verilator/include/verilated.h
2020-03-21 11:24:24 -04:00

2391 lines
103 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Copyright 2003-2020 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
///
/// \file
/// \brief Verilator: Common include for all Verilated C files
///
/// This file is included automatically by Verilator at the top of
/// all C++ files it generates. It contains standard macros and
/// classes required by the Verilated code.
///
/// Code available from: https://verilator.org
///
//*************************************************************************
#ifndef _VERILATED_H_
#define _VERILATED_H_ 1 ///< Header Guard
#include "verilatedos.h"
#include <cassert>
#include <cmath>
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#include <cstring>
// <iostream> avoided to reduce compile time
// <map> avoided and instead in verilated_heavy.h to reduce compile time
// <string> avoided and instead in verilated_heavy.h to reduce compile time
#ifdef VL_THREADED
# include <atomic>
# include <mutex>
# include <thread>
#endif
// Allow user to specify their own include file
#ifdef VL_VERILATED_INCLUDE
# include VL_VERILATED_INCLUDE
#endif
//=============================================================================
// Switches
#if VM_TRACE // Verilator tracing requested
# define WAVES 1 // Set backward compatibility flag
#endif
//=========================================================================
// Basic types
// P // Packed data of bit type (C/S/I/Q/W)
typedef vluint8_t CData; ///< Verilated pack data, 1-8 bits
typedef vluint16_t SData; ///< Verilated pack data, 9-16 bits
typedef vluint32_t IData; ///< Verilated pack data, 17-32 bits
typedef vluint64_t QData; ///< Verilated pack data, 33-64 bits
typedef vluint32_t EData; ///< Verilated pack element of WData array
typedef EData WData; ///< Verilated pack data, >64 bits, as an array
// float F // No typedef needed; Verilator uses float
// double D // No typedef needed; Verilator uses double
// string N // No typedef needed; Verilator uses string
typedef const WData* WDataInP; ///< Array input to a function
typedef WData* WDataOutP; ///< Array output from a function
typedef void (*VerilatedVoidCb)(void);
class SpTraceVcd;
class SpTraceVcdCFile;
class VerilatedEvalMsgQueue;
class VerilatedScopeNameMap;
class VerilatedVar;
class VerilatedVarNameMap;
class VerilatedVcd;
class VerilatedVcdC;
class VerilatedVcdSc;
class VerilatedFst;
class VerilatedFstC;
enum VerilatedVarType {
VLVT_UNKNOWN=0,
VLVT_PTR, // Pointer to something
VLVT_UINT8, // AKA CData
VLVT_UINT16, // AKA SData
VLVT_UINT32, // AKA IData
VLVT_UINT64, // AKA QData
VLVT_WDATA, // AKA WData
VLVT_STRING // C++ string
};
enum VerilatedVarFlags {
VLVD_0 = 0, // None
VLVD_IN = 1, // == vpiInput
VLVD_OUT = 2, // == vpiOutput
VLVD_INOUT = 3, // == vpiInOut
VLVD_NODIR = 5, // == vpiNoDirection
VLVF_MASK_DIR = 7, // Bit mask for above directions
// Flags
VLVF_PUB_RD = (1<<8), // Public readable
VLVF_PUB_RW = (1<<9), // Public writable
VLVF_DPI_CLAY = (1<<10) // DPI compatible C standard layout
};
//=========================================================================
/// Mutex and threading support
/// Return current thread ID (or 0), not super fast, cache if needed
extern vluint32_t VL_THREAD_ID() VL_MT_SAFE;
#if VL_THREADED
#define VL_LOCK_SPINS 50000 /// Number of times to spin for a mutex before relaxing
/// Mutex, wrapped to allow -fthread_safety checks
class VL_CAPABILITY("mutex") VerilatedMutex {
private:
std::mutex m_mutex; // Mutex
public:
VerilatedMutex() {}
~VerilatedMutex() {}
const VerilatedMutex& operator!() const { return *this; } // For -fthread_safety
/// Acquire/lock mutex
void lock() VL_ACQUIRE() {
// Try to acquire the lock by spinning. If the wait is short,
// avoids a trap to the OS plus OS scheduler overhead.
if (VL_LIKELY(try_lock())) return; // Short circuit loop
for (int i = 0; i < VL_LOCK_SPINS; ++i) {
if (VL_LIKELY(try_lock())) return;
VL_CPU_RELAX();
}
// Spinning hasn't worked, pay the cost of blocking.
m_mutex.lock();
}
/// Release/unlock mutex
void unlock() VL_RELEASE() { m_mutex.unlock(); }
/// Try to acquire mutex. Returns true on success, and false on failure.
bool try_lock() VL_TRY_ACQUIRE(true) { return m_mutex.try_lock(); }
};
/// Lock guard for mutex (ala std::unique_lock), wrapped to allow -fthread_safety checks
class VL_SCOPED_CAPABILITY VerilatedLockGuard {
VL_UNCOPYABLE(VerilatedLockGuard);
private:
VerilatedMutex& m_mutexr;
public:
explicit VerilatedLockGuard(VerilatedMutex& mutexr) VL_ACQUIRE(mutexr)
: m_mutexr(mutexr) {
m_mutexr.lock();
}
~VerilatedLockGuard() VL_RELEASE() {
m_mutexr.unlock();
}
void lock() VL_ACQUIRE() { m_mutexr.lock(); }
void unlock() VL_RELEASE() { m_mutexr.unlock(); }
};
#else // !VL_THREADED
/// Empty non-threaded mutex to avoid #ifdefs in consuming code
class VerilatedMutex {
public:
void lock() {}
void unlock() {}
};
/// Empty non-threaded lock guard to avoid #ifdefs in consuming code
class VerilatedLockGuard {
VL_UNCOPYABLE(VerilatedLockGuard);
public:
explicit VerilatedLockGuard(VerilatedMutex&) {}
~VerilatedLockGuard() {}
void lock() {}
void unlock() {}
};
#endif // VL_THREADED
/// Remember the calling thread at construction time, and make sure later calls use same thread
class VerilatedAssertOneThread {
// MEMBERS
#if defined(VL_THREADED) && defined(VL_DEBUG)
vluint32_t m_threadid; /// Thread that is legal
public:
// CONSTRUCTORS
/// The constructor establishes the thread id for all later calls.
/// If necessary, a different class could be made that inits it otherwise.
VerilatedAssertOneThread()
: m_threadid(VL_THREAD_ID()) {}
~VerilatedAssertOneThread() { check(); }
// METHODS
/// Check that the current thread ID is the same as the construction thread ID
void check() VL_MT_UNSAFE_ONE {
if (VL_UNCOVERABLE(m_threadid != VL_THREAD_ID())) {
if (m_threadid == 0) {
m_threadid = VL_THREAD_ID();
} else {
fatal_different(); // LCOV_EXCL_LINE
}
}
}
void changeThread() { m_threadid = 0; } // Allow intentional change-of-thread
static void fatal_different() VL_MT_SAFE;
#else // !VL_THREADED || !VL_DEBUG
public:
void check() {}
void changeThread() {}
#endif
};
//=========================================================================
/// Base class for all Verilated module classes
class VerilatedScope;
class VerilatedModule {
VL_UNCOPYABLE(VerilatedModule);
private:
const char* m_namep; ///< Module name
public:
explicit VerilatedModule(const char* namep); ///< Create module with given hierarchy name
~VerilatedModule();
const char* name() const { return m_namep; } ///< Return name of module
};
//=========================================================================
// Declare nets
#ifndef VL_SIG
# define VL_SIG8(name, msb,lsb) CData name ///< Declare signal, 1-8 bits
# define VL_SIG16(name, msb,lsb) SData name ///< Declare signal, 9-16 bits
# define VL_SIG64(name, msb,lsb) QData name ///< Declare signal, 33-64 bits
# define VL_SIG(name, msb,lsb) IData name ///< Declare signal, 17-32 bits
# define VL_SIGW(name, msb,lsb, words) WData name[words] ///< Declare signal, 65+ bits
# define VL_IN8(name, msb,lsb) CData name ///< Declare input signal, 1-8 bits
# define VL_IN16(name, msb,lsb) SData name ///< Declare input signal, 9-16 bits
# define VL_IN64(name, msb,lsb) QData name ///< Declare input signal, 33-64 bits
# define VL_IN(name, msb,lsb) IData name ///< Declare input signal, 17-32 bits
# define VL_INW(name, msb,lsb, words) WData name[words] ///< Declare input signal, 65+ bits
# define VL_INOUT8(name, msb,lsb) CData name ///< Declare bidir signal, 1-8 bits
# define VL_INOUT16(name, msb,lsb) SData name ///< Declare bidir signal, 9-16 bits
# define VL_INOUT64(name, msb,lsb) QData name ///< Declare bidir signal, 33-64 bits
# define VL_INOUT(name, msb,lsb) IData name ///< Declare bidir signal, 17-32 bits
# define VL_INOUTW(name, msb,lsb, words) WData name[words] ///< Declare bidir signal, 65+ bits
# define VL_OUT8(name, msb,lsb) CData name ///< Declare output signal, 1-8 bits
# define VL_OUT16(name, msb,lsb) SData name ///< Declare output signal, 9-16 bits
# define VL_OUT64(name, msb,lsb) QData name ///< Declare output signal, 33-64bits
# define VL_OUT(name, msb,lsb) IData name ///< Declare output signal, 17-32 bits
# define VL_OUTW(name, msb,lsb, words) WData name[words] ///< Declare output signal, 65+ bits
# define VL_PIN_NOP(instname,pin,port) ///< Connect a pin, ala SP_PIN
# define VL_CELL(instname,type) ///< Declare a cell, ala SP_CELL
/// Declare a module, ala SC_MODULE
# define VL_MODULE(modname) class modname : public VerilatedModule
/// Constructor, ala SC_CTOR
# define VL_CTOR(modname) modname(const char* __VCname="")
/// Constructor declaration for C++, ala SP_CTOR_IMPL
# define VL_CTOR_IMP(modname) modname::modname(const char* __VCname) : VerilatedModule(__VCname)
/// Constructor declaration for SystemC, ala SP_CTOR_IMPL
# define VL_SC_CTOR_IMP(modname) modname::modname(sc_module_name)
#endif
//=========================================================================
// Functions overridable by user defines
// (Internals however must use VL_PRINTF_MT, which calls these.)
#ifndef VL_PRINTF
# define VL_PRINTF printf ///< Print ala printf, called from main thread; may redefine if desired
#endif
#ifndef VL_VPRINTF
# define VL_VPRINTF vprintf ///< Print ala vprintf, called from main thread; may redefine if desired
#endif
//===========================================================================
/// Verilator symbol table base class
class VerilatedSyms {
public: // But for internal use only
#ifdef VL_THREADED
VerilatedEvalMsgQueue* __Vm_evalMsgQp;
#endif
VerilatedSyms();
~VerilatedSyms();
};
//===========================================================================
/// Verilator global class information class
/// This class is initialized by main thread only. Reading post-init is thread safe.
class VerilatedScope {
public:
typedef enum {
SCOPE_MODULE, SCOPE_OTHER
} Type; // Type of a scope, currently module is only interesting
private:
// Fastpath:
VerilatedSyms* m_symsp; ///< Symbol table
void** m_callbacksp; ///< Callback table pointer (Fastpath)
int m_funcnumMax; ///< Maxium function number stored (Fastpath)
// 4 bytes padding (on -m64), for rent.
VerilatedVarNameMap* m_varsp; ///< Variable map
const char* m_namep; ///< Scope name (Slowpath)
const char* m_identifierp; ///< Identifier of scope (with escapes removed)
Type m_type; ///< Type of the scope
public: // But internals only - called from VerilatedModule's
VerilatedScope();
~VerilatedScope();
void configure(VerilatedSyms* symsp, const char* prefixp, const char* suffix,
const char* identifier, const Type type) VL_MT_UNSAFE;
void exportInsert(int finalize, const char* namep, void* cb) VL_MT_UNSAFE;
void varInsert(int finalize, const char* namep, void* datap,
VerilatedVarType vltype, int vlflags, int dims, ...) VL_MT_UNSAFE;
// ACCESSORS
const char* name() const { return m_namep; }
const char* identifier() const { return m_identifierp; }
inline VerilatedSyms* symsp() const { return m_symsp; }
VerilatedVar* varFind(const char* namep) const VL_MT_SAFE_POSTINIT;
VerilatedVarNameMap* varsp() const VL_MT_SAFE_POSTINIT { return m_varsp; }
void scopeDump() const;
void* exportFindError(int funcnum) const;
static void* exportFindNullError(int funcnum) VL_MT_SAFE;
static inline void* exportFind(const VerilatedScope* scopep, int funcnum) VL_MT_SAFE {
if (VL_UNLIKELY(!scopep)) return exportFindNullError(funcnum);
if (VL_LIKELY(funcnum < scopep->m_funcnumMax)) {
// m_callbacksp must be declared, as Max'es are > 0
return scopep->m_callbacksp[funcnum];
} else { // LCOV_EXCL_LINE
return scopep->exportFindError(funcnum); // LCOV_EXCL_LINE
}
}
Type type() const { return m_type; }
};
class VerilatedHierarchy {
public:
void add(VerilatedScope* fromp, VerilatedScope* top);
};
//===========================================================================
/// Verilator global static information class
class Verilated {
// MEMBERS
// Slow path variables
static VerilatedMutex m_mutex; ///< Mutex for s_s/s_ns members, when VL_THREADED
static VerilatedVoidCb s_flushCb; ///< Flush callback function
static struct Serialized { // All these members serialized/deserialized
// Fast path
int s_debug; ///< See accessors... only when VL_DEBUG set
bool s_calcUnusedSigs; ///< Waves file on, need all signals calculated
bool s_gotFinish; ///< A $finish statement executed
bool s_assertOn; ///< Assertions are enabled
bool s_fatalOnVpiError; ///< Stop on vpi error/unsupported
// Slow path
int s_errorCount; ///< Number of errors
int s_errorLimit; ///< Stop on error number
int s_randReset; ///< Random reset: 0=all 0s, 1=all 1s, 2=random
int s_randSeed; ///< Random seed: 0=random
Serialized();
~Serialized() {}
} s_s;
static struct NonSerialized { // Non-serialized information
// These are reloaded from on command-line settings, so do not need to persist
// Fast path
vluint64_t s_profThreadsStart; ///< +prof+threads starting time
vluint32_t s_profThreadsWindow; ///< +prof+threads window size
// Slow path
const char* s_profThreadsFilenamep; ///< +prof+threads filename
NonSerialized();
~NonSerialized();
} s_ns;
// no need to be save-restored (serialized) the
// assumption is that the restore is allowed to pass different arguments
static struct CommandArgValues {
VerilatedMutex m_argMutex; ///< Mutex for s_args members, when VL_THREADED
int argc;
const char** argv;
CommandArgValues() : argc(0), argv(NULL) {}
~CommandArgValues() {}
} s_args;
// Not covered by mutex, as per-thread
static VL_THREAD_LOCAL struct ThreadLocal {
#ifdef VL_THREADED
vluint32_t t_mtaskId; ///< Current mtask# executing on this thread
vluint32_t t_endOfEvalReqd; ///< Messages may be pending, thread needs endOf-eval calls
#endif
const VerilatedScope* t_dpiScopep; ///< DPI context scope
const char* t_dpiFilename; ///< DPI context filename
int t_dpiLineno; ///< DPI context line number
ThreadLocal();
~ThreadLocal();
} t_s;
private:
// CONSTRUCTORS
VL_UNCOPYABLE(Verilated);
public:
// METHODS - User called
/// Select initial value of otherwise uninitialized signals.
////
/// 0 = Set to zeros
/// 1 = Set all bits to one
/// 2 = Randomize all bits
static void randReset(int val) VL_MT_SAFE;
static int randReset() VL_MT_SAFE { return s_s.s_randReset; } ///< Return randReset value
static void randSeed(int val) VL_MT_SAFE;
static int randSeed() VL_MT_SAFE { return s_s.s_randSeed; } ///< Return randSeed value
/// Enable debug of internal verilated code
static void debug(int level) VL_MT_SAFE;
#ifdef VL_DEBUG
/// Return debug level
/// When multithreaded this may not immediately react to another thread
/// changing the level (no mutex)
static inline int debug() VL_MT_SAFE { return s_s.s_debug; }
#else
static inline int debug() VL_PURE { return 0; } ///< Return constant 0 debug level, so C++'s optimizer rips up
#endif
/// Enable calculation of unused signals
static void calcUnusedSigs(bool flag) VL_MT_SAFE;
static bool calcUnusedSigs() VL_MT_SAFE { ///< Return calcUnusedSigs value
return s_s.s_calcUnusedSigs; }
/// Current number of errors/assertions
static void errorCount(int val) VL_MT_SAFE;
static void errorCountInc() VL_MT_SAFE;
static int errorCount() VL_MT_SAFE { return s_s.s_errorCount; }
/// Set number of errors/assertions before stop
static void errorLimit(int val) VL_MT_SAFE;
static int errorLimit() VL_MT_SAFE { return s_s.s_errorLimit; }
/// Did the simulation $finish?
static void gotFinish(bool flag) VL_MT_SAFE;
static bool gotFinish() VL_MT_SAFE { return s_s.s_gotFinish; } ///< Return if got a $finish
/// Allow traces to at some point be enabled (disables some optimizations)
static void traceEverOn(bool flag) VL_MT_SAFE {
if (flag) { calcUnusedSigs(flag); }
}
/// Enable/disable assertions
static void assertOn(bool flag) VL_MT_SAFE;
static bool assertOn() VL_MT_SAFE { return s_s.s_assertOn; }
/// Enable/disable vpi fatal
static void fatalOnVpiError(bool flag) VL_MT_SAFE;
static bool fatalOnVpiError() VL_MT_SAFE { return s_s.s_fatalOnVpiError; }
/// --prof-threads related settings
static void profThreadsStart(vluint64_t flag) VL_MT_SAFE;
static vluint64_t profThreadsStart() VL_MT_SAFE { return s_ns.s_profThreadsStart; }
static void profThreadsWindow(vluint64_t flag) VL_MT_SAFE;
static vluint32_t profThreadsWindow() VL_MT_SAFE { return s_ns.s_profThreadsWindow; }
static void profThreadsFilenamep(const char* flagp) VL_MT_SAFE;
static const char* profThreadsFilenamep() VL_MT_SAFE { return s_ns.s_profThreadsFilenamep; }
/// Flush callback for VCD waves
static void flushCb(VerilatedVoidCb cb) VL_MT_SAFE;
static void flushCall() VL_MT_SAFE;
/// Record command line arguments, for retrieval by $test$plusargs/$value$plusargs,
/// and for parsing +verilator+ run-time arguments.
/// This should be called before the first model is created.
static void commandArgs(int argc, const char** argv) VL_MT_SAFE;
static void commandArgs(int argc, char** argv) VL_MT_SAFE {
commandArgs(argc, const_cast<const char**>(argv)); }
static void commandArgsAdd(int argc, const char** argv);
static CommandArgValues* getCommandArgs() VL_MT_SAFE { return &s_args; }
/// Match plusargs with a given prefix. Returns static char* valid only for a single call
static const char* commandArgsPlusMatch(const char* prefixp) VL_MT_SAFE;
/// Produce name & version for (at least) VPI
static const char* productName() VL_PURE;
static const char* productVersion() VL_PURE;
/// Convenience OS utilities
static void mkdir(const char* dirname) VL_MT_UNSAFE;
/// When multithreaded, quiesce the model to prepare for trace/saves/coverage
/// This may only be called when no locks are held.
static void quiesce() VL_MT_SAFE;
/// For debugging, print much of the Verilator internal state.
/// The output of this function may change in future
/// releases - contact the authors before production use.
static void internalsDump() VL_MT_SAFE;
/// For debugging, print text list of all scope names with
/// dpiImport/Export context. This function may change in future
/// releases - contact the authors before production use.
static void scopesDump() VL_MT_SAFE;
public:
// METHODS - INTERNAL USE ONLY (but public due to what uses it)
// Internal: Create a new module name by concatenating two strings
static const char* catName(const char* n1, const char* n2,
const char* delimiter = "."); // Returns static data
// Internal: Throw signal assertion
static void overWidthError(const char* signame) VL_MT_SAFE;
// Internal: Find scope
static const VerilatedScope* scopeFind(const char* namep) VL_MT_SAFE;
static const VerilatedScopeNameMap* scopeNameMap() VL_MT_SAFE;
// Internal: Get and set DPI context
static const VerilatedScope* dpiScope() VL_MT_SAFE { return t_s.t_dpiScopep; }
static void dpiScope(const VerilatedScope* scopep) VL_MT_SAFE { t_s.t_dpiScopep = scopep; }
static void dpiContext(const VerilatedScope* scopep, const char* filenamep, int lineno) VL_MT_SAFE {
t_s.t_dpiScopep = scopep; t_s.t_dpiFilename = filenamep; t_s.t_dpiLineno = lineno; }
static void dpiClearContext() VL_MT_SAFE { t_s.t_dpiScopep = NULL; }
static bool dpiInContext() VL_MT_SAFE { return t_s.t_dpiScopep != NULL; }
static const char* dpiFilenamep() VL_MT_SAFE { return t_s.t_dpiFilename; }
static int dpiLineno() VL_MT_SAFE { return t_s.t_dpiLineno; }
static int exportFuncNum(const char* namep) VL_MT_SAFE;
static size_t serializedSize() VL_PURE { return sizeof(s_s); }
static void* serializedPtr() VL_MT_UNSAFE { return &s_s; } // Unsafe, for Serialize only
#ifdef VL_THREADED
/// Set the mtaskId, called when an mtask starts
static void mtaskId(vluint32_t id) VL_MT_SAFE { t_s.t_mtaskId = id; }
static vluint32_t mtaskId() VL_MT_SAFE { return t_s.t_mtaskId; }
static void endOfEvalReqdInc() VL_MT_SAFE { ++t_s.t_endOfEvalReqd; }
static void endOfEvalReqdDec() VL_MT_SAFE { --t_s.t_endOfEvalReqd; }
/// Called at end of each thread mtask, before finishing eval
static void endOfThreadMTask(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE {
if (VL_UNLIKELY(t_s.t_endOfEvalReqd)) { endOfThreadMTaskGuts(evalMsgQp); }
}
/// Called at end of eval loop
static void endOfEval(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE {
// It doesn't work to set endOfEvalReqd on the threadpool thread
// and then check it on the eval thread since it's thread local.
// It should be ok to call into endOfEvalGuts, it returns immediately
// if there are no transactions.
endOfEvalGuts(evalMsgQp);
}
#endif
private:
#ifdef VL_THREADED
static void endOfThreadMTaskGuts(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE;
static void endOfEvalGuts(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE;
#endif
};
//=========================================================================
// Extern functions -- User may override -- See verilated.cpp
/// Routine to call for $finish
/// User code may wish to replace this function, to do so, define VL_USER_FINISH.
/// This code does not have to be thread safe.
/// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this.
extern void vl_finish(const char* filename, int linenum, const char* hier);
/// Routine to call for $stop
/// User code may wish to replace this function, to do so, define VL_USER_STOP.
/// This code does not have to be thread safe.
/// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this.
extern void vl_stop(const char* filename, int linenum, const char* hier);
/// Routine to call for a couple of fatal messages
/// User code may wish to replace this function, to do so, define VL_USER_FATAL.
/// This code does not have to be thread safe.
/// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this.
extern void vl_fatal(const char* filename, int linenum, const char* hier,
const char* msg);
//=========================================================================
// Extern functions -- Slow path
/// Multithread safe wrapper for calls to $finish
extern void VL_FINISH_MT(const char* filename, int linenum, const char* hier) VL_MT_SAFE;
/// Multithread safe wrapper for calls to $stop
extern void VL_STOP_MT(const char* filename, int linenum, const char* hier,
bool maybe = true) VL_MT_SAFE;
/// Multithread safe wrapper to call for a couple of fatal messages
extern void VL_FATAL_MT(const char* filename, int linenum, const char* hier,
const char* msg) VL_MT_SAFE;
/// Print a string, multithread safe. Eventually VL_PRINTF will get called.
#ifdef VL_THREADED
extern void VL_PRINTF_MT(const char* formatp, ...) VL_ATTR_PRINTF(1) VL_MT_SAFE;
#else
# define VL_PRINTF_MT VL_PRINTF // The following parens will take care of themselves
#endif
/// Print a debug message from internals with standard prefix, with printf style format
extern void VL_DBG_MSGF(const char* formatp, ...) VL_ATTR_PRINTF(1) VL_MT_SAFE;
extern IData VL_RANDOM_I(int obits); ///< Randomize a signal
extern QData VL_RANDOM_Q(int obits); ///< Randomize a signal
extern WDataOutP VL_RANDOM_W(int obits, WDataOutP outwp); ///< Randomize a signal
/// Init time only, so slow is fine
extern IData VL_RAND_RESET_I(int obits); ///< Random reset a signal
extern QData VL_RAND_RESET_Q(int obits); ///< Random reset a signal
extern WDataOutP VL_RAND_RESET_W(int obits, WDataOutP outwp); ///< Random reset a signal
extern WDataOutP VL_ZERO_RESET_W(int obits, WDataOutP outwp); ///< Zero reset a signal (slow - else use VL_ZERO_W)
#if VL_THREADED
/// Return high-precision counter for profiling, or 0x0 if not available
inline QData VL_RDTSC_Q() { vluint64_t val; VL_RDTSC(val); return val; }
#endif
/// Math
extern WDataOutP _vl_moddiv_w(int lbits, WDataOutP owp,
WDataInP lwp, WDataInP rwp, bool is_modulus);
/// File I/O
extern IData VL_FGETS_IXI(int obits, void* destp, IData fpi);
extern IData VL_FOPEN_S(const char* filenamep, const char* modep);
extern IData VL_FOPEN_WI(int fnwords, WDataInP filenamep, IData mode);
extern IData VL_FOPEN_QI(QData filename, IData mode);
inline IData VL_FOPEN_II(IData filename, IData mode) VL_MT_SAFE {
return VL_FOPEN_QI(filename, mode); }
extern void VL_FCLOSE_I(IData fdi);
extern IData VL_FREAD_I(int width, int array_lsb, int array_size,
void* memp, IData fpi, IData start, IData count);
extern void VL_WRITEF(const char* formatp, ...);
extern void VL_FWRITEF(IData fpi, const char* formatp, ...);
extern IData VL_FSCANF_IX(IData fpi, const char* formatp, ...);
extern IData VL_SSCANF_IIX(int lbits, IData ld, const char* formatp, ...);
extern IData VL_SSCANF_IQX(int lbits, QData ld, const char* formatp, ...);
extern IData VL_SSCANF_IWX(int lbits, WDataInP lwp, const char* formatp, ...);
extern void VL_SFORMAT_X(int obits, CData& destr, const char* formatp, ...);
extern void VL_SFORMAT_X(int obits, SData& destr, const char* formatp, ...);
extern void VL_SFORMAT_X(int obits, IData& destr, const char* formatp, ...);
extern void VL_SFORMAT_X(int obits, QData& destr, const char* formatp, ...);
extern void VL_SFORMAT_X(int obits, void* destp, const char* formatp, ...);
extern IData VL_SYSTEM_IW(int lhswords, WDataInP lhsp);
extern IData VL_SYSTEM_IQ(QData lhs);
inline IData VL_SYSTEM_II(IData lhs) VL_MT_SAFE { return VL_SYSTEM_IQ(lhs); }
extern IData VL_TESTPLUSARGS_I(const char* formatp);
extern const char* vl_mc_scan_plusargs(const char* prefixp); // PLIish
//=========================================================================
// Base macros
/// Return true if data[bit] set; not 0/1 return, but 0/non-zero return.
#define VL_BITISSET_I(data,bit) ((data) & (VL_UL(1) << VL_BITBIT_I(bit)))
#define VL_BITISSET_Q(data,bit) ((data) & (VL_ULL(1) << VL_BITBIT_Q(bit)))
#define VL_BITISSET_E(data,bit) ((data) & (VL_EUL(1) << VL_BITBIT_E(bit)))
#define VL_BITISSET_W(data,bit) ((data)[VL_BITWORD_E(bit)] & (VL_EUL(1) << VL_BITBIT_E(bit)))
#define VL_BITISSETLIMIT_W(data,width,bit) (((bit) < (width)) && VL_BITISSET_W(data,bit))
/// Shift appropriate word by bit. Does not account for wrapping between two words
#define VL_BITRSHIFT_W(data,bit) ((data)[VL_BITWORD_E(bit)] >> VL_BITBIT_E(bit))
/// Create two 32-bit words from quadword
/// WData is always at least 2 words; does not clean upper bits
#define VL_SET_WQ(owp,data) { (owp)[0] = static_cast<IData>(data); \
(owp)[1] = static_cast<IData>((data) >> VL_EDATASIZE); }
#define VL_SET_WI(owp,data) { (owp)[0] = static_cast<IData>(data); (owp)[1] = 0; }
#define VL_SET_QW(lwp) \
( (static_cast<QData>((lwp)[0])) \
| (static_cast<QData>((lwp)[1]) << (static_cast<QData>(VL_EDATASIZE)) ))
#define _VL_SET_QII(ld,rd) ((static_cast<QData>(ld)<<VL_ULL(32)) | static_cast<QData>(rd))
/// Return FILE* from IData
extern FILE* VL_CVT_I_FP(IData lhs);
// Use a union to avoid cast-to-different-size warnings
/// Return void* from QData
static inline void* VL_CVT_Q_VP(QData lhs) VL_PURE {
union { void* fp; QData q; } u; u.q=lhs; return u.fp; }
/// Return QData from void*
static inline QData VL_CVT_VP_Q(void* fp) VL_PURE {
union { void* fp; QData q; } u; u.q=0; u.fp=fp; return u.q; }
/// Return double from QData (bits, not numerically)
static inline double VL_CVT_D_Q(QData lhs) VL_PURE {
union { double d; QData q; } u; u.q=lhs; return u.d; }
/// Return QData from double (bits, not numerically)
static inline QData VL_CVT_Q_D(double lhs) VL_PURE {
union { double d; QData q; } u; u.d=lhs; return u.q; }
/// Return double from QData (numeric)
static inline double VL_ITOR_D_I(IData lhs) VL_PURE {
return static_cast<double>(static_cast<vlsint32_t>(lhs)); }
/// Return QData from double (numeric)
static inline IData VL_RTOI_I_D(double lhs) VL_PURE {
return static_cast<vlsint32_t>(VL_TRUNC(lhs)); }
/// Return QData from double (numeric)
static inline IData VL_RTOIROUND_I_D(double lhs) VL_PURE {
return static_cast<vlsint32_t>(VL_ROUND(lhs)); }
// Sign extend such that if MSB set, we get ffff_ffff, else 0s
// (Requires clean input)
#define VL_SIGN_I(nbits,lhs) ((lhs) >> VL_BITBIT_I((nbits) - VL_UL(1)))
#define VL_SIGN_Q(nbits,lhs) ((lhs) >> VL_BITBIT_Q((nbits) - VL_ULL(1)))
#define VL_SIGN_E(nbits,lhs) ((lhs) >> VL_BITBIT_E((nbits) - VL_EUL(1)))
#define VL_SIGN_W(nbits,rwp) \
((rwp)[VL_BITWORD_E((nbits) - VL_EUL(1))] >> VL_BITBIT_E((nbits) - VL_EUL(1)))
#define VL_SIGNONES_E(nbits, lhs) (-(VL_SIGN_E(nbits, lhs)))
// Sign bit extended up to MSB, doesn't include unsigned portion
// Optimization bug in GCC 3.3 returns different bitmasks to later states for
static inline IData VL_EXTENDSIGN_I(int lbits, IData lhs) VL_PURE {
return (-((lhs)&(VL_UL(1)<<(lbits-1)))); }
static inline QData VL_EXTENDSIGN_Q(int lbits, QData lhs) VL_PURE {
return (-((lhs)&(VL_ULL(1)<<(lbits-1)))); }
// Debugging prints
extern void _VL_DEBUG_PRINT_W(int lbits, WDataInP iwp);
//=========================================================================
// Pli macros
extern int VL_TIME_STR_CONVERT(const char* strp) VL_PURE;
#ifndef VL_TIME_PRECISION
# ifdef VL_TIME_PRECISION_STR
# define VL_TIME_PRECISION VL_TIME_STR_CONVERT(VL_STRINGIFY(VL_TIME_PRECISION_STR))
# else
# define VL_TIME_PRECISION (-12) ///< Timescale units only for for VPI return - picoseconds
# endif
#endif
#ifndef VL_TIME_UNIT
# ifdef VL_TIME_UNIT_STR
# define VL_TIME_UNIT VL_TIME_STR_CONVERT(VL_STRINGIFY(VL_TIME_PRECISION_STR))
# else
# define VL_TIME_UNIT (-12) ///< Timescale units only for for VPI return - picoseconds
# endif
#endif
#ifndef VL_TIME_MULTIPLIER
# define VL_TIME_MULTIPLIER 1
#endif
/// Return current simulation time
#if defined(SYSTEMC_VERSION) && (SYSTEMC_VERSION>20011000)
# define VL_TIME_I() (static_cast<IData>(sc_time_stamp().to_default_time_units()*VL_TIME_MULTIPLIER))
# define VL_TIME_Q() (static_cast<QData>(sc_time_stamp().to_default_time_units()*VL_TIME_MULTIPLIER))
# define VL_TIME_D() (static_cast<double>(sc_time_stamp().to_default_time_units()*VL_TIME_MULTIPLIER))
#else
# define VL_TIME_I() (static_cast<IData>(sc_time_stamp()*VL_TIME_MULTIPLIER))
# define VL_TIME_Q() (static_cast<QData>(sc_time_stamp()*VL_TIME_MULTIPLIER))
# define VL_TIME_D() (static_cast<double>(sc_time_stamp()*VL_TIME_MULTIPLIER))
extern double sc_time_stamp();
#endif
/// Evaluate expression if debug enabled
#ifdef VL_DEBUG
# define VL_DEBUG_IF(text) {if (VL_UNLIKELY(Verilated::debug())) {text}}
#else
# define VL_DEBUG_IF(text)
#endif
/// Collect coverage analysis for this line
#ifndef SP_AUTO_COVER3
# define SP_AUTO_COVER3(what,file,line)
#endif
//=========================================================================
// Functional macros/routines
// These all take the form
// VL_func_IW(bits, bits, op, op)
// VL_func_WW(bits, bits, out, op, op)
// The I/W indicates if it's a integer or wide for the output and each operand.
// The bits indicate the bit width of the output and each operand.
// If wide output, a temporary storage location is specified.
//===================================================================
// SETTING OPERATORS
// Output clean
// EMIT_RULE: VL_CLEAN: oclean=clean; obits=lbits;
#define VL_CLEAN_II(obits,lbits,lhs) ((lhs) & VL_MASK_I(obits))
#define VL_CLEAN_QQ(obits,lbits,lhs) ((lhs) & VL_MASK_Q(obits))
// EMIT_RULE: VL_ASSIGNCLEAN: oclean=clean; obits==lbits;
#define VL_ASSIGNCLEAN_W(obits,owp,lwp) VL_CLEAN_WW((obits), (obits), (owp), (lwp))
static inline WDataOutP _VL_CLEAN_INPLACE_W(int obits, WDataOutP owp) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
owp[words-1] &= VL_MASK_E(obits);
return owp;
}
static inline WDataOutP VL_CLEAN_WW(int obits, int, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
for (int i=0; (i < (words-1)); ++i) owp[i] = lwp[i];
owp[words-1] = lwp[words-1] & VL_MASK_E(obits);
return owp;
}
static inline WDataOutP VL_ZERO_W(int obits, WDataOutP owp) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
for (int i=0; i < words; ++i) owp[i] = 0;
return owp;
}
static inline WDataOutP VL_ALLONES_W(int obits, WDataOutP owp) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
for (int i = 0; i < (words - 1); ++i) owp[i] = ~VL_EUL(0);
owp[words-1] = VL_MASK_E(obits);
return owp;
}
// EMIT_RULE: VL_ASSIGN: oclean=rclean; obits==lbits;
// For now, we always have a clean rhs.
// Note: If a ASSIGN isn't clean, use VL_ASSIGNCLEAN instead to do the same thing.
static inline WDataOutP VL_ASSIGN_W(int obits, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
for (int i=0; i < words; ++i) owp[i] = lwp[i];
return owp;
}
// EMIT_RULE: VL_ASSIGNBIT: rclean=clean;
static inline void VL_ASSIGNBIT_II(int, int bit, CData& lhsr, IData rhs) VL_PURE {
lhsr = ((lhsr & ~(VL_UL(1)<<VL_BITBIT_I(bit)))
| (rhs<<VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_II(int, int bit, SData& lhsr, IData rhs) VL_PURE {
lhsr = ((lhsr & ~(VL_UL(1)<<VL_BITBIT_I(bit)))
| (rhs<<VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_II(int, int bit, IData& lhsr, IData rhs) VL_PURE {
lhsr = ((lhsr & ~(VL_UL(1)<<VL_BITBIT_I(bit)))
| (rhs<<VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_QI(int, int bit, QData& lhsr, QData rhs) VL_PURE {
lhsr = ((lhsr & ~(VL_ULL(1)<<VL_BITBIT_Q(bit)))
| (static_cast<QData>(rhs) << VL_BITBIT_Q(bit)));
}
static inline void VL_ASSIGNBIT_WI(int, int bit, WDataOutP owp, IData rhs) VL_MT_SAFE {
EData orig = owp[VL_BITWORD_E(bit)];
owp[VL_BITWORD_E(bit)] = ((orig & ~(VL_EUL(1) << VL_BITBIT_E(bit)))
| (static_cast<EData>(rhs) << VL_BITBIT_E(bit)));
}
// Alternative form that is an instruction faster when rhs is constant one.
static inline void VL_ASSIGNBIT_IO(int, int bit, CData& lhsr, IData) VL_PURE {
lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_IO(int, int bit, SData& lhsr, IData) VL_PURE {
lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_IO(int, int bit, IData& lhsr, IData) VL_PURE {
lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_QO(int, int bit, QData& lhsr, IData) VL_PURE {
lhsr = (lhsr | (VL_ULL(1) << VL_BITBIT_Q(bit)));
}
static inline void VL_ASSIGNBIT_WO(int, int bit, WDataOutP owp, IData) VL_MT_SAFE {
EData orig = owp[VL_BITWORD_E(bit)];
owp[VL_BITWORD_E(bit)] = (orig | (VL_EUL(1) << VL_BITBIT_E(bit)));
}
//===================================================================
// SYSTEMC OPERATORS
// Copying verilog format to systemc integers and bit vectors.
// Get a SystemC variable
#define VL_ASSIGN_ISI(obits,vvar,svar) { (vvar) = VL_CLEAN_II((obits), (obits), (svar).read()); }
#define VL_ASSIGN_QSQ(obits,vvar,svar) { (vvar) = VL_CLEAN_QQ((obits), (obits), (svar).read()); }
#define VL_ASSIGN_ISW(obits,od,svar) { \
(od) = ((svar).read().get_word(0)) & VL_MASK_I(obits); \
}
#define VL_ASSIGN_QSW(obits,od,svar) { \
(od) = ((static_cast<QData>((svar).read().get_word(1)))<<VL_IDATASIZE \
| (svar).read().get_word(0)) \
& VL_MASK_Q(obits); \
}
#define VL_ASSIGN_WSW(obits,owp,svar) { \
int words = VL_WORDS_I(obits); \
for (int i=0; i < words; ++i) (owp)[i] = (svar).read().get_word(i); \
(owp)[words-1] &= VL_MASK_E(obits); \
}
#define VL_ASSIGN_ISU(obits,vvar,svar) { (vvar) = VL_CLEAN_II((obits), (obits), (svar).read().to_uint()); }
#define VL_ASSIGN_QSU(obits,vvar,svar) { (vvar) = VL_CLEAN_QQ((obits), (obits), (svar).read().to_uint64()); }
#define VL_ASSIGN_WSB(obits,owp,svar) { \
int words = VL_WORDS_I(obits); \
sc_biguint<(obits)> _butemp = (svar).read(); \
for (int i=0; i < words; ++i) { \
int msb = ((i + 1) * VL_IDATASIZE) - 1; \
msb = (msb >= (obits)) ? ((obits)-1) : msb; \
(owp)[i] = _butemp.range(msb, i * VL_IDATASIZE).to_uint(); \
} \
(owp)[words-1] &= VL_MASK_E(obits); \
}
// Copying verilog format from systemc integers and bit vectors.
// Set a SystemC variable
#define VL_ASSIGN_SII(obits,svar,vvar) { (svar).write(vvar); }
#define VL_ASSIGN_SQQ(obits,svar,vvar) { (svar).write(vvar); }
#define VL_ASSIGN_SWI(obits,svar,rd) { \
sc_bv<(obits)> _bvtemp; \
_bvtemp.set_word(0, (rd)); \
(svar).write(_bvtemp); \
}
#define VL_ASSIGN_SWQ(obits,svar,rd) { \
sc_bv<(obits)> _bvtemp; \
_bvtemp.set_word(0, static_cast<IData>(rd)); \
_bvtemp.set_word(1, static_cast<IData>((rd) >> VL_IDATASIZE)); \
(svar).write(_bvtemp); \
}
#define VL_ASSIGN_SWW(obits,svar,rwp) { \
sc_bv<(obits)> _bvtemp; \
for (int i=0; i < VL_WORDS_I(obits); ++i) _bvtemp.set_word(i, (rwp)[i]); \
(svar).write(_bvtemp); \
}
#define VL_ASSIGN_SUI(obits,svar,rd) { (svar).write(rd); }
#define VL_ASSIGN_SUQ(obits,svar,rd) { (svar).write(rd); }
#define VL_ASSIGN_SBI(obits,svar,rd) { (svar).write(rd); }
#define VL_ASSIGN_SBQ(obits,svar,rd) { (svar).write(rd); }
#define VL_ASSIGN_SBW(obits,svar,rwp) { \
sc_biguint<(obits)> _butemp; \
for (int i=0; i < VL_WORDS_I(obits); ++i) { \
int msb = ((i + 1) * VL_IDATASIZE) - 1; \
msb = (msb >= (obits)) ? ((obits)-1) : msb; \
_butemp.range(msb, i * VL_IDATASIZE) = (rwp)[i]; \
} \
(svar).write(_butemp); \
}
//===================================================================
// Extending sizes
// CAREFUL, we're width changing, so obits!=lbits
// Right must be clean because otherwise size increase would pick up bad bits
// EMIT_RULE: VL_EXTEND: oclean=clean; rclean==clean;
#define VL_EXTEND_II(obits,lbits,lhs) ((lhs))
#define VL_EXTEND_QI(obits,lbits,lhs) (static_cast<QData>(lhs))
#define VL_EXTEND_QQ(obits,lbits,lhs) ((lhs))
static inline WDataOutP VL_EXTEND_WI(int obits, int, WDataOutP owp, IData ld) VL_MT_SAFE {
// Note for extracts that obits != lbits
owp[0] = ld;
for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
return owp;
}
static inline WDataOutP VL_EXTEND_WQ(int obits, int, WDataOutP owp, QData ld) VL_MT_SAFE {
VL_SET_WQ(owp, ld);
for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
return owp;
}
static inline WDataOutP VL_EXTEND_WW(int obits, int lbits, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
for (int i = 0; i < VL_WORDS_I(lbits); ++i) owp[i] = lwp[i];
for (int i = VL_WORDS_I(lbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
return owp;
}
// EMIT_RULE: VL_EXTENDS: oclean=*dirty*; obits=lbits;
// Sign extension; output dirty
static inline IData VL_EXTENDS_II(int, int lbits, IData lhs) VL_PURE {
return VL_EXTENDSIGN_I(lbits, lhs) | lhs;
}
static inline QData VL_EXTENDS_QI(int, int lbits, QData lhs/*Q_as_need_extended*/) VL_PURE {
return VL_EXTENDSIGN_Q(lbits, lhs) | lhs;
}
static inline QData VL_EXTENDS_QQ(int, int lbits, QData lhs) VL_PURE {
return VL_EXTENDSIGN_Q(lbits, lhs) | lhs;
}
static inline WDataOutP VL_EXTENDS_WI(int obits, int lbits, WDataOutP owp, IData ld) VL_MT_SAFE {
EData sign = VL_SIGNONES_E(lbits, static_cast<EData>(ld));
owp[0] = ld | (sign & ~VL_MASK_E(lbits));
for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
return owp;
}
static inline WDataOutP VL_EXTENDS_WQ(int obits, int lbits, WDataOutP owp, QData ld) VL_MT_SAFE {
VL_SET_WQ(owp, ld);
EData sign = VL_SIGNONES_E(lbits, owp[1]);
owp[1] |= sign & ~VL_MASK_E(lbits);
for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
return owp;
}
static inline WDataOutP VL_EXTENDS_WW(int obits, int lbits, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
for (int i = 0; i < VL_WORDS_I(lbits)-1; ++i) owp[i] = lwp[i];
int lmsw = VL_WORDS_I(lbits) - 1;
EData sign = VL_SIGNONES_E(lbits, lwp[lmsw]);
owp[lmsw] = lwp[lmsw] | (sign & ~VL_MASK_E(lbits));
for (int i = VL_WORDS_I(lbits); i < VL_WORDS_I(obits); ++i) owp[i] = sign;
return owp;
}
//===================================================================
// REDUCTION OPERATORS
// EMIT_RULE: VL_REDAND: oclean=clean; lclean==clean; obits=1;
#define VL_REDAND_II(obits,lbits,lhs) ((lhs) == VL_MASK_I(lbits))
#define VL_REDAND_IQ(obits,lbits,lhs) ((lhs) == VL_MASK_Q(lbits))
static inline IData VL_REDAND_IW(int, int lbits, WDataInP lwp) VL_MT_SAFE {
int words = VL_WORDS_I(lbits);
EData combine = lwp[0];
for (int i = 1; i < words - 1; ++i) combine &= lwp[i];
combine &= ~VL_MASK_E(lbits) | lwp[words-1];
return ((~combine)==0);
}
// EMIT_RULE: VL_REDOR: oclean=clean; lclean==clean; obits=1;
#define VL_REDOR_I(lhs) ((lhs)!=0)
#define VL_REDOR_Q(lhs) ((lhs)!=0)
static inline IData VL_REDOR_W(int words, WDataInP lwp) VL_MT_SAFE {
EData equal = 0;
for (int i=0; i < words; ++i) equal |= lwp[i];
return (equal != 0);
}
// EMIT_RULE: VL_REDXOR: oclean=dirty; obits=1;
static inline IData VL_REDXOR_2(IData r) VL_PURE {
// Experiments show VL_REDXOR_2 is faster than __builtin_parityl
r=(r^(r>>1));
return r;
}
static inline IData VL_REDXOR_4(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityl(r);
#else
r=(r^(r>>1)); r=(r^(r>>2));
return r;
#endif
}
static inline IData VL_REDXOR_8(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityl(r);
#else
r=(r^(r>>1)); r=(r^(r>>2)); r=(r^(r>>4));
return r;
#endif
}
static inline IData VL_REDXOR_16(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityl(r);
#else
r=(r^(r>>1)); r=(r^(r>>2)); r=(r^(r>>4)); r=(r^(r>>8));
return r;
#endif
}
static inline IData VL_REDXOR_32(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityl(r);
#else
r=(r^(r>>1)); r=(r^(r>>2)); r=(r^(r>>4)); r=(r^(r>>8)); r=(r^(r>>16));
return r;
#endif
}
static inline IData VL_REDXOR_64(QData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityll(r);
#else
r=(r^(r>>1)); r=(r^(r>>2)); r=(r^(r>>4)); r=(r^(r>>8)); r=(r^(r>>16)); r=(r^(r>>32));
return static_cast<IData>(r);
#endif
}
static inline IData VL_REDXOR_W(int words, WDataInP lwp) VL_MT_SAFE {
EData r = lwp[0];
for (int i=1; i < words; ++i) r ^= lwp[i];
return VL_REDXOR_32(r);
}
// EMIT_RULE: VL_COUNTONES_II: oclean = false; lhs clean
static inline IData VL_COUNTONES_I(IData lhs) VL_PURE {
// This is faster than __builtin_popcountl
IData r = lhs - ((lhs >> 1) & 033333333333) - ((lhs >> 2) & 011111111111);
r = (r + (r>>3)) & 030707070707;
r = (r + (r>>6));
r = (r + (r>>12) + (r>>24)) & 077;
return r;
}
static inline IData VL_COUNTONES_Q(QData lhs) VL_PURE {
return VL_COUNTONES_I(static_cast<IData>(lhs)) + VL_COUNTONES_I(static_cast<IData>(lhs>>32));
}
#define VL_COUNTONES_E VL_COUNTONES_I
static inline IData VL_COUNTONES_W(int words, WDataInP lwp) VL_MT_SAFE {
EData r = 0;
for (int i = 0; i < words; ++i) r += VL_COUNTONES_E(lwp[i]);
return r;
}
static inline IData VL_ONEHOT_I(IData lhs) VL_PURE {
return (((lhs & (lhs-1))==0) & (lhs!=0));
}
static inline IData VL_ONEHOT_Q(QData lhs) VL_PURE {
return (((lhs & (lhs-1))==0) & (lhs!=0));
}
static inline IData VL_ONEHOT_W(int words, WDataInP lwp) VL_MT_SAFE {
EData one = 0;
for (int i=0; (i < words); ++i) {
if (lwp[i]) {
if (one) return 0;
one = 1;
if (lwp[i] & (lwp[i]-1)) return 0;
}
}
return one;
}
static inline IData VL_ONEHOT0_I(IData lhs) VL_PURE {
return ((lhs & (lhs-1))==0);
}
static inline IData VL_ONEHOT0_Q(QData lhs) VL_PURE {
return ((lhs & (lhs-1))==0);
}
static inline IData VL_ONEHOT0_W(int words, WDataInP lwp) VL_MT_SAFE {
bool one = false;
for (int i=0; (i < words); ++i) {
if (lwp[i]) {
if (one) return 0;
one = true;
if (lwp[i] & (lwp[i]-1)) return 0;
}
}
return 1;
}
static inline IData VL_CLOG2_I(IData lhs) VL_PURE {
// There are faster algorithms, or fls GCC4 builtins, but rarely used
if (VL_UNLIKELY(!lhs)) return 0;
lhs--;
int shifts = 0;
for (; lhs!=0; ++shifts) lhs = lhs >> 1;
return shifts;
}
static inline IData VL_CLOG2_Q(QData lhs) VL_PURE {
if (VL_UNLIKELY(!lhs)) return 0;
lhs--;
int shifts = 0;
for (; lhs!=0; ++shifts) lhs = lhs >> VL_ULL(1);
return shifts;
}
static inline IData VL_CLOG2_W(int words, WDataInP lwp) VL_MT_SAFE {
EData adjust = (VL_COUNTONES_W(words, lwp) == 1) ? 0 : 1;
for (int i=words-1; i>=0; --i) {
if (VL_UNLIKELY(lwp[i])) { // Shorter worst case if predict not taken
for (int bit = VL_EDATASIZE - 1; bit >= 0; --bit) {
if (VL_UNLIKELY(VL_BITISSET_E(lwp[i], bit))) {
return i * VL_EDATASIZE + bit + adjust;
}
}
// Can't get here - one bit must be set
}
}
return 0;
}
static inline IData VL_MOSTSETBITP1_W(int words, WDataInP lwp) VL_MT_SAFE {
// MSB set bit plus one; similar to FLS. 0=value is zero
for (int i=words-1; i>=0; --i) {
if (VL_UNLIKELY(lwp[i])) { // Shorter worst case if predict not taken
for (int bit = VL_EDATASIZE - 1; bit >= 0; --bit) {
if (VL_UNLIKELY(VL_BITISSET_E(lwp[i], bit))) {
return i * VL_EDATASIZE + bit + 1;
}
}
// Can't get here - one bit must be set
}
}
return 0;
}
//===================================================================
// SIMPLE LOGICAL OPERATORS
// EMIT_RULE: VL_AND: oclean=lclean||rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_AND_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i=0; (i < words); ++i) owp[i] = (lwp[i] & rwp[i]);
return owp;
}
// EMIT_RULE: VL_OR: oclean=lclean&&rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_OR_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i=0; (i < words); ++i) owp[i] = (lwp[i] | rwp[i]);
return owp;
}
// EMIT_RULE: VL_CHANGEXOR: oclean=1; obits=32; lbits==rbits;
static inline IData VL_CHANGEXOR_W(int words, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
IData od = 0;
for (int i=0; (i < words); ++i) od |= (lwp[i] ^ rwp[i]);
return(od);
}
// EMIT_RULE: VL_XOR: oclean=lclean&&rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_XOR_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i=0; (i < words); ++i) owp[i] = (lwp[i] ^ rwp[i]);
return owp;
}
// EMIT_RULE: VL_XNOR: oclean=dirty; obits=lbits; lbits==rbits;
static inline WDataOutP VL_XNOR_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i=0; (i < words); ++i) owp[i] = (lwp[i] ^ ~rwp[i]);
return owp;
}
// EMIT_RULE: VL_NOT: oclean=dirty; obits=lbits;
static inline WDataOutP VL_NOT_W(int words, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
for (int i=0; i < words; ++i) owp[i] = ~(lwp[i]);
return owp;
}
//=========================================================================
// Logical comparisons
// EMIT_RULE: VL_EQ: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_NEQ: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_LT: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_GT: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_GTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_LTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
#define VL_NEQ_W(words,lwp,rwp) (!VL_EQ_W(words,lwp,rwp))
#define VL_LT_W(words,lwp,rwp) (_VL_CMP_W(words,lwp,rwp)<0)
#define VL_LTE_W(words,lwp,rwp) (_VL_CMP_W(words,lwp,rwp)<=0)
#define VL_GT_W(words,lwp,rwp) (_VL_CMP_W(words,lwp,rwp)>0)
#define VL_GTE_W(words,lwp,rwp) (_VL_CMP_W(words,lwp,rwp)>=0)
// Output clean, <lhs> AND <rhs> MUST BE CLEAN
static inline IData VL_EQ_W(int words, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
EData nequal = 0;
for (int i=0; (i < words); ++i) nequal |= (lwp[i] ^ rwp[i]);
return (nequal==0);
}
// Internal usage
static inline int _VL_CMP_W(int words, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i=words-1; i>=0; --i) {
if (lwp[i] > rwp[i]) return 1;
if (lwp[i] < rwp[i]) return -1;
}
return(0); // ==
}
#define VL_LTS_IWW(obits,lbits,rbbits,lwp,rwp) (_VL_CMPS_W(lbits,lwp,rwp)<0)
#define VL_LTES_IWW(obits,lbits,rbits,lwp,rwp) (_VL_CMPS_W(lbits,lwp,rwp)<=0)
#define VL_GTS_IWW(obits,lbits,rbits,lwp,rwp) (_VL_CMPS_W(lbits,lwp,rwp)>0)
#define VL_GTES_IWW(obits,lbits,rbits,lwp,rwp) (_VL_CMPS_W(lbits,lwp,rwp)>=0)
static inline IData VL_GTS_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
// For lbits==32, this becomes just a single instruction, otherwise ~5.
// GCC 3.3.4 sign extension bugs on AMD64 architecture force us to use quad logic
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
return lhs_signed > rhs_signed;
}
static inline IData VL_GTS_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed > rhs_signed;
}
static inline IData VL_GTES_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
return lhs_signed >= rhs_signed;
}
static inline IData VL_GTES_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed >= rhs_signed;
}
static inline IData VL_LTS_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
return lhs_signed < rhs_signed;
}
static inline IData VL_LTS_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed < rhs_signed;
}
static inline IData VL_LTES_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
return lhs_signed <= rhs_signed;
}
static inline IData VL_LTES_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed <= rhs_signed;
}
static inline int _VL_CMPS_W(int lbits, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
int words = VL_WORDS_I(lbits);
int i = words-1;
// We need to flip sense if negative comparison
EData lsign = VL_SIGN_E(lbits, lwp[i]);
EData rsign = VL_SIGN_E(lbits, rwp[i]);
if (!lsign && rsign) return 1; // + > -
if (lsign && !rsign) return -1; // - < +
for (; i>=0; --i) {
if (lwp[i] > rwp[i]) return 1;
if (lwp[i] < rwp[i]) return -1;
}
return(0); // ==
}
//=========================================================================
// Math
// Optimization bug in GCC 2.96 and presumably all-pre GCC 3 versions need this workaround,
// we can't just
//# define VL_NEGATE_I(data) (-(data))
static inline IData VL_NEGATE_I(IData data) VL_PURE { return -data; }
static inline QData VL_NEGATE_Q(QData data) VL_PURE { return -data; }
static inline EData VL_NEGATE_E(EData data) VL_PURE { return -data; }
static inline WDataOutP VL_NEGATE_W(int words, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
EData carry = 1;
for (int i = 0; i < words; ++i) {
owp[i] = ~lwp[i] + carry;
carry = (owp[i] < ~lwp[i]);
}
return owp;
}
// EMIT_RULE: VL_MUL: oclean=dirty; lclean==clean; rclean==clean;
// EMIT_RULE: VL_DIV: oclean=dirty; lclean==clean; rclean==clean;
// EMIT_RULE: VL_MODDIV: oclean=dirty; lclean==clean; rclean==clean;
#define VL_DIV_III(lbits,lhs,rhs) (((rhs)==0)?0:(lhs)/(rhs))
#define VL_DIV_QQQ(lbits,lhs,rhs) (((rhs)==0)?0:(lhs)/(rhs))
#define VL_DIV_WWW(lbits,owp,lwp,rwp) (_vl_moddiv_w(lbits,owp,lwp,rwp,0))
#define VL_MODDIV_III(lbits,lhs,rhs) (((rhs)==0)?0:(lhs)%(rhs))
#define VL_MODDIV_QQQ(lbits,lhs,rhs) (((rhs)==0)?0:(lhs)%(rhs))
#define VL_MODDIV_WWW(lbits,owp,lwp,rwp) (_vl_moddiv_w(lbits,owp,lwp,rwp,1))
static inline WDataOutP VL_ADD_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
QData carry = 0;
for (int i = 0; i < words; ++i) {
carry = carry + static_cast<QData>(lwp[i]) + static_cast<QData>(rwp[i]);
owp[i] = (carry & VL_ULL(0xffffffff));
carry = (carry >> VL_ULL(32)) & VL_ULL(0xffffffff);
}
// Last output word is dirty
return owp;
}
static inline WDataOutP VL_SUB_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
QData carry = 0;
for (int i = 0; i < words; ++i) {
carry = (carry + static_cast<QData>(lwp[i])
+ static_cast<QData>(static_cast<IData>(~rwp[i])));
if (i == 0) ++carry; // Negation of rwp
owp[i] = (carry & VL_ULL(0xffffffff));
carry = (carry >> VL_ULL(32)) & VL_ULL(0xffffffff);
}
// Last output word is dirty
return owp;
}
static inline WDataOutP VL_MUL_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i=0; i<words; ++i) owp[i] = 0;
for (int lword=0; lword<words; ++lword) {
for (int rword=0; rword<words; ++rword) {
QData mul = static_cast<QData>(lwp[lword]) * static_cast<QData>(rwp[rword]);
for (int qword=lword+rword; qword<words; ++qword) {
mul += static_cast<QData>(owp[qword]);
owp[qword] = (mul & VL_ULL(0xffffffff));
mul = (mul >> VL_ULL(32)) & VL_ULL(0xffffffff);
}
}
}
// Last output word is dirty
return owp;
}
static inline IData VL_MULS_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
vlsint32_t lhs_signed = VL_EXTENDS_II(32, lbits, lhs);
vlsint32_t rhs_signed = VL_EXTENDS_II(32, lbits, rhs);
return lhs_signed * rhs_signed;
}
static inline QData VL_MULS_QQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed * rhs_signed;
}
static inline WDataOutP VL_MULS_WWW(int, int lbits, int,
WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
int words = VL_WORDS_I(lbits);
// cppcheck-suppress variableScope
WData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
// cppcheck-suppress variableScope
WData rwstore[VL_MULS_MAX_WORDS];
WDataInP lwusp = lwp;
WDataInP rwusp = rwp;
EData lneg = VL_SIGN_E(lbits, lwp[words - 1]);
if (lneg) { // Negate lhs
lwusp = lwstore;
VL_NEGATE_W(words, lwstore, lwp);
lwstore[words - 1] &= VL_MASK_E(lbits); // Clean it
}
EData rneg = VL_SIGN_E(lbits, rwp[words - 1]);
if (rneg) { // Negate rhs
rwusp = rwstore;
VL_NEGATE_W(words, rwstore, rwp);
rwstore[words - 1] &= VL_MASK_E(lbits); // Clean it
}
VL_MUL_W(words, owp, lwusp, rwusp);
owp[words - 1] &= VL_MASK_E(
lbits); // Clean. Note it's ok for the multiply to overflow into the sign bit
if ((lneg ^ rneg) & 1) { // Negate output (not using NEGATE, as owp==lwp)
QData carry = 0;
for (int i = 0; i < words; ++i) {
carry = carry + static_cast<QData>(static_cast<IData>(~owp[i]));
if (i == 0) ++carry; // Negation of temp2
owp[i] = (carry & VL_ULL(0xffffffff));
carry = (carry >> VL_ULL(32)) & VL_ULL(0xffffffff);
}
// Not needed: owp[words-1] |= 1<<VL_BITBIT_E(lbits-1); // Set sign bit
}
// Last output word is dirty
return owp;
}
static inline IData VL_DIVS_III(int lbits, IData lhs, IData rhs) VL_PURE {
if (VL_UNLIKELY(rhs == 0)) return 0;
vlsint32_t lhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, lhs);
vlsint32_t rhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, rhs);
return lhs_signed / rhs_signed;
}
static inline QData VL_DIVS_QQQ(int lbits, QData lhs, QData rhs) VL_PURE {
if (VL_UNLIKELY(rhs == 0)) return 0;
vlsint64_t lhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, rhs);
return lhs_signed / rhs_signed;
}
static inline IData VL_MODDIVS_III(int lbits, IData lhs, IData rhs) VL_PURE {
if (VL_UNLIKELY(rhs == 0)) return 0;
vlsint32_t lhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, lhs);
vlsint32_t rhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, rhs);
return lhs_signed % rhs_signed;
}
static inline QData VL_MODDIVS_QQQ(int lbits, QData lhs, QData rhs) VL_PURE {
if (VL_UNLIKELY(rhs == 0)) return 0;
vlsint64_t lhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, rhs);
return lhs_signed % rhs_signed;
}
static inline WDataOutP VL_DIVS_WWW(int lbits, WDataOutP owp, WDataInP lwp,
WDataInP rwp) VL_MT_SAFE {
int words = VL_WORDS_I(lbits);
EData lsign = VL_SIGN_E(lbits, lwp[words - 1]);
EData rsign = VL_SIGN_E(lbits, rwp[words - 1]);
// cppcheck-suppress variableScope
WData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
// cppcheck-suppress variableScope
WData rwstore[VL_MULS_MAX_WORDS];
WDataInP ltup = lwp;
WDataInP rtup = rwp;
if (lsign) { ltup = _VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), lwstore, lwp)); }
if (rsign) { rtup = _VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), rwstore, rwp)); }
if ((lsign && !rsign) || (!lsign && rsign)) {
WData qNoSign[VL_MULS_MAX_WORDS];
VL_DIV_WWW(lbits, qNoSign, ltup, rtup);
_VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), owp, qNoSign));
return owp;
} else {
return VL_DIV_WWW(lbits, owp, ltup, rtup);
}
}
static inline WDataOutP VL_MODDIVS_WWW(int lbits, WDataOutP owp, WDataInP lwp,
WDataInP rwp) VL_MT_SAFE {
int words = VL_WORDS_I(lbits);
EData lsign = VL_SIGN_E(lbits, lwp[words - 1]);
EData rsign = VL_SIGN_E(lbits, rwp[words - 1]);
// cppcheck-suppress variableScope
WData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
// cppcheck-suppress variableScope
WData rwstore[VL_MULS_MAX_WORDS];
WDataInP ltup = lwp;
WDataInP rtup = rwp;
if (lsign) { ltup = _VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), lwstore, lwp)); }
if (rsign) { rtup = _VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), rwstore, rwp)); }
if (lsign) { // Only dividend sign matters for modulus
WData qNoSign[VL_MULS_MAX_WORDS];
VL_MODDIV_WWW(lbits, qNoSign, ltup, rtup);
_VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), owp, qNoSign));
return owp;
} else {
return VL_MODDIV_WWW(lbits, owp, ltup, rtup);
}
}
#define VL_POW_IIQ(obits, lbits, rbits, lhs, rhs) VL_POW_QQQ(obits, lbits, rbits, lhs, rhs)
#define VL_POW_IIW(obits, lbits, rbits, lhs, rwp) VL_POW_QQW(obits, lbits, rbits, lhs, rwp)
#define VL_POW_QQI(obits, lbits, rbits, lhs, rhs) VL_POW_QQQ(obits, lbits, rbits, lhs, rhs)
#define VL_POW_WWI(obits, lbits, rbits, owp, lwp, rhs) \
VL_POW_WWQ(obits, lbits, rbits, owp, lwp, rhs)
static inline IData VL_POW_III(int, int, int rbits, IData lhs, IData rhs) VL_PURE {
if (VL_UNLIKELY(rhs == 0)) return 1;
if (VL_UNLIKELY(lhs == 0)) return 0;
IData power = lhs;
IData out = 1;
for (int i = 0; i < rbits; ++i) {
if (i > 0) power = power * power;
if (rhs & (VL_ULL(1) << i)) out *= power;
}
return out;
}
static inline QData VL_POW_QQQ(int, int, int rbits, QData lhs, QData rhs) VL_PURE {
if (VL_UNLIKELY(rhs == 0)) return 1;
if (VL_UNLIKELY(lhs == 0)) return 0;
QData power = lhs;
QData out = VL_ULL(1);
for (int i = 0; i < rbits; ++i) {
if (i > 0) power = power * power;
if (rhs & (VL_ULL(1) << i)) out *= power;
}
return out;
}
WDataOutP VL_POW_WWW(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, WDataInP rwp);
WDataOutP VL_POW_WWQ(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, QData rhs);
QData VL_POW_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp);
#define VL_POWSS_IIQ(obits,lbits,rbits,lhs,rhs,lsign,rsign) \
VL_POWSS_QQQ(obits,lbits,rbits,lhs,rhs,lsign,rsign)
#define VL_POWSS_IIQ(obits,lbits,rbits,lhs,rhs,lsign,rsign) \
VL_POWSS_QQQ(obits,lbits,rbits,lhs,rhs,lsign,rsign)
#define VL_POWSS_IIW(obits,lbits,rbits,lhs,rwp,lsign,rsign) \
VL_POWSS_QQW(obits,lbits,rbits,lhs,rwp,lsign,rsign)
#define VL_POWSS_QQI(obits,lbits,rbits,lhs,rhs,lsign,rsign) \
VL_POWSS_QQQ(obits,lbits,rbits,lhs,rhs,lsign,rsign)
#define VL_POWSS_WWI(obits,lbits,rbits,owp,lwp,rhs,lsign,rsign) \
VL_POWSS_WWQ(obits,lbits,rbits,owp,lwp,rhs,lsign,rsign)
static inline IData VL_POWSS_III(int obits, int, int rbits,
IData lhs, IData rhs, bool lsign, bool rsign) VL_MT_SAFE {
if (VL_UNLIKELY(rhs == 0)) return 1;
if (rsign && VL_SIGN_I(rbits, rhs)) {
if (lhs == 0) return 0; // "X"
else if (lhs == 1) return 1;
else if (lsign && lhs == VL_MASK_I(obits)) { // -1
if (rhs & 1) return VL_MASK_I(obits); // -1^odd=-1
else return 1; // -1^even=1
}
return 0;
}
return VL_POW_III(obits, rbits, rbits, lhs, rhs);
}
static inline QData VL_POWSS_QQQ(int obits, int, int rbits,
QData lhs, QData rhs, bool lsign, bool rsign) VL_MT_SAFE {
if (VL_UNLIKELY(rhs == 0)) return 1;
if (rsign && VL_SIGN_Q(rbits, rhs)) {
if (lhs == 0) return 0; // "X"
else if (lhs == 1) return 1;
else if (lsign && lhs == VL_MASK_Q(obits)) { // -1
if (rhs & 1) return VL_MASK_Q(obits); // -1^odd=-1
else return 1; // -1^even=1
}
return 0;
}
return VL_POW_QQQ(obits, rbits, rbits, lhs, rhs);
}
WDataOutP VL_POWSS_WWW(int obits, int, int rbits,
WDataOutP owp, WDataInP lwp, WDataInP rwp, bool lsign, bool rsign);
WDataOutP VL_POWSS_WWQ(int obits, int, int rbits,
WDataOutP owp, WDataInP lwp, QData rhs, bool lsign, bool rsign);
QData VL_POWSS_QQW(int obits, int, int rbits,
QData lhs, WDataInP rwp, bool lsign, bool rsign);
//===================================================================
// Concat/replication
// INTERNAL: Stuff LHS bit 0++ into OUTPUT at specified offset
// ld may be "dirty", output is clean
static inline void _VL_INSERT_II(int, CData& lhsr, IData ld, int hbit, int lbit) VL_PURE {
IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit;
lhsr = (lhsr & ~insmask) | ((ld << lbit) & insmask);
}
static inline void _VL_INSERT_II(int, SData& lhsr, IData ld, int hbit, int lbit) VL_PURE {
IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit;
lhsr = (lhsr & ~insmask) | ((ld << lbit) & insmask);
}
static inline void _VL_INSERT_II(int, IData& lhsr, IData ld, int hbit, int lbit) VL_PURE {
IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit;
lhsr = (lhsr & ~insmask) | ((ld << lbit) & insmask);
}
static inline void _VL_INSERT_QQ(int, QData& lhsr, QData ld, int hbit, int lbit) VL_PURE {
QData insmask = (VL_MASK_Q(hbit - lbit + 1)) << lbit;
lhsr = (lhsr & ~insmask) | ((ld << lbit) & insmask);
}
static inline void _VL_INSERT_WI(int, WDataOutP owp, IData ld, int hbit, int lbit) VL_MT_SAFE {
int hoffset = VL_BITBIT_E(hbit);
int loffset = VL_BITBIT_E(lbit);
if (hoffset == VL_SIZEBITS_E && loffset == 0) {
// Fast and common case, word based insertion
owp[VL_BITWORD_E(lbit)] = ld;
} else {
int hword = VL_BITWORD_E(hbit);
int lword = VL_BITWORD_E(lbit);
EData lde = static_cast<EData>(ld);
if (hword == lword) { // know < EData bits because above checks it
EData insmask = (VL_MASK_E(hoffset - loffset + 1)) << loffset;
owp[lword] = (owp[lword] & ~insmask) | ((lde << loffset) & insmask);
} else {
EData hinsmask = (VL_MASK_E(hoffset - 0 + 1)) << 0;
EData linsmask = (VL_MASK_E((VL_EDATASIZE - 1) - loffset + 1)) << loffset;
int nbitsonright = VL_EDATASIZE - loffset; // bits that end up in lword
owp[lword] = (owp[lword] & ~linsmask) | ((lde << loffset) & linsmask);
owp[hword] = (owp[hword] & ~hinsmask) | ((lde >> nbitsonright) & hinsmask);
}
}
}
// INTERNAL: Stuff large LHS bit 0++ into OUTPUT at specified offset
// lwp may be "dirty"
static inline void _VL_INSERT_WW(int, WDataOutP owp, WDataInP lwp, int hbit, int lbit) VL_MT_SAFE {
int hoffset = hbit & VL_SIZEBITS_E;
int loffset = lbit & VL_SIZEBITS_E;
int lword = VL_BITWORD_E(lbit);
int words = VL_WORDS_I(hbit - lbit + 1);
if (hoffset == VL_SIZEBITS_E && loffset == 0) {
// Fast and common case, word based insertion
for (int i=0; i<words; ++i) {
owp[lword+i] = lwp[i];
}
}
else if (loffset==0) {
// Non-32bit, but nicely aligned, so stuff all but the last word
for (int i=0; i<(words-1); ++i) {
owp[lword+i] = lwp[i];
}
// Know it's not a full word as above fast case handled it
EData hinsmask = (VL_MASK_E(hoffset - 0 + 1));
owp[lword + words - 1]
= (owp[words + lword - 1] & ~hinsmask) | (lwp[words - 1] & hinsmask);
}
else {
EData hinsmask = (VL_MASK_E(hoffset - 0 + 1)) << 0;
EData linsmask = (VL_MASK_E((VL_EDATASIZE - 1) - loffset + 1)) << loffset;
int nbitsonright = VL_EDATASIZE - loffset; // bits that end up in lword (know loffset!=0)
// Middle words
int hword = VL_BITWORD_E(hbit);
for (int i=0; i<words; ++i) {
{ // Lower word
int oword = lword+i;
EData d = lwp[i] << loffset;
EData od = (owp[oword] & ~linsmask) | (d & linsmask);
if (oword == hword)
owp[oword] = (owp[oword] & ~hinsmask) | (od & hinsmask);
else owp[oword] = od;
}
{ // Upper word
int oword = lword+i+1;
if (oword <= hword) {
EData d = lwp[i] >> nbitsonright;
EData od = (d & ~linsmask) | (owp[oword] & linsmask);
if (oword == hword)
owp[oword] = (owp[oword] & ~hinsmask) | (od & hinsmask);
else owp[oword] = od;
}
}
}
}
}
static inline void _VL_INSERT_WQ(int obits, WDataOutP owp, QData ld, int hbit, int lbit) VL_MT_SAFE {
WData lwp[VL_WQ_WORDS_E]; VL_SET_WQ(lwp, ld);
_VL_INSERT_WW(obits, owp, lwp, hbit, lbit);
}
// EMIT_RULE: VL_REPLICATE: oclean=clean>width32, dirty<=width32; lclean=clean; rclean==clean;
// RHS MUST BE CLEAN CONSTANT.
#define VL_REPLICATE_IOI(obits,lbits,rbits, ld, rep) (-(ld)) // Iff lbits==1
#define VL_REPLICATE_QOI(obits,lbits,rbits, ld, rep) (-(static_cast<QData>(ld))) // Iff lbits==1
static inline IData VL_REPLICATE_III(int, int lbits, int, IData ld, IData rep) VL_PURE {
IData returndata = ld;
for (unsigned i=1; i < rep; ++i){
returndata = returndata << lbits;
returndata |= ld;
}
return returndata;
}
static inline QData VL_REPLICATE_QII(int, int lbits, int, IData ld, IData rep) VL_PURE {
QData returndata = ld;
for (unsigned i=1; i < rep; ++i){
returndata = returndata << lbits;
returndata |= static_cast<QData>(ld);
}
return returndata;
}
static inline WDataOutP VL_REPLICATE_WII(int obits, int lbits, int,
WDataOutP owp, IData ld, IData rep) VL_MT_SAFE {
owp[0] = ld;
for (unsigned i=1; i < rep; ++i){
_VL_INSERT_WI(obits, owp, ld, i*lbits+lbits-1, i*lbits);
}
return owp;
}
static inline WDataOutP VL_REPLICATE_WQI(int obits, int lbits, int,
WDataOutP owp, QData ld, IData rep) VL_MT_SAFE {
VL_SET_WQ(owp, ld);
for (unsigned i=1; i < rep; ++i){
_VL_INSERT_WQ(obits, owp, ld, i*lbits+lbits-1, i*lbits);
}
return owp;
}
static inline WDataOutP VL_REPLICATE_WWI(int obits, int lbits, int,
WDataOutP owp, WDataInP lwp, IData rep) VL_MT_SAFE {
for (int i=0; i < VL_WORDS_I(lbits); ++i) owp[i] = lwp[i];
for (unsigned i=1; i < rep; ++i){
_VL_INSERT_WW(obits, owp, lwp, i*lbits+lbits-1, i*lbits);
}
return owp;
}
// Left stream operator. Output will always be clean. LHS and RHS must be clean.
// Special "fast" versions for slice sizes that are a power of 2. These use
// shifts and masks to execute faster than the slower for-loop approach where a
// subset of bits is copied in during each iteration.
static inline IData VL_STREAML_FAST_III(int, int lbits, int, IData ld, IData rd_log2) VL_PURE {
// Pre-shift bits in most-significant slice:
//
// If lbits is not a multiple of the slice size (i.e., lbits % rd != 0),
// then we end up with a "gap" in our reversed result. For example, if we
// have a 5-bit Verlilog signal (lbits=5) in an 8-bit C data type:
//
// ld = ---43210
//
// (where numbers are the Verilog signal bit numbers and '-' is an unused bit).
// Executing the switch statement below with a slice size of two (rd=2,
// rd_log2=1) produces:
//
// ret = 1032-400
//
// Pre-shifting the bits in the most-significant slice allows us to avoid
// this gap in the shuffled data:
//
// ld_adjusted = --4-3210
// ret = 10324---
IData ret = ld;
if (rd_log2) {
vluint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2); // max multiple of rd <= lbits
vluint32_t lbitsRem = lbits - lbitsFloor; // number of bits in most-sig slice (MSS)
IData msbMask = VL_MASK_I(lbitsRem) << lbitsFloor; // mask to sel only bits in MSS
ret = (ret & ~msbMask) | ((ret & msbMask) << ((VL_UL(1) << rd_log2) - lbitsRem));
}
switch (rd_log2) {
case 0:
ret = ((ret >> 1) & VL_UL(0x55555555))
| ((ret & VL_UL(0x55555555)) << 1); // FALLTHRU
case 1:
ret = ((ret >> 2) & VL_UL(0x33333333))
| ((ret & VL_UL(0x33333333)) << 2); // FALLTHRU
case 2:
ret = ((ret >> 4) & VL_UL(0x0f0f0f0f))
| ((ret & VL_UL(0x0f0f0f0f)) << 4); // FALLTHRU
case 3:
ret = ((ret >> 8) & VL_UL(0x00ff00ff))
| ((ret & VL_UL(0x00ff00ff)) << 8); // FALLTHRU
case 4:
ret = ((ret >> 16) | (ret << 16));
}
return ret >> (VL_IDATASIZE - lbits);
}
static inline QData VL_STREAML_FAST_QQI(int, int lbits, int, QData ld, IData rd_log2) VL_PURE {
// Pre-shift bits in most-significant slice (see comment in VL_STREAML_FAST_III)
QData ret = ld;
if (rd_log2) {
vluint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2);
vluint32_t lbitsRem = lbits - lbitsFloor;
QData msbMask = VL_MASK_Q(lbitsRem) << lbitsFloor;
ret = (ret & ~msbMask) | ((ret & msbMask) << ((VL_ULL(1) << rd_log2) - lbitsRem));
}
switch (rd_log2) {
case 0:
ret = (((ret >> 1) & VL_ULL(0x5555555555555555))
| ((ret & VL_ULL(0x5555555555555555)) << 1)); // FALLTHRU
case 1:
ret = (((ret >> 2) & VL_ULL(0x3333333333333333))
| ((ret & VL_ULL(0x3333333333333333)) << 2)); // FALLTHRU
case 2:
ret = (((ret >> 4) & VL_ULL(0x0f0f0f0f0f0f0f0f))
| ((ret & VL_ULL(0x0f0f0f0f0f0f0f0f)) << 4)); // FALLTHRU
case 3:
ret = (((ret >> 8) & VL_ULL(0x00ff00ff00ff00ff))
| ((ret & VL_ULL(0x00ff00ff00ff00ff)) << 8)); // FALLTHRU
case 4:
ret = (((ret >> 16) & VL_ULL(0x0000ffff0000ffff))
| ((ret & VL_ULL(0x0000ffff0000ffff)) << 16)); // FALLTHRU
case 5:
ret = ((ret >> 32) | (ret << 32));
}
return ret >> (VL_QUADSIZE - lbits);
}
// Regular "slow" streaming operators
static inline IData VL_STREAML_III(int, int lbits, int, IData ld, IData rd) VL_PURE {
IData ret = 0;
// Slice size should never exceed the lhs width
IData mask = VL_MASK_I(rd);
for (int istart = 0; istart < lbits; istart += rd) {
int ostart = lbits - rd - istart;
ostart = ostart > 0 ? ostart : 0;
ret |= ((ld >> istart) & mask) << ostart;
}
return ret;
}
static inline QData VL_STREAML_QQI(int, int lbits, int, QData ld, IData rd) VL_PURE {
QData ret = 0;
// Slice size should never exceed the lhs width
QData mask = VL_MASK_Q(rd);
for (int istart=0; istart<lbits; istart+=rd) {
int ostart = lbits-rd-istart;
ostart = ostart > 0 ? ostart : 0;
ret |= ((ld >> istart) & mask) << ostart;
}
return ret;
}
static inline WDataOutP VL_STREAML_WWI(int, int lbits, int,
WDataOutP owp, WDataInP lwp, IData rd) VL_MT_SAFE {
VL_ZERO_W(lbits, owp);
// Slice size should never exceed the lhs width
int ssize = (rd < static_cast<IData>(lbits)) ? rd : (static_cast<IData>(lbits));
for (int istart=0; istart<lbits; istart+=rd) {
int ostart = lbits-rd-istart;
ostart = ostart > 0 ? ostart : 0;
for (int sbit=0; sbit<ssize && sbit<lbits-istart; ++sbit) {
// Extract a single bit from lwp and shift it to the correct
// location for owp.
EData bit = (VL_BITRSHIFT_W(lwp, (istart + sbit)) & 1) << VL_BITBIT_E(ostart + sbit);
owp[VL_BITWORD_E(ostart + sbit)] |= bit;
}
}
return owp;
}
// Because concats are common and wide, it's valuable to always have a clean output.
// Thus we specify inputs must be clean, so we don't need to clean the output.
// Note the bit shifts are always constants, so the adds in these constify out.
// Casts required, as args may be 8 bit entities, and need to shift to appropriate output size
#define VL_CONCAT_III(obits,lbits,rbits,ld,rd) \
(static_cast<IData>(ld)<<(rbits) | static_cast<IData>(rd))
#define VL_CONCAT_QII(obits,lbits,rbits,ld,rd) \
(static_cast<QData>(ld)<<(rbits) | static_cast<QData>(rd))
#define VL_CONCAT_QIQ(obits,lbits,rbits,ld,rd) \
(static_cast<QData>(ld)<<(rbits) | static_cast<QData>(rd))
#define VL_CONCAT_QQI(obits,lbits,rbits,ld,rd) \
(static_cast<QData>(ld)<<(rbits) | static_cast<QData>(rd))
#define VL_CONCAT_QQQ(obits,lbits,rbits,ld,rd) \
(static_cast<QData>(ld)<<(rbits) | static_cast<QData>(rd))
static inline WDataOutP VL_CONCAT_WII(int obits, int lbits, int rbits,
WDataOutP owp, IData ld, IData rd) VL_MT_SAFE {
owp[0] = rd;
for (int i=1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WI(obits, owp, ld, rbits+lbits-1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WWI(int obits, int lbits, int rbits,
WDataOutP owp, WDataInP lwp, IData rd) VL_MT_SAFE {
owp[0] = rd;
for (int i=1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WW(obits, owp, lwp, rbits+lbits-1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WIW(int obits, int lbits, int rbits,
WDataOutP owp, IData ld, WDataInP rwp) VL_MT_SAFE {
for (int i=0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i];
for (int i=VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WI(obits, owp, ld, rbits+lbits-1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WIQ(int obits, int lbits, int rbits,
WDataOutP owp, IData ld, QData rd) VL_MT_SAFE {
VL_SET_WQ(owp, rd);
for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WI(obits, owp, ld, rbits+lbits-1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WQI(int obits, int lbits, int rbits,
WDataOutP owp, QData ld, IData rd) VL_MT_SAFE {
owp[0] = rd;
for (int i=1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WQ(obits, owp, ld, rbits+lbits-1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WQQ(int obits, int lbits, int rbits,
WDataOutP owp, QData ld, QData rd) VL_MT_SAFE {
VL_SET_WQ(owp, rd);
for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WQ(obits, owp, ld, rbits+lbits-1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WWQ(int obits, int lbits, int rbits,
WDataOutP owp, WDataInP lwp, QData rd) VL_MT_SAFE {
VL_SET_WQ(owp, rd);
for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WW(obits, owp, lwp, rbits+lbits-1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WQW(int obits, int lbits, int rbits,
WDataOutP owp, QData ld, WDataInP rwp) VL_MT_SAFE {
for (int i=0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i];
for (int i=VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WQ(obits, owp, ld, rbits+lbits-1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WWW(int obits, int lbits, int rbits,
WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i=0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i];
for (int i=VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WW(obits, owp, lwp, rbits+lbits-1, rbits);
return owp;
}
//===================================================================
// Shifts
// Static shift, used by internal functions
// The output is the same as the input - it overlaps!
static inline void _VL_SHIFTL_INPLACE_W(int obits, WDataOutP iowp, IData rd/*1 or 4*/) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
EData linsmask = VL_MASK_E(rd);
for (int i=words-1; i>=1; --i) {
iowp[i] = ((iowp[i]<<rd) & ~linsmask) | ((iowp[i-1] >> (VL_EDATASIZE - rd)) & linsmask);
}
iowp[0] = ((iowp[0]<<rd) & ~linsmask);
iowp[VL_WORDS_I(obits)-1] &= VL_MASK_E(obits);
}
// EMIT_RULE: VL_SHIFTL: oclean=lclean; rclean==clean;
// Important: Unlike most other funcs, the shift might well be a computed
// expression. Thus consider this when optimizing. (And perhaps have 2 funcs?)
static inline WDataOutP VL_SHIFTL_WWI(int obits, int, int,
WDataOutP owp, WDataInP lwp, IData rd) VL_MT_SAFE {
int word_shift = VL_BITWORD_E(rd);
int bit_shift = VL_BITBIT_E(rd);
if (rd >= static_cast<IData>(obits)) { // rd may be huge with MSB set
for (int i=0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
} else if (bit_shift==0) { // Aligned word shift (<<0,<<32,<<64 etc)
for (int i=0; i < word_shift; ++i) owp[i] = 0;
for (int i=word_shift; i < VL_WORDS_I(obits); ++i) owp[i] = lwp[i-word_shift];
} else {
for (int i=0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WW(obits, owp, lwp, obits-1, rd);
}
return owp;
}
static inline WDataOutP VL_SHIFTL_WWW(int obits, int lbits, int rbits,
WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i=1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return VL_ZERO_W(obits, owp);
}
}
return VL_SHIFTL_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
}
static inline IData VL_SHIFTL_IIW(int obits, int, int rbits, IData lhs, WDataInP rwp) VL_MT_SAFE {
for (int i=1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return 0;
}
}
return VL_CLEAN_II(obits, obits, lhs<<rwp[0]);
}
static inline QData VL_SHIFTL_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp) VL_MT_SAFE {
for (int i=1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return 0;
}
}
// Above checks rwp[1]==0 so not needed in below shift
return VL_CLEAN_QQ(obits, obits, lhs<<(static_cast<QData>(rwp[0])));
}
// EMIT_RULE: VL_SHIFTR: oclean=lclean; rclean==clean;
// Important: Unlike most other funcs, the shift might well be a computed
// expression. Thus consider this when optimizing. (And perhaps have 2 funcs?)
static inline WDataOutP VL_SHIFTR_WWI(int obits, int, int,
WDataOutP owp, WDataInP lwp, IData rd) VL_MT_SAFE {
int word_shift = VL_BITWORD_E(rd); // Maybe 0
int bit_shift = VL_BITBIT_E(rd);
if (rd >= static_cast<IData>(obits)) { // rd may be huge with MSB set
for (int i=0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
} else if (bit_shift==0) { // Aligned word shift (>>0,>>32,>>64 etc)
int copy_words = (VL_WORDS_I(obits)-word_shift);
for (int i=0; i < copy_words; ++i) owp[i] = lwp[i+word_shift];
for (int i=copy_words; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
} else {
int loffset = rd & VL_SIZEBITS_E;
int nbitsonright = VL_EDATASIZE - loffset; // bits that end up in lword (know loffset!=0)
// Middle words
int words = VL_WORDS_I(obits-rd);
for (int i=0; i<words; ++i) {
owp[i] = lwp[i+word_shift]>>loffset;
int upperword = i+word_shift+1;
if (upperword < VL_WORDS_I(obits)) {
owp[i] |= lwp[upperword]<< nbitsonright;
}
}
for (int i=words; i<VL_WORDS_I(obits); ++i) owp[i]=0;
}
return owp;
}
static inline WDataOutP VL_SHIFTR_WWW(int obits, int lbits, int rbits,
WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i=1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return VL_ZERO_W(obits, owp);
}
}
return VL_SHIFTR_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
}
static inline WDataOutP VL_SHIFTR_WWQ(int obits, int lbits, int rbits,
WDataOutP owp, WDataInP lwp, QData rd) VL_MT_SAFE {
WData rwp[VL_WQ_WORDS_E]; VL_SET_WQ(rwp, rd);
return VL_SHIFTR_WWW(obits, lbits, rbits, owp, lwp, rwp);
}
static inline IData VL_SHIFTR_IIW(int obits, int, int rbits, IData lhs, WDataInP rwp) VL_MT_SAFE {
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return 0;
}
}
return VL_CLEAN_II(obits, obits, lhs >> rwp[0]);
}
static inline QData VL_SHIFTR_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp) VL_MT_SAFE {
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return 0;
}
}
// Above checks rwp[1]==0 so not needed in below shift
return VL_CLEAN_QQ(obits, obits, lhs >> (static_cast<QData>(rwp[0])));
}
// EMIT_RULE: VL_SHIFTRS: oclean=false; lclean=clean, rclean==clean;
static inline IData VL_SHIFTRS_III(int obits, int lbits, int, IData lhs, IData rhs) VL_PURE {
// Note the C standard does not specify the >> operator as a arithmetic shift!
// IEEE says signed if output signed, but bit position from lbits;
// must use lbits for sign; lbits might != obits,
// an EXTEND(SHIFTRS(...)) can became a SHIFTRS(...) within same 32/64 bit word length
IData sign = -(lhs >> (lbits-1)); // ffff_ffff if negative
IData signext = ~(VL_MASK_I(lbits) >> rhs); // One with bits where we've shifted "past"
return (lhs >> rhs) | (sign & VL_CLEAN_II(obits, obits, signext));
}
static inline QData VL_SHIFTRS_QQI(int obits, int lbits, int, QData lhs, IData rhs) VL_PURE {
QData sign = -(lhs >> (lbits-1));
QData signext = ~(VL_MASK_Q(lbits) >> rhs);
return (lhs >> rhs) | (sign & VL_CLEAN_QQ(obits, obits, signext));
}
static inline IData VL_SHIFTRS_IQI(int obits, int lbits, int rbits,
QData lhs, IData rhs) VL_PURE {
return static_cast<IData>(VL_SHIFTRS_QQI(obits, lbits, rbits, lhs, rhs));
}
static inline WDataOutP VL_SHIFTRS_WWI(int obits, int lbits, int,
WDataOutP owp, WDataInP lwp, IData rd) VL_MT_SAFE {
int word_shift = VL_BITWORD_E(rd);
int bit_shift = VL_BITBIT_E(rd);
int lmsw = VL_WORDS_I(obits)-1;
EData sign = VL_SIGNONES_E(lbits, lwp[lmsw]);
if (rd >= static_cast<IData>(obits)) { // Shifting past end, sign in all of lbits
for (int i=0; i <= lmsw; ++i) owp[i] = sign;
owp[lmsw] &= VL_MASK_E(lbits);
} else if (bit_shift==0) { // Aligned word shift (>>0,>>32,>>64 etc)
int copy_words = (VL_WORDS_I(obits)-word_shift);
for (int i=0; i < copy_words; ++i) owp[i] = lwp[i+word_shift];
if (copy_words >= 0) owp[copy_words - 1] |= ~VL_MASK_E(obits) & sign;
for (int i = copy_words; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
owp[lmsw] &= VL_MASK_E(lbits);
} else {
int loffset = rd & VL_SIZEBITS_E;
int nbitsonright = VL_EDATASIZE - loffset; // bits that end up in lword (know loffset!=0)
// Middle words
int words = VL_WORDS_I(obits-rd);
for (int i=0; i<words; ++i) {
owp[i] = lwp[i+word_shift]>>loffset;
int upperword = i+word_shift+1;
if (upperword < VL_WORDS_I(obits)) {
owp[i] |= lwp[upperword]<< nbitsonright;
}
}
if (words) owp[words - 1] |= sign & ~VL_MASK_E(obits - loffset);
for (int i = words; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
owp[lmsw] &= VL_MASK_E(lbits);
}
return owp;
}
static inline WDataOutP VL_SHIFTRS_WWW(int obits, int lbits, int rbits,
WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
EData overshift = 0; // Huge shift 1>>32 or more
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
overshift |= rwp[i];
}
if (VL_UNLIKELY(overshift)) {
int lmsw = VL_WORDS_I(obits) - 1;
EData sign = VL_SIGNONES_E(lbits, lwp[lmsw]);
for (int j = 0; j <= lmsw; ++j) owp[j] = sign;
owp[lmsw] &= VL_MASK_E(lbits);
return owp;
}
return VL_SHIFTRS_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
}
static inline WDataOutP VL_SHIFTRS_WWQ(int obits, int lbits, int rbits,
WDataOutP owp, WDataInP lwp, QData rd) VL_MT_SAFE {
WData rwp[VL_WQ_WORDS_E]; VL_SET_WQ(rwp, rd);
return VL_SHIFTRS_WWW(obits, lbits, rbits, owp, lwp, rwp);
}
static inline IData VL_SHIFTRS_IIW(int obits, int lbits, int rbits,
IData lhs, WDataInP rwp) VL_MT_SAFE {
EData overshift = 0; // Huge shift 1>>32 or more
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
overshift |= rwp[i];
}
if (VL_UNLIKELY(overshift)) {
IData sign = -(lhs >> (lbits-1)); // ffff_ffff if negative
return VL_CLEAN_II(obits, obits, sign);
}
return VL_SHIFTRS_III(obits, lbits, 32, lhs, rwp[0]);
}
static inline QData VL_SHIFTRS_QQW(int obits, int lbits, int rbits,
QData lhs, WDataInP rwp) VL_MT_SAFE {
EData overshift = 0; // Huge shift 1>>32 or more
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
overshift |= rwp[i];
}
if (VL_UNLIKELY(overshift)) {
QData sign = -(lhs >> (lbits-1)); // ffff_ffff if negative
return VL_CLEAN_QQ(obits, obits, sign);
}
return VL_SHIFTRS_QQI(obits, lbits, 32, lhs, rwp[0]);
}
static inline IData VL_SHIFTRS_IIQ(int obits, int lbits, int rbits, IData lhs, QData rhs) VL_PURE {
WData rwp[VL_WQ_WORDS_E]; VL_SET_WQ(rwp, rhs);
return VL_SHIFTRS_IIW(obits, lbits, rbits, lhs, rwp);
}
static inline QData VL_SHIFTRS_QQQ(int obits, int lbits, int rbits, QData lhs, QData rhs) VL_PURE {
WData rwp[VL_WQ_WORDS_E]; VL_SET_WQ(rwp, rhs);
return VL_SHIFTRS_QQW(obits, lbits, rbits, lhs, rwp);
}
//===================================================================
// Bit selection
// EMIT_RULE: VL_BITSEL: oclean=dirty; rclean==clean;
#define VL_BITSEL_IIII(obits,lbits,rbits,zbits,lhs,rhs) ((lhs)>>(rhs))
#define VL_BITSEL_QIII(obits,lbits,rbits,zbits,lhs,rhs) ((lhs)>>(rhs))
#define VL_BITSEL_QQII(obits,lbits,rbits,zbits,lhs,rhs) ((lhs)>>(rhs))
#define VL_BITSEL_IQII(obits,lbits,rbits,zbits,lhs,rhs) (static_cast<IData>((lhs)>>(rhs)))
static inline IData VL_BITSEL_IWII(int, int lbits, int, int, WDataInP lwp, IData rd) VL_MT_SAFE {
int word = VL_BITWORD_E(rd);
if (VL_UNLIKELY(rd > static_cast<IData>(lbits))) {
return ~0; // Spec says you can go outside the range of a array. Don't coredump if so.
// We return all 1's as that's more likely to find bugs (?) than 0's.
} else {
return (lwp[word] >> VL_BITBIT_E(rd));
}
}
// EMIT_RULE: VL_RANGE: oclean=lclean; out=dirty
// <msb> & <lsb> MUST BE CLEAN (currently constant)
#define VL_SEL_IIII(obits,lbits,rbits,tbits,lhs,lsb,width) ((lhs)>>(lsb))
#define VL_SEL_QQII(obits,lbits,rbits,tbits,lhs,lsb,width) ((lhs)>>(lsb))
#define VL_SEL_IQII(obits,lbits,rbits,tbits,lhs,lsb,width) (static_cast<IData>((lhs)>>(lsb)))
static inline IData VL_SEL_IWII(int, int lbits, int, int,
WDataInP lwp, IData lsb, IData width) VL_MT_SAFE {
int msb = lsb+width-1;
if (VL_UNLIKELY(msb>lbits)) {
return ~0; // Spec says you can go outside the range of a array. Don't coredump if so.
} else if (VL_BITWORD_E(msb) == VL_BITWORD_E(static_cast<int>(lsb))) {
return VL_BITRSHIFT_W(lwp, lsb);
} else {
// 32 bit extraction may span two words
int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb); // bits that come from low word
return ((lwp[VL_BITWORD_E(msb)] << nbitsfromlow)
| VL_BITRSHIFT_W(lwp, lsb));
}
}
static inline QData VL_SEL_QWII(int, int lbits, int, int,
WDataInP lwp, IData lsb, IData width) VL_MT_SAFE {
int msb = lsb+width-1;
if (VL_UNLIKELY(msb>lbits)) {
return ~0; // Spec says you can go outside the range of a array. Don't coredump if so.
} else if (VL_BITWORD_E(msb) == VL_BITWORD_E(static_cast<int>(lsb))) {
return VL_BITRSHIFT_W(lwp, lsb);
} else if (VL_BITWORD_E(msb) == 1 + VL_BITWORD_E(static_cast<int>(lsb))) {
int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb);
QData hi = (lwp[VL_BITWORD_E(msb)]);
QData lo = VL_BITRSHIFT_W(lwp, lsb);
return (hi << nbitsfromlow) | lo;
} else {
// 64 bit extraction may span three words
int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb);
QData hi = (lwp[VL_BITWORD_E(msb)]);
QData mid = (lwp[VL_BITWORD_E(lsb) + 1]);
QData lo = VL_BITRSHIFT_W(lwp, lsb);
return (hi << (nbitsfromlow + VL_EDATASIZE)) | (mid << nbitsfromlow) | lo;
}
}
static inline WDataOutP VL_SEL_WWII(int obits, int lbits, int, int,
WDataOutP owp, WDataInP lwp,
IData lsb, IData width) VL_MT_SAFE {
int msb = lsb+width-1;
int word_shift = VL_BITWORD_E(lsb);
if (VL_UNLIKELY(msb>lbits)) { // Outside bounds,
for (int i=0; i<VL_WORDS_I(obits)-1; ++i) owp[i] = ~0;
owp[VL_WORDS_I(obits) - 1] = VL_MASK_E(obits);
} else if (VL_BITBIT_E(lsb) == 0) {
// Just a word extract
for (int i=0; i<VL_WORDS_I(obits); ++i) owp[i] = lwp[i+word_shift];
} else {
// Not a _VL_INSERT because the bits come from any bit number and goto bit 0
int loffset = lsb & VL_SIZEBITS_E;
int nbitsfromlow = VL_EDATASIZE - loffset; // bits that end up in lword (know loffset!=0)
// Middle words
int words = VL_WORDS_I(msb-lsb+1);
for (int i=0; i<words; ++i) {
owp[i] = lwp[i+word_shift]>>loffset;
int upperword = i+word_shift+1;
if (upperword <= static_cast<int>(VL_BITWORD_E(msb))) {
owp[i] |= lwp[upperword] << nbitsfromlow;
}
}
for (int i=words; i<VL_WORDS_I(obits); ++i) owp[i]=0;
}
return owp;
}
//======================================================================
// Range assignments
// EMIT_RULE: VL_ASSIGNRANGE: rclean=dirty;
static inline void VL_ASSIGNSEL_IIII(int obits, int lsb, CData& lhsr, IData rhs) VL_PURE {
_VL_INSERT_II(obits, lhsr, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_IIII(int obits, int lsb, SData& lhsr, IData rhs) VL_PURE {
_VL_INSERT_II(obits, lhsr, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_IIII(int obits, int lsb, IData& lhsr, IData rhs) VL_PURE {
_VL_INSERT_II(obits, lhsr, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_QIII(int obits, int lsb, QData& lhsr, IData rhs) VL_PURE {
_VL_INSERT_QQ(obits, lhsr, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_QQII(int obits, int lsb, QData& lhsr, QData rhs) VL_PURE {
_VL_INSERT_QQ(obits, lhsr, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_QIIQ(int obits, int lsb, QData& lhsr, QData rhs) VL_PURE {
_VL_INSERT_QQ(obits, lhsr, rhs, lsb+obits-1, lsb);
}
//static inline void VL_ASSIGNSEL_IIIW(int obits, int lsb, IData& lhsr, WDataInP rwp) VL_MT_SAFE {
// Illegal, as lhs width >= rhs width
static inline void VL_ASSIGNSEL_WIII(int obits, int lsb, WDataOutP owp, IData rhs) VL_MT_SAFE {
_VL_INSERT_WI(obits, owp, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_WIIQ(int obits, int lsb, WDataOutP owp, QData rhs) VL_MT_SAFE {
_VL_INSERT_WQ(obits, owp, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_WIIW(int obits, int lsb, WDataOutP owp, WDataInP rwp) VL_MT_SAFE {
_VL_INSERT_WW(obits, owp, rwp, lsb+obits-1, lsb);
}
//======================================================================
// Triops
static inline WDataOutP VL_COND_WIWW(int obits, int, int, int,
WDataOutP owp, int cond,
WDataInP w1p, WDataInP w2p) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
for (int i=0; i < words; ++i) owp[i] = cond ? w1p[i] : w2p[i];
return owp;
}
//======================================================================
// Constification
// VL_CONST_W_#X(int obits, WDataOutP owp, IData data0, .... IData data(#-1))
// Sets wide vector words to specified constant words.
// These macros are used when o might represent more words then are given as constants,
// hence all upper words must be zeroed.
// If changing the number of functions here, also change EMITCINLINES_NUM_CONSTW
#define _END(obits,wordsSet) \
for(int i=(wordsSet);i<VL_WORDS_I(obits);++i) o[i] = 0; \
return o
static inline WDataOutP VL_CONST_W_1X(int obits, WDataOutP o,
EData d0) VL_MT_SAFE {
o[0]=d0;
_END(obits,1); }
static inline WDataOutP VL_CONST_W_2X(int obits, WDataOutP o,
EData d1, EData d0) VL_MT_SAFE {
o[0]=d0; o[1]=d1;
_END(obits,2); }
static inline WDataOutP VL_CONST_W_3X(int obits, WDataOutP o,
EData d2, EData d1, EData d0) VL_MT_SAFE {
o[0]=d0; o[1]=d1; o[2]=d2;
_END(obits,3); }
static inline WDataOutP VL_CONST_W_4X(int obits, WDataOutP o,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3;
_END(obits,4); }
static inline WDataOutP VL_CONST_W_5X(int obits, WDataOutP o,
EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3; o[4]=d4;
_END(obits,5); }
static inline WDataOutP VL_CONST_W_6X(int obits, WDataOutP o,
EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3; o[4]=d4; o[5]=d5;
_END(obits,6); }
static inline WDataOutP VL_CONST_W_7X(int obits, WDataOutP o,
EData d6, EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3; o[4]=d4; o[5]=d5; o[6]=d6;
_END(obits,7); }
static inline WDataOutP VL_CONST_W_8X(int obits, WDataOutP o,
EData d7, EData d6, EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3; o[4]=d4; o[5]=d5; o[6]=d6; o[7]=d7;
_END(obits,8); }
//
static inline WDataOutP VL_CONSTHI_W_1X(int obits, int lsb, WDataOutP obase,
EData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0]=d0;
_END(obits,1); }
static inline WDataOutP VL_CONSTHI_W_2X(int obits, int lsb, WDataOutP obase,
EData d1, EData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0]=d0; o[1]=d1;
_END(obits,2); }
static inline WDataOutP VL_CONSTHI_W_3X(int obits, int lsb, WDataOutP obase,
EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0]=d0; o[1]=d1; o[2]=d2;
_END(obits,3); }
static inline WDataOutP VL_CONSTHI_W_4X(int obits, int lsb, WDataOutP obase,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3;
_END(obits,4); }
static inline WDataOutP VL_CONSTHI_W_5X(int obits, int lsb, WDataOutP obase,
EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3; o[4]=d4;
_END(obits,5); }
static inline WDataOutP VL_CONSTHI_W_6X(int obits, int lsb, WDataOutP obase,
EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3; o[4]=d4; o[5]=d5;
_END(obits,6); }
static inline WDataOutP VL_CONSTHI_W_7X(int obits, int lsb, WDataOutP obase,
EData d6, EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3; o[4]=d4; o[5]=d5; o[6]=d6;
_END(obits,7); }
static inline WDataOutP VL_CONSTHI_W_8X(int obits, int lsb, WDataOutP obase,
EData d7, EData d6, EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3; o[4]=d4; o[5]=d5; o[6]=d6; o[7]=d7;
_END(obits,8); }
#undef _END
// Partial constant, lower words of vector wider than 8*32, starting at bit number lsb
static inline void VL_CONSTLO_W_8X(int lsb, WDataOutP obase,
EData d7, EData d6, EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3; o[4]=d4; o[5]=d5; o[6]=d6; o[7]=d7; }
//======================================================================
#endif // Guard