : (static_cast<IData>(lbits));
|
|
for (int istart = 0; istart < lbits; istart += rd) {
|
|
int ostart = lbits - rd - istart;
|
|
ostart = ostart > 0 ? ostart : 0;
|
|
for (int sbit = 0; sbit < ssize && sbit < lbits - istart; ++sbit) {
|
|
// Extract a single bit from lwp and shift it to the correct
|
|
// location for owp.
|
|
EData bit = (VL_BITRSHIFT_W(lwp, (istart + sbit)) & 1) << VL_BITBIT_E(ostart + sbit);
|
|
owp[VL_BITWORD_E(ostart + sbit)] |= bit;
|
|
}
|
|
}
|
|
return owp;
|
|
}
|
|
|
|
// Because concats are common and wide, it's valuable to always have a clean output.
|
|
// Thus we specify inputs must be clean, so we don't need to clean the output.
|
|
// Note the bit shifts are always constants, so the adds in these constify out.
|
|
// Casts required, as args may be 8 bit entities, and need to shift to appropriate output size
|
|
#define VL_CONCAT_III(obits, lbits, rbits, ld, rd) \
|
|
(static_cast<IData>(ld) << (rbits) | static_cast<IData>(rd))
|
|
#define VL_CONCAT_QII(obits, lbits, rbits, ld, rd) \
|
|
(static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))
|
|
#define VL_CONCAT_QIQ(obits, lbits, rbits, ld, rd) \
|
|
(static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))
|
|
#define VL_CONCAT_QQI(obits, lbits, rbits, ld, rd) \
|
|
(static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))
|
|
#define VL_CONCAT_QQQ(obits, lbits, rbits, ld, rd) \
|
|
(static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))
|
|
|
|
static inline WDataOutP VL_CONCAT_WII(int obits, int lbits, int rbits, WDataOutP owp, IData ld,
|
|
IData rd) VL_MT_SAFE {
|
|
owp[0] = rd;
|
|
for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
|
|
_vl_insert_WI(obits, owp, ld, rbits + lbits - 1, rbits);
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_CONCAT_WWI(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
|
|
IData rd) VL_MT_SAFE {
|
|
owp[0] = rd;
|
|
for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
|
|
_vl_insert_WW(obits, owp, lwp, rbits + lbits - 1, rbits);
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_CONCAT_WIW(int obits, int lbits, int rbits, WDataOutP owp, IData ld,
|
|
WDataInP rwp) VL_MT_SAFE {
|
|
for (int i = 0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i];
|
|
for (int i = VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
|
|
_vl_insert_WI(obits, owp, ld, rbits + lbits - 1, rbits);
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_CONCAT_WIQ(int obits, int lbits, int rbits, WDataOutP owp, IData ld,
|
|
QData rd) VL_MT_SAFE {
|
|
VL_SET_WQ(owp, rd);
|
|
for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
|
|
_vl_insert_WI(obits, owp, ld, rbits + lbits - 1, rbits);
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_CONCAT_WQI(int obits, int lbits, int rbits, WDataOutP owp, QData ld,
|
|
IData rd) VL_MT_SAFE {
|
|
owp[0] = rd;
|
|
for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
|
|
_vl_insert_WQ(obits, owp, ld, rbits + lbits - 1, rbits);
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_CONCAT_WQQ(int obits, int lbits, int rbits, WDataOutP owp, QData ld,
|
|
QData rd) VL_MT_SAFE {
|
|
VL_SET_WQ(owp, rd);
|
|
for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
|
|
_vl_insert_WQ(obits, owp, ld, rbits + lbits - 1, rbits);
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_CONCAT_WWQ(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
|
|
QData rd) VL_MT_SAFE {
|
|
VL_SET_WQ(owp, rd);
|
|
for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
|
|
_vl_insert_WW(obits, owp, lwp, rbits + lbits - 1, rbits);
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_CONCAT_WQW(int obits, int lbits, int rbits, WDataOutP owp, QData ld,
|
|
WDataInP rwp) VL_MT_SAFE {
|
|
for (int i = 0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i];
|
|
for (int i = VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
|
|
_vl_insert_WQ(obits, owp, ld, rbits + lbits - 1, rbits);
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_CONCAT_WWW(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
|
|
WDataInP rwp) VL_MT_SAFE {
|
|
for (int i = 0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i];
|
|
for (int i = VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
|
|
_vl_insert_WW(obits, owp, lwp, rbits + lbits - 1, rbits);
|
|
return owp;
|
|
}
|
|
|
|
//===================================================================
|
|
// Shifts
|
|
|
|
// Static shift, used by internal functions
|
|
// The output is the same as the input - it overlaps!
|
|
static inline void _vl_shiftl_inplace_w(int obits, WDataOutP iowp,
|
|
IData rd /*1 or 4*/) VL_MT_SAFE {
|
|
int words = VL_WORDS_I(obits);
|
|
EData linsmask = VL_MASK_E(rd);
|
|
for (int i = words - 1; i >= 1; --i) {
|
|
iowp[i]
|
|
= ((iowp[i] << rd) & ~linsmask) | ((iowp[i - 1] >> (VL_EDATASIZE - rd)) & linsmask);
|
|
}
|
|
iowp[0] = ((iowp[0] << rd) & ~linsmask);
|
|
iowp[VL_WORDS_I(obits) - 1] &= VL_MASK_E(obits);
|
|
}
|
|
|
|
// EMIT_RULE: VL_SHIFTL: oclean=lclean; rclean==clean;
|
|
// Important: Unlike most other funcs, the shift might well be a computed
|
|
// expression. Thus consider this when optimizing. (And perhaps have 2 funcs?)
|
|
static inline WDataOutP VL_SHIFTL_WWI(int obits, int, int, WDataOutP owp, WDataInP lwp,
|
|
IData rd) VL_MT_SAFE {
|
|
int word_shift = VL_BITWORD_E(rd);
|
|
int bit_shift = VL_BITBIT_E(rd);
|
|
if (rd >= static_cast<IData>(obits)) { // rd may be huge with MSB set
|
|
for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
|
|
} else if (bit_shift == 0) { // Aligned word shift (<<0,<<32,<<64 etc)
|
|
for (int i = 0; i < word_shift; ++i) owp[i] = 0;
|
|
for (int i = word_shift; i < VL_WORDS_I(obits); ++i) owp[i] = lwp[i - word_shift];
|
|
} else {
|
|
for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
|
|
_vl_insert_WW(obits, owp, lwp, obits - 1, rd);
|
|
}
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_SHIFTL_WWW(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
|
|
WDataInP rwp) VL_MT_SAFE {
|
|
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
|
|
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
|
|
return VL_ZERO_W(obits, owp);
|
|
}
|
|
}
|
|
return VL_SHIFTL_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
|
|
}
|
|
static inline WDataOutP VL_SHIFTL_WWQ(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
|
|
QData rd) VL_MT_SAFE {
|
|
WData rwp[VL_WQ_WORDS_E];
|
|
VL_SET_WQ(rwp, rd);
|
|
return VL_SHIFTL_WWW(obits, lbits, rbits, owp, lwp, rwp);
|
|
}
|
|
static inline IData VL_SHIFTL_IIW(int obits, int, int rbits, IData lhs, WDataInP rwp) VL_MT_SAFE {
|
|
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
|
|
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
|
|
return 0;
|
|
}
|
|
}
|
|
return VL_CLEAN_II(obits, obits, lhs << rwp[0]);
|
|
}
|
|
static inline IData VL_SHIFTL_IIQ(int obits, int lbits, int rbits, IData lhs,
|
|
QData rhs) VL_MT_SAFE {
|
|
if (VL_UNLIKELY(rhs >= VL_IDATASIZE)) return 0;
|
|
return VL_CLEAN_II(obits, obits, lhs << rhs);
|
|
}
|
|
static inline QData VL_SHIFTL_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp) VL_MT_SAFE {
|
|
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
|
|
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
|
|
return 0;
|
|
}
|
|
}
|
|
// Above checks rwp[1]==0 so not needed in below shift
|
|
return VL_CLEAN_QQ(obits, obits, lhs << (static_cast<QData>(rwp[0])));
|
|
}
|
|
static inline QData VL_SHIFTL_QQQ(int obits, int lbits, int rbits, QData lhs,
|
|
QData rhs) VL_MT_SAFE {
|
|
if (VL_UNLIKELY(rhs >= VL_QUADSIZE)) return 0;
|
|
return VL_CLEAN_QQ(obits, obits, lhs << rhs);
|
|
}
|
|
|
|
// EMIT_RULE: VL_SHIFTR: oclean=lclean; rclean==clean;
|
|
// Important: Unlike most other funcs, the shift might well be a computed
|
|
// expression. Thus consider this when optimizing. (And perhaps have 2 funcs?)
|
|
static inline WDataOutP VL_SHIFTR_WWI(int obits, int, int, WDataOutP owp, WDataInP lwp,
|
|
IData rd) VL_MT_SAFE {
|
|
int word_shift = VL_BITWORD_E(rd); // Maybe 0
|
|
int bit_shift = VL_BITBIT_E(rd);
|
|
if (rd >= static_cast<IData>(obits)) { // rd may be huge with MSB set
|
|
for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
|
|
} else if (bit_shift == 0) { // Aligned word shift (>>0,>>32,>>64 etc)
|
|
int copy_words = (VL_WORDS_I(obits) - word_shift);
|
|
for (int i = 0; i < copy_words; ++i) owp[i] = lwp[i + word_shift];
|
|
for (int i = copy_words; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
|
|
} else {
|
|
int loffset = rd & VL_SIZEBITS_E;
|
|
int nbitsonright = VL_EDATASIZE - loffset; // bits that end up in lword (know loffset!=0)
|
|
// Middle words
|
|
int words = VL_WORDS_I(obits - rd);
|
|
for (int i = 0; i < words; ++i) {
|
|
owp[i] = lwp[i + word_shift] >> loffset;
|
|
int upperword = i + word_shift + 1;
|
|
if (upperword < VL_WORDS_I(obits)) owp[i] |= lwp[upperword] << nbitsonright;
|
|
}
|
|
for (int i = words; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
|
|
}
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_SHIFTR_WWW(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
|
|
WDataInP rwp) VL_MT_SAFE {
|
|
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
|
|
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
|
|
return VL_ZERO_W(obits, owp);
|
|
}
|
|
}
|
|
return VL_SHIFTR_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
|
|
}
|
|
static inline WDataOutP VL_SHIFTR_WWQ(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
|
|
QData rd) VL_MT_SAFE {
|
|
WData rwp[VL_WQ_WORDS_E];
|
|
VL_SET_WQ(rwp, rd);
|
|
return VL_SHIFTR_WWW(obits, lbits, rbits, owp, lwp, rwp);
|
|
}
|
|
|
|
static inline IData VL_SHIFTR_IIW(int obits, int, int rbits, IData lhs, WDataInP rwp) VL_MT_SAFE {
|
|
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
|
|
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
|
|
return 0;
|
|
}
|
|
}
|
|
return VL_CLEAN_II(obits, obits, lhs >> rwp[0]);
|
|
}
|
|
static inline QData VL_SHIFTR_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp) VL_MT_SAFE {
|
|
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
|
|
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
|
|
return 0;
|
|
}
|
|
}
|
|
// Above checks rwp[1]==0 so not needed in below shift
|
|
return VL_CLEAN_QQ(obits, obits, lhs >> (static_cast<QData>(rwp[0])));
|
|
}
|
|
static inline IData VL_SHIFTR_IIQ(int obits, int, int rbits, IData lhs, QData rhs) VL_MT_SAFE {
|
|
if (VL_UNLIKELY(rhs >= VL_IDATASIZE)) return 0;
|
|
return VL_CLEAN_QQ(obits, obits, lhs >> rhs);
|
|
}
|
|
static inline QData VL_SHIFTR_QQQ(int obits, int, int rbits, QData lhs, QData rhs) VL_MT_SAFE {
|
|
if (VL_UNLIKELY(rhs >= VL_QUADSIZE)) return 0;
|
|
return VL_CLEAN_QQ(obits, obits, lhs >> rhs);
|
|
}
|
|
|
|
// EMIT_RULE: VL_SHIFTRS: oclean=false; lclean=clean, rclean==clean;
|
|
static inline IData VL_SHIFTRS_III(int obits, int lbits, int, IData lhs, IData rhs) VL_PURE {
|
|
// Note the C standard does not specify the >> operator as a arithmetic shift!
|
|
// IEEE says signed if output signed, but bit position from lbits;
|
|
// must use lbits for sign; lbits might != obits,
|
|
// an EXTEND(SHIFTRS(...)) can became a SHIFTRS(...) within same 32/64 bit word length
|
|
IData sign = -(lhs >> (lbits - 1)); // ffff_ffff if negative
|
|
IData signext = ~(VL_MASK_I(lbits) >> rhs); // One with bits where we've shifted "past"
|
|
return (lhs >> rhs) | (sign & VL_CLEAN_II(obits, obits, signext));
|
|
}
|
|
static inline QData VL_SHIFTRS_QQI(int obits, int lbits, int, QData lhs, IData rhs) VL_PURE {
|
|
QData sign = -(lhs >> (lbits - 1));
|
|
QData signext = ~(VL_MASK_Q(lbits) >> rhs);
|
|
return (lhs >> rhs) | (sign & VL_CLEAN_QQ(obits, obits, signext));
|
|
}
|
|
static inline IData VL_SHIFTRS_IQI(int obits, int lbits, int rbits, QData lhs, IData rhs) VL_PURE {
|
|
return static_cast<IData>(VL_SHIFTRS_QQI(obits, lbits, rbits, lhs, rhs));
|
|
}
|
|
static inline WDataOutP VL_SHIFTRS_WWI(int obits, int lbits, int, WDataOutP owp, WDataInP lwp,
|
|
IData rd) VL_MT_SAFE {
|
|
int word_shift = VL_BITWORD_E(rd);
|
|
int bit_shift = VL_BITBIT_E(rd);
|
|
int lmsw = VL_WORDS_I(obits) - 1;
|
|
EData sign = VL_SIGNONES_E(lbits, lwp[lmsw]);
|
|
if (rd >= static_cast<IData>(obits)) { // Shifting past end, sign in all of lbits
|
|
for (int i = 0; i <= lmsw; ++i) owp[i] = sign;
|
|
owp[lmsw] &= VL_MASK_E(lbits);
|
|
} else if (bit_shift == 0) { // Aligned word shift (>>0,>>32,>>64 etc)
|
|
int copy_words = (VL_WORDS_I(obits) - word_shift);
|
|
for (int i = 0; i < copy_words; ++i) owp[i] = lwp[i + word_shift];
|
|
if (copy_words >= 0) owp[copy_words - 1] |= ~VL_MASK_E(obits) & sign;
|
|
for (int i = copy_words; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
|
|
owp[lmsw] &= VL_MASK_E(lbits);
|
|
} else {
|
|
int loffset = rd & VL_SIZEBITS_E;
|
|
int nbitsonright = VL_EDATASIZE - loffset; // bits that end up in lword (know loffset!=0)
|
|
// Middle words
|
|
int words = VL_WORDS_I(obits - rd);
|
|
for (int i = 0; i < words; ++i) {
|
|
owp[i] = lwp[i + word_shift] >> loffset;
|
|
int upperword = i + word_shift + 1;
|
|
if (upperword < VL_WORDS_I(obits)) owp[i] |= lwp[upperword] << nbitsonright;
|
|
}
|
|
if (words) owp[words - 1] |= sign & ~VL_MASK_E(obits - loffset);
|
|
for (int i = words; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
|
|
owp[lmsw] &= VL_MASK_E(lbits);
|
|
}
|
|
return owp;
|
|
}
|
|
static inline WDataOutP VL_SHIFTRS_WWW(int obits, int lbits, int rbits, WDataOutP owp,
|
|
WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
|
|
EData overshift = 0; // Huge shift 1>>32 or more
|
|
for (int i = 1; i < VL_WORDS_I(rbits); ++i) overshift |= rwp[i];
|
|
if (VL_UNLIKELY(overshift || rwp[0] >= obits)) {
|
|
int lmsw = VL_WORDS_I(obits) - 1;
|
|
EData sign = VL_SIGNONES_E(lbits, lwp[lmsw]);
|
|
for (int j = 0; j <= lmsw; ++j) owp[j] = sign;
|
|
owp[lmsw] &= VL_MASK_E(lbits);
|
|
return owp;
|
|
}
|
|
return VL_SHIFTRS_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
|
|
}
|
|
static inline WDataOutP VL_SHIFTRS_WWQ(int obits, int lbits, int rbits, WDataOutP owp,
|
|
WDataInP lwp, QData rd) VL_MT_SAFE {
|
|
WData rwp[VL_WQ_WORDS_E];
|
|
VL_SET_WQ(rwp, rd);
|
|
return VL_SHIFTRS_WWW(obits, lbits, rbits, owp, lwp, rwp);
|
|
}
|
|
static inline IData VL_SHIFTRS_IIW(int obits, int lbits, int rbits, IData lhs,
|
|
WDataInP rwp) VL_MT_SAFE {
|
|
EData overshift = 0; // Huge shift 1>>32 or more
|
|
for (int i = 1; i < VL_WORDS_I(rbits); ++i) overshift |= rwp[i];
|
|
if (VL_UNLIKELY(overshift || rwp[0] >= obits)) {
|
|
IData sign = -(lhs >> (lbits - 1)); // ffff_ffff if negative
|
|
return VL_CLEAN_II(obits, obits, sign);
|
|
}
|
|
return VL_SHIFTRS_III(obits, lbits, 32, lhs, rwp[0]);
|
|
}
|
|
static inline QData VL_SHIFTRS_QQW(int obits, int lbits, int rbits, QData lhs,
|
|
WDataInP rwp) VL_MT_SAFE {
|
|
EData overshift = 0; // Huge shift 1>>32 or more
|
|
for (int i = 1; i < VL_WORDS_I(rbits); ++i) overshift |= rwp[i];
|
|
if (VL_UNLIKELY(overshift || rwp[0] >= obits)) {
|
|
QData sign = -(lhs >> (lbits - 1)); // ffff_ffff if negative
|
|
return VL_CLEAN_QQ(obits, obits, sign);
|
|
}
|
|
return VL_SHIFTRS_QQI(obits, lbits, 32, lhs, rwp[0]);
|
|
}
|
|
static inline IData VL_SHIFTRS_IIQ(int obits, int lbits, int rbits, IData lhs,
|
|
QData rhs) VL_MT_SAFE {
|
|
WData rwp[VL_WQ_WORDS_E];
|
|
VL_SET_WQ(rwp, rhs);
|
|
return VL_SHIFTRS_IIW(obits, lbits, rbits, lhs, rwp);
|
|
}
|
|
static inline QData VL_SHIFTRS_QQQ(int obits, int lbits, int rbits, QData lhs, QData rhs) VL_PURE {
|
|
WData rwp[VL_WQ_WORDS_E];
|
|
VL_SET_WQ(rwp, rhs);
|
|
return VL_SHIFTRS_QQW(obits, lbits, rbits, lhs, rwp);
|
|
}
|
|
|
|
//===================================================================
|
|
// Bit selection
|
|
|
|
// EMIT_RULE: VL_BITSEL: oclean=dirty; rclean==clean;
|
|
#define VL_BITSEL_IIII(obits, lbits, rbits, zbits, lhs, rhs) ((lhs) >> (rhs))
|
|
#define VL_BITSEL_QIII(obits, lbits, rbits, zbits, lhs, rhs) ((lhs) >> (rhs))
|
|
#define VL_BITSEL_QQII(obits, lbits, rbits, zbits, lhs, rhs) ((lhs) >> (rhs))
|
|
#define VL_BITSEL_IQII(obits, lbits, rbits, zbits, lhs, rhs) (static_cast<IData>((lhs) >> (rhs)))
|
|
|
|
static inline IData VL_BITSEL_IWII(int, int lbits, int, int, WDataInP lwp, IData rd) VL_MT_SAFE {
|
|
int word = VL_BITWORD_E(rd);
|
|
if (VL_UNLIKELY(rd > static_cast<IData>(lbits))) {
|
|
return ~0; // Spec says you can go outside the range of a array. Don't coredump if so.
|
|
// We return all 1's as that's more likely to find bugs (?) than 0's.
|
|
} else {
|
|
return (lwp[word] >> VL_BITBIT_E(rd));
|
|
}
|
|
}
|
|
|
|
// EMIT_RULE: VL_RANGE: oclean=lclean; out=dirty
|
|
// <msb> & <lsb> MUST BE CLEAN (currently constant)
|
|
#define VL_SEL_IIII(obits, lbits, rbits, tbits, lhs, lsb, width) ((lhs) >> (lsb))
|
|
#define VL_SEL_QQII(obits, lbits, rbits, tbits, lhs, lsb, width) ((lhs) >> (lsb))
|
|
#define VL_SEL_IQII(obits, lbits, rbits, tbits, lhs, lsb, width) \
|
|
(static_cast<IData>((lhs) >> (lsb)))
|
|
|
|
static inline IData VL_SEL_IWII(int, int lbits, int, int, WDataInP lwp, IData lsb,
|
|
IData width) VL_MT_SAFE {
|
|
int msb = lsb + width - 1;
|
|
if (VL_UNLIKELY(msb > lbits)) {
|
|
return ~0; // Spec says you can go outside the range of a array. Don't coredump if so.
|
|
} else if (VL_BITWORD_E(msb) == VL_BITWORD_E(static_cast<int>(lsb))) {
|
|
return VL_BITRSHIFT_W(lwp, lsb);
|
|
} else {
|
|
// 32 bit extraction may span two words
|
|
int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb); // bits that come from low word
|
|
return ((lwp[VL_BITWORD_E(msb)] << nbitsfromlow) | VL_BITRSHIFT_W(lwp, lsb));
|
|
}
|
|
}
|
|
|
|
static inline QData VL_SEL_QWII(int, int lbits, int, int, WDataInP lwp, IData lsb,
|
|
IData width) VL_MT_SAFE {
|
|
int msb = lsb + width - 1;
|
|
if (VL_UNLIKELY(msb > lbits)) {
|
|
return ~0; // Spec says you can go outside the range of a array. Don't coredump if so.
|
|
} else if (VL_BITWORD_E(msb) == VL_BITWORD_E(static_cast<int>(lsb))) {
|
|
return VL_BITRSHIFT_W(lwp, lsb);
|
|
} else if (VL_BITWORD_E(msb) == 1 + VL_BITWORD_E(static_cast<int>(lsb))) {
|
|
int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb);
|
|
QData hi = (lwp[VL_BITWORD_E(msb)]);
|
|
QData lo = VL_BITRSHIFT_W(lwp, lsb);
|
|
return (hi << nbitsfromlow) | lo;
|
|
} else {
|
|
// 64 bit extraction may span three words
|
|
int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb);
|
|
QData hi = (lwp[VL_BITWORD_E(msb)]);
|
|
QData mid = (lwp[VL_BITWORD_E(lsb) + 1]);
|
|
QData lo = VL_BITRSHIFT_W(lwp, lsb);
|
|
return (hi << (nbitsfromlow + VL_EDATASIZE)) | (mid << nbitsfromlow) | lo;
|
|
}
|
|
}
|
|
|
|
static inline WDataOutP VL_SEL_WWII(int obits, int lbits, int, int, WDataOutP owp, WDataInP lwp,
|
|
IData lsb, IData width) VL_MT_SAFE {
|
|
int msb = lsb + width - 1;
|
|
int word_shift = VL_BITWORD_E(lsb);
|
|
if (VL_UNLIKELY(msb > lbits)) { // Outside bounds,
|
|
for (int i = 0; i < VL_WORDS_I(obits) - 1; ++i) owp[i] = ~0;
|
|
owp[VL_WORDS_I(obits) - 1] = VL_MASK_E(obits);
|
|
} else if (VL_BITBIT_E(lsb) == 0) {
|
|
// Just a word extract
|
|
for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = lwp[i + word_shift];
|
|
} else {
|
|
// Not a _vl_insert because the bits come from any bit number and goto bit 0
|
|
int loffset = lsb & VL_SIZEBITS_E;
|
|
int nbitsfromlow = VL_EDATASIZE - loffset; // bits that end up in lword (know loffset!=0)
|
|
// Middle words
|
|
int words = VL_WORDS_I(msb - lsb + 1);
|
|
for (int i = 0; i < words; ++i) {
|
|
owp[i] = lwp[i + word_shift] >> loffset;
|
|
int upperword = i + word_shift + 1;
|
|
if (upperword <= static_cast<int>(VL_BITWORD_E(msb))) {
|
|
owp[i] |= lwp[upperword] << nbitsfromlow;
|
|
}
|
|
}
|
|
for (int i = words; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
|
|
}
|
|
return owp;
|
|
}
|
|
|
|
//======================================================================
|
|
// Math needing insert/select
|
|
|
|
// Return QData from double (numeric)
|
|
// EMIT_RULE: VL_RTOIROUND_Q_D: oclean=dirty; lclean==clean/real
|
|
static inline QData VL_RTOIROUND_Q_D(int, double lhs) VL_PURE {
|
|
// IEEE format: [63]=sign [62:52]=exp+1023 [51:0]=mantissa
|
|
// This does not need to support subnormals as they are sub-integral
|
|
lhs = VL_ROUND(lhs);
|
|
if (lhs == 0.0) return 0;
|
|
QData q = VL_CVT_Q_D(lhs);
|
|
int lsb = static_cast<int>((q >> 52ULL) & VL_MASK_Q(11)) - 1023 - 52;
|
|
vluint64_t mantissa = (q & VL_MASK_Q(52)) | (1ULL << 52);
|
|
vluint64_t out = 0;
|
|
if (lsb < 0) {
|
|
out = mantissa >> -lsb;
|
|
} else if (lsb < 64) {
|
|
out = mantissa << lsb;
|
|
}
|
|
if (lhs < 0) out = -out;
|
|
return out;
|
|
}
|
|
static inline IData VL_RTOIROUND_I_D(int bits, double lhs) VL_PURE {
|
|
return static_cast<IData>(VL_RTOIROUND_Q_D(bits, lhs));
|
|
}
|
|
static inline WDataOutP VL_RTOIROUND_W_D(int obits, WDataOutP owp, double lhs) VL_PURE {
|
|
// IEEE format: [63]=sign [62:52]=exp+1023 [51:0]=mantissa
|
|
// This does not need to support subnormals as they are sub-integral
|
|
lhs = VL_ROUND(lhs);
|
|
VL_ZERO_W(obits, owp);
|
|
if (lhs == 0.0) return owp;
|
|
QData q = VL_CVT_Q_D(lhs);
|
|
int lsb = static_cast<int>((q >> 52ULL) & VL_MASK_Q(11)) - 1023 - 52;
|
|
vluint64_t mantissa = (q & VL_MASK_Q(52)) | (1ULL << 52);
|
|
if (lsb < 0) {
|
|
VL_SET_WQ(owp, mantissa >> -lsb);
|
|
} else if (lsb < obits) {
|
|
_vl_insert_WQ(obits, owp, mantissa, lsb + 52, lsb);
|
|
}
|
|
if (lhs < 0) VL_NEGATE_INPLACE_W(VL_WORDS_I(obits), owp);
|
|
return owp;
|
|
}
|
|
|
|
//======================================================================
|
|
// Range assignments
|
|
|
|
// EMIT_RULE: VL_ASSIGNRANGE: rclean=dirty;
|
|
static inline void VL_ASSIGNSEL_IIII(int rbits, int obits, int lsb, CData& lhsr,
|
|
IData rhs) VL_PURE {
|
|
_vl_insert_II(obits, lhsr, rhs, lsb + obits - 1, lsb, rbits);
|
|
}
|
|
static inline void VL_ASSIGNSEL_IIII(int rbits, int obits, int lsb, SData& lhsr,
|
|
IData rhs) VL_PURE {
|
|
_vl_insert_II(obits, lhsr, rhs, lsb + obits - 1, lsb, rbits);
|
|
}
|
|
static inline void VL_ASSIGNSEL_IIII(int rbits, int obits, int lsb, IData& lhsr,
|
|
IData rhs) VL_PURE {
|
|
_vl_insert_II(obits, lhsr, rhs, lsb + obits - 1, lsb, rbits);
|
|
}
|
|
static inline void VL_ASSIGNSEL_QIII(int rbits, int obits, int lsb, QData& lhsr,
|
|
IData rhs) VL_PURE {
|
|
_vl_insert_QQ(obits, lhsr, rhs, lsb + obits - 1, lsb, rbits);
|
|
}
|
|
static inline void VL_ASSIGNSEL_QQII(int rbits, int obits, int lsb, QData& lhsr,
|
|
QData rhs) VL_PURE {
|
|
_vl_insert_QQ(obits, lhsr, rhs, lsb + obits - 1, lsb, rbits);
|
|
}
|
|
static inline void VL_ASSIGNSEL_QIIQ(int rbits, int obits, int lsb, QData& lhsr,
|
|
QData rhs) VL_PURE {
|
|
_vl_insert_QQ(obits, lhsr, rhs, lsb + obits - 1, lsb, rbits);
|
|
}
|
|
// static inline void VL_ASSIGNSEL_IIIW(int obits, int lsb, IData& lhsr, WDataInP rwp) VL_MT_SAFE {
|
|
// Illegal, as lhs width >= rhs width
|
|
static inline void VL_ASSIGNSEL_WIII(int rbits, int obits, int lsb, WDataOutP owp,
|
|
IData rhs) VL_MT_SAFE {
|
|
_vl_insert_WI(obits, owp, rhs, lsb + obits - 1, lsb, rbits);
|
|
}
|
|
static inline void VL_ASSIGNSEL_WIIQ(int rbits, int obits, int lsb, WDataOutP owp,
|
|
QData rhs) VL_MT_SAFE {
|
|
_vl_insert_WQ(obits, owp, rhs, lsb + obits - 1, lsb, rbits);
|
|
}
|
|
static inline void VL_ASSIGNSEL_WIIW(int rbits, int obits, int lsb, WDataOutP owp,
|
|
WDataInP rwp) VL_MT_SAFE {
|
|
_vl_insert_WW(obits, owp, rwp, lsb + obits - 1, lsb, rbits);
|
|
}
|
|
|
|
//======================================================================
|
|
// Triops
|
|
|
|
static inline WDataOutP VL_COND_WIWW(int obits, int, int, int, WDataOutP owp, int cond,
|
|
WDataInP w1p, WDataInP w2p) VL_MT_SAFE {
|
|
int words = VL_WORDS_I(obits);
|
|
for (int i = 0; i < words; ++i) owp[i] = cond ? w1p[i] : w2p[i];
|
|
return owp;
|
|
}
|
|
|
|
//======================================================================
|
|
// Constification
|
|
|
|
// VL_CONST_W_#X(int obits, WDataOutP owp, IData data0, .... IData data(#-1))
|
|
// Sets wide vector words to specified constant words.
|
|
// These macros are used when o might represent more words then are given as constants,
|
|
// hence all upper words must be zeroed.
|
|
// If changing the number of functions here, also change EMITCINLINES_NUM_CONSTW
|
|
|
|
#define VL_C_END_(obits, wordsSet) \
|
|
for (int i = (wordsSet); i < VL_WORDS_I(obits); ++i) o[i] = 0; \
|
|
return o
|
|
|
|
// clang-format off
|
|
static inline WDataOutP VL_CONST_W_1X(int obits, WDataOutP o, EData d0) VL_MT_SAFE {
|
|
o[0] = d0;
|
|
VL_C_END_(obits, 1);
|
|
}
|
|
static inline WDataOutP VL_CONST_W_2X(int obits, WDataOutP o, EData d1, EData d0) VL_MT_SAFE {
|
|
o[0] = d0; o[1] = d1;
|
|
VL_C_END_(obits, 2);
|
|
}
|
|
static inline WDataOutP VL_CONST_W_3X(int obits, WDataOutP o, EData d2, EData d1,
|
|
EData d0) VL_MT_SAFE {
|
|
o[0] = d0; o[1] = d1; o[2] = d2;
|
|
VL_C_END_(obits,3);
|
|
}
|
|
static inline WDataOutP VL_CONST_W_4X(int obits, WDataOutP o,
|
|
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
|
|
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
|
|
VL_C_END_(obits,4);
|
|
}
|
|
static inline WDataOutP VL_CONST_W_5X(int obits, WDataOutP o,
|
|
EData d4,
|
|
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
|
|
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
|
|
o[4] = d4;
|
|
VL_C_END_(obits,5);
|
|
}
|
|
static inline WDataOutP VL_CONST_W_6X(int obits, WDataOutP o,
|
|
EData d5, EData d4,
|
|
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
|
|
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
|
|
o[4] = d4; o[5] = d5;
|
|
VL_C_END_(obits,6);
|
|
}
|
|
static inline WDataOutP VL_CONST_W_7X(int obits, WDataOutP o,
|
|
EData d6, EData d5, EData d4,
|
|
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
|
|
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
|
|
o[4] = d4; o[5] = d5; o[6] = d6;
|
|
VL_C_END_(obits,7);
|
|
}
|
|
static inline WDataOutP VL_CONST_W_8X(int obits, WDataOutP o,
|
|
EData d7, EData d6, EData d5, EData d4,
|
|
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
|
|
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
|
|
o[4] = d4; o[5] = d5; o[6] = d6; o[7] = d7;
|
|
VL_C_END_(obits,8);
|
|
}
|
|
//
|
|
static inline WDataOutP VL_CONSTHI_W_1X(int obits, int lsb, WDataOutP obase,
|
|
EData d0) VL_MT_SAFE {
|
|
WDataOutP o = obase + VL_WORDS_I(lsb);
|
|
o[0] = d0;
|
|
VL_C_END_(obits, VL_WORDS_I(lsb) + 1);
|
|
}
|
|
static inline WDataOutP VL_CONSTHI_W_2X(int obits, int lsb, WDataOutP obase,
|
|
EData d1, EData d0) VL_MT_SAFE {
|
|
WDataOutP o = obase + VL_WORDS_I(lsb);
|
|
o[0] = d0; o[1] = d1;
|
|
VL_C_END_(obits, VL_WORDS_I(lsb) + 2);
|
|
}
|
|
static inline WDataOutP VL_CONSTHI_W_3X(int obits, int lsb, WDataOutP obase,
|
|
EData d2, EData d1, EData d0) VL_MT_SAFE {
|
|
WDataOutP o = obase + VL_WORDS_I(lsb);
|
|
o[0] = d0; o[1] = d1; o[2] = d2;
|
|
VL_C_END_(obits, VL_WORDS_I(lsb) + 3);
|
|
}
|
|
static inline WDataOutP VL_CONSTHI_W_4X(int obits, int lsb, WDataOutP obase,
|
|
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
|
|
WDataOutP o = obase + VL_WORDS_I(lsb);
|
|
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
|
|
VL_C_END_(obits, VL_WORDS_I(lsb) + 4);
|
|
}
|
|
static inline WDataOutP VL_CONSTHI_W_5X(int obits, int lsb, WDataOutP obase,
|
|
EData d4,
|
|
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
|
|
WDataOutP o = obase + VL_WORDS_I(lsb);
|
|
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
|
|
o[4] = d4;
|
|
VL_C_END_(obits, VL_WORDS_I(lsb) + 5);
|
|
}
|
|
static inline WDataOutP VL_CONSTHI_W_6X(int obits, int lsb, WDataOutP obase,
|
|
EData d5, EData d4,
|
|
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
|
|
WDataOutP o = obase + VL_WORDS_I(lsb);
|
|
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
|
|
o[4] = d4; o[5] = d5;
|
|
VL_C_END_(obits, VL_WORDS_I(lsb) + 6);
|
|
}
|
|
static inline WDataOutP VL_CONSTHI_W_7X(int obits, int lsb, WDataOutP obase,
|
|
EData d6, EData d5, EData d4,
|
|
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
|
|
WDataOutP o = obase + VL_WORDS_I(lsb);
|
|
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
|
|
o[4] = d4; o[5] = d5; o[6] = d6;
|
|
VL_C_END_(obits, VL_WORDS_I(lsb) + 7);
|
|
}
|
|
static inline WDataOutP VL_CONSTHI_W_8X(int obits, int lsb, WDataOutP obase,
|
|
EData d7, EData d6, EData d5, EData d4,
|
|
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
|
|
WDataOutP o = obase + VL_WORDS_I(lsb);
|
|
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
|
|
o[4] = d4; o[5] = d5; o[6] = d6; o[7] = d7;
|
|
VL_C_END_(obits, VL_WORDS_I(lsb) + 8);
|
|
}
|
|
|
|
#undef VL_C_END_
|
|
|
|
// Partial constant, lower words of vector wider than 8*32, starting at bit number lsb
|
|
static inline void VL_CONSTLO_W_8X(int lsb, WDataOutP obase,
|
|
EData d7, EData d6, EData d5, EData d4,
|
|
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
|
|
WDataOutP o = obase + VL_WORDS_I(lsb);
|
|
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3; o[4] = d4; o[5] = d5; o[6] = d6; o[7] = d7;
|
|
}
|
|
// clang-format on
|
|
|
|
//======================================================================
|
|
|
|
#endif // Guard
|