forked from github/verilator
705 lines
26 KiB
C++
705 lines
26 KiB
C++
// -*- mode: C++; c-file-style: "cc-mode" -*-
|
|
//*************************************************************************
|
|
// DESCRIPTION: Verilator: Implementation of Christofides' algorithm to
|
|
// approximate the solution to the traveling salesman problem.
|
|
//
|
|
// ISSUES: This isn't exactly Christofides algorithm; see the TODO
|
|
// in perfectMatching(). True minimum-weight perfect matching
|
|
// would produce a better result. How much better is TBD.
|
|
//
|
|
// Code available from: https://verilator.org
|
|
//
|
|
//*************************************************************************
|
|
//
|
|
// Copyright 2003-2022 by Wilson Snyder. This program is free software; you
|
|
// can redistribute it and/or modify it under the terms of either the GNU
|
|
// Lesser General Public License Version 3 or the Perl Artistic License
|
|
// Version 2.0.
|
|
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
|
|
//
|
|
//*************************************************************************
|
|
|
|
#include "config_build.h"
|
|
#include "verilatedos.h"
|
|
|
|
#include "V3TSP.h"
|
|
|
|
#include "V3Error.h"
|
|
#include "V3File.h"
|
|
#include "V3Global.h"
|
|
#include "V3Graph.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <list>
|
|
#include <memory>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
//######################################################################
|
|
// Support classes
|
|
|
|
namespace V3TSP {
|
|
static uint32_t edgeIdNext = 0;
|
|
|
|
static void selfTestStates();
|
|
static void selfTestString();
|
|
|
|
VL_DEBUG_FUNC; // Declare debug()
|
|
} // namespace V3TSP
|
|
|
|
// Vertex that tracks a per-vertex key
|
|
template <typename T_Key>
|
|
class TspVertexTmpl final : public V3GraphVertex {
|
|
private:
|
|
const T_Key m_key;
|
|
|
|
public:
|
|
TspVertexTmpl(V3Graph* graphp, const T_Key& k)
|
|
: V3GraphVertex{graphp}
|
|
, m_key{k} {}
|
|
~TspVertexTmpl() override = default;
|
|
const T_Key& key() const { return m_key; }
|
|
|
|
private:
|
|
VL_UNCOPYABLE(TspVertexTmpl);
|
|
};
|
|
|
|
// TspGraphTmpl represents a complete graph, templatized to work with
|
|
// different T_Key types.
|
|
template <typename T_Key>
|
|
class TspGraphTmpl final : public V3Graph {
|
|
public:
|
|
// TYPES
|
|
using Vertex = TspVertexTmpl<T_Key>;
|
|
|
|
enum VertexState : uint32_t { CLEAR = 0, MST_VISITED = 1, UNMATCHED_ODD = 2 };
|
|
|
|
// MEMBERS
|
|
std::unordered_map<T_Key, Vertex*> m_vertices; // T_Key to Vertex lookup map
|
|
|
|
// CONSTRUCTORS
|
|
TspGraphTmpl()
|
|
: V3Graph{} {}
|
|
~TspGraphTmpl() override = default;
|
|
|
|
// METHODS
|
|
void addVertex(const T_Key& key) {
|
|
const auto itr = m_vertices.find(key);
|
|
UASSERT(itr == m_vertices.end(), "Vertex already exists with same key");
|
|
Vertex* v = new Vertex(this, key);
|
|
m_vertices[key] = v;
|
|
}
|
|
|
|
// For purposes of TSP, we are using non-directional graphs.
|
|
// Map that onto the normally-directional V3Graph by creating
|
|
// a matched pairs of opposite-directional edges to represent
|
|
// each non-directional edge:
|
|
void addEdge(const T_Key& from, const T_Key& to, int cost) {
|
|
#if VL_DEBUG // Hot, so only in debug
|
|
UASSERT(from != to, "Adding edge would form a loop");
|
|
UASSERT(cost >= 0, "Negative weight edge");
|
|
#endif
|
|
Vertex* const fp = findVertex(from);
|
|
Vertex* const tp = findVertex(to);
|
|
|
|
// No need to dedup edges.
|
|
// The only time we may create duplicate edges is when
|
|
// combining the MST with the perfect-matched pairs,
|
|
// and in that case, we want to permit duplicate edges.
|
|
const uint32_t edgeId = ++V3TSP::edgeIdNext;
|
|
|
|
// We want to be able to compare edges quickly for a total
|
|
// ordering, so pre-compute a sorting key and store it in
|
|
// the edge user field. We also want easy access to the 'id'
|
|
// which uniquely identifies a single bidir edge. Luckily we
|
|
// can do both efficiently.
|
|
const uint64_t userValue = (static_cast<uint64_t>(cost) << 32) | edgeId;
|
|
(new V3GraphEdge(this, fp, tp, cost))->user(userValue);
|
|
(new V3GraphEdge(this, tp, fp, cost))->user(userValue);
|
|
}
|
|
|
|
static uint32_t getEdgeId(const V3GraphEdge* edgep) {
|
|
return static_cast<uint32_t>(edgep->user());
|
|
}
|
|
|
|
bool empty() const { return m_vertices.empty(); }
|
|
|
|
const std::list<Vertex*> keysToVertexList(const std::vector<T_Key>& odds) {
|
|
std::list<Vertex*> vertices;
|
|
for (unsigned i = 0; i < odds.size(); ++i) { vertices.push_back(findVertex(odds.at(i))); }
|
|
return vertices;
|
|
}
|
|
|
|
private:
|
|
// We will keep sorted lists of edges as vectors
|
|
using EdgeList = std::vector<V3GraphEdge*>;
|
|
|
|
static bool edgeCmp(const V3GraphEdge* ap, const V3GraphEdge* bp) {
|
|
// We pre-computed these when adding the edge to sort first by cost, then by identity
|
|
return ap->user() > bp->user();
|
|
}
|
|
|
|
struct EdgeListCmp final {
|
|
bool operator()(const EdgeList* ap, const EdgeList* bp) const {
|
|
// Compare heads
|
|
return edgeCmp(bp->back(), ap->back());
|
|
}
|
|
};
|
|
|
|
static Vertex* castVertexp(V3GraphVertex* vxp) { return static_cast<Vertex*>(vxp); }
|
|
|
|
public:
|
|
// From *this, populate *mstp with the minimum spanning tree.
|
|
// *mstp must be initially empty.
|
|
void makeMinSpanningTree(TspGraphTmpl* mstp) {
|
|
UASSERT(mstp->empty(), "Output graph must start empty");
|
|
|
|
// Use Prim's algorithm to efficiently construct the MST.
|
|
|
|
uint32_t vertCount = 0;
|
|
for (V3GraphVertex* vxp = verticesBeginp(); vxp; vxp = vxp->verticesNextp()) {
|
|
mstp->addVertex(castVertexp(vxp)->key());
|
|
vertCount++;
|
|
}
|
|
|
|
// Allocate storage for per vertex edge lists up front.
|
|
std::vector<EdgeList> allocatedEdgeLists{vertCount};
|
|
|
|
// Index of vertex in visitation order (used for indexing allocatedEdgeLists)
|
|
uint32_t vertIdx = 0;
|
|
|
|
// We keep pending edges as a sorted set of sorted vectors. This allows us to find the
|
|
// lowest cost edge quickly, while also reducing the cost of inserting batches of new
|
|
// edges, which is what we need in this algorithm.
|
|
std::set<EdgeList*, EdgeListCmp> pendingEdgeListps;
|
|
|
|
const auto visit = [&](V3GraphVertex* vtxp) {
|
|
#ifdef VL_DEBUG // Very hot, so only in debug
|
|
UASSERT(vtxp->user() == VertexState::CLEAR, "Vertex visited twice");
|
|
#endif
|
|
// Mark vertex as visited
|
|
vtxp->user(VertexState::MST_VISITED);
|
|
// Allocate new edge list
|
|
EdgeList* const newEdgesp = &allocatedEdgeLists[vertIdx++];
|
|
// Gather out edges of this vertex
|
|
for (V3GraphEdge* edgep = vtxp->outBeginp(); edgep; edgep = edgep->outNextp()) {
|
|
// Don't add edges leading to vertices we already visited. This is a highly
|
|
// connected graph, so this greatly reduces the cost of maintaining the pending
|
|
// set.
|
|
if (edgep->top()->user() == VertexState::MST_VISITED) continue;
|
|
newEdgesp->push_back(edgep);
|
|
}
|
|
// If no relevant out edges, then we are done
|
|
if (newEdgesp->empty()) return;
|
|
// Sort new edge list
|
|
std::sort(newEdgesp->begin(), newEdgesp->end(), edgeCmp);
|
|
// Add edge list to pending set
|
|
pendingEdgeListps.insert(newEdgesp);
|
|
};
|
|
|
|
// To start, choose an arbitrary vertex and visit it.
|
|
visit(verticesBeginp());
|
|
|
|
// Repeatedly find the least costly edge in the pending set.
|
|
// If it connects to an unvisited node, visit that node and update
|
|
// the pending edge set. If it connects to an already visited node,
|
|
// discard it and repeat again.
|
|
while (!pendingEdgeListps.empty()) {
|
|
// Grab lowest cost edge list
|
|
auto it = pendingEdgeListps.begin();
|
|
|
|
// Grab lowest cost edge
|
|
EdgeList* const bestEdgeListp = *it;
|
|
const V3GraphEdge* const bestEdgep = bestEdgeListp->back();
|
|
|
|
// Remove the lowest cost edge list. We will remove its lowest cost element, and either
|
|
// we are done with (if it had a single element) it in which case it will be discarded,
|
|
// or the cost of the new head element might be different, so we will need to re-insert
|
|
// it in the right place. In either case, it needs to be removed.
|
|
pendingEdgeListps.erase(it);
|
|
|
|
// If the lowest cost edge list is not a singleton list, then pop the lowest cost
|
|
// edge and re-insert the remaining edge list into the pending set.
|
|
if (bestEdgeListp->size() > 1) {
|
|
bestEdgeListp->pop_back();
|
|
pendingEdgeListps.insert(bestEdgeListp);
|
|
}
|
|
|
|
// Grab the target vertex
|
|
Vertex* const neighborp = castVertexp(bestEdgep->top());
|
|
|
|
// If the neighbour is not yet visited
|
|
if (neighborp->user() == VertexState::CLEAR) {
|
|
// Visit it
|
|
visit(neighborp);
|
|
|
|
// Create the edge in our output MST graph
|
|
Vertex* const from_vertexp = castVertexp(bestEdgep->fromp());
|
|
mstp->addEdge(from_vertexp->key(), neighborp->key(), bestEdgep->weight());
|
|
|
|
#if VL_DEBUG // Very hot loop, so only in debug
|
|
UASSERT(from_vertexp->user() == MST_VISITED,
|
|
"bestEdgep->fromp() should be already seen");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
UASSERT(vertIdx == vertCount, "Should have visited all vertices");
|
|
}
|
|
|
|
// Populate *outp with a minimal perfect matching of *this.
|
|
// *outp must be initially empty.
|
|
void perfectMatching(const std::vector<T_Key>& oddKeys, TspGraphTmpl* outp) {
|
|
UASSERT(outp->empty(), "Output graph must start empty");
|
|
|
|
const std::list<Vertex*>& odds = keysToVertexList(oddKeys);
|
|
UASSERT(odds.size() % 2 == 0, "number of odd-order nodes should be even");
|
|
|
|
for (Vertex* const vtxp : odds) {
|
|
outp->addVertex(vtxp->key());
|
|
vtxp->user(VertexState::UNMATCHED_ODD);
|
|
}
|
|
|
|
// TODO: The true Chrisofides algorithm calls for minimum-weight
|
|
// perfect matching. Instead, we have a simple greedy algorithm
|
|
// which might get close to the minimum, maybe, with luck?
|
|
//
|
|
// TODO: Revisit this. It's possible to compute the true minimum in
|
|
// N*N*log(N) time using variants of the Blossom algorithm.
|
|
// Implementing Blossom looks hard, maybe we can use an existing
|
|
// open source implementation -- for example the "LEMON" library
|
|
// which has a TSP solver.
|
|
|
|
// -----
|
|
|
|
// Gather and sort all edges. We use a vector then sort, because this is faster than a
|
|
// sorted set. Reuse the comparator from Prim's routine (note it a 'greater', not a
|
|
// 'lesser' comparator). The logic is the same here.
|
|
//
|
|
// Note that there are two V3GraphEdge's representing a single bidir edge. While we could
|
|
// just add both to the pending list and get the same result, we will only add one (based
|
|
// on fast pointer comparison - this still yields deterministic results), in order to
|
|
// reduce the size of the working set.
|
|
std::vector<V3GraphEdge*> pendingEdges;
|
|
|
|
for (Vertex* const fromp : odds) {
|
|
for (V3GraphEdge* edgep = fromp->outBeginp(); edgep; edgep = edgep->outNextp()) {
|
|
Vertex* const top = castVertexp(edgep->top());
|
|
// There are two edges (in both directions) between these two vertices. Keep one.
|
|
if (fromp > top) continue;
|
|
// We only care about edges between the odd-order vertices
|
|
if (top->user() != VertexState::UNMATCHED_ODD) continue;
|
|
// Add to candidate list
|
|
pendingEdges.push_back(edgep);
|
|
}
|
|
}
|
|
|
|
// Sort reverse iterators. This yields ascending order with a 'greater' comparator.
|
|
std::sort(pendingEdges.rbegin(), pendingEdges.rend(), edgeCmp);
|
|
|
|
// Iterate over all edges, in order from low to high cost.
|
|
// For any edge whose ends are both odd-order vertices which
|
|
// haven't been matched yet, match them.
|
|
for (V3GraphEdge* const edgep : pendingEdges) {
|
|
Vertex* const fromp = castVertexp(edgep->fromp());
|
|
Vertex* const top = castVertexp(edgep->top());
|
|
if (fromp->user() == VertexState::UNMATCHED_ODD
|
|
&& top->user() == VertexState::UNMATCHED_ODD) {
|
|
outp->addEdge(fromp->key(), top->key(), edgep->weight());
|
|
fromp->user(VertexState::CLEAR);
|
|
top->user(VertexState::CLEAR);
|
|
}
|
|
}
|
|
}
|
|
|
|
void combineGraph(const TspGraphTmpl& g) {
|
|
std::unordered_set<uint32_t> edges_done;
|
|
for (V3GraphVertex* vxp = g.verticesBeginp(); vxp; vxp = vxp->verticesNextp()) {
|
|
const Vertex* const fromp = castVertexp(vxp);
|
|
for (V3GraphEdge* edgep = fromp->outBeginp(); edgep; edgep = edgep->outNextp()) {
|
|
const Vertex* const top = castVertexp(edgep->top());
|
|
if (edges_done.insert(getEdgeId(edgep)).second) {
|
|
addEdge(fromp->key(), top->key(), edgep->weight());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void findEulerTourRecurse(std::unordered_set<unsigned>* markedEdgesp, Vertex* startp,
|
|
std::vector<T_Key>* sortedOutp) {
|
|
Vertex* cur_vertexp = startp;
|
|
|
|
// Go on a random tour. Fun!
|
|
std::vector<Vertex*> tour;
|
|
do {
|
|
UINFO(6, "Adding " << cur_vertexp->key() << " to tour.\n");
|
|
tour.push_back(cur_vertexp);
|
|
|
|
// Look for an arbitrary edge we've not yet marked
|
|
for (V3GraphEdge* edgep = cur_vertexp->outBeginp(); edgep; edgep = edgep->outNextp()) {
|
|
const uint32_t edgeId = getEdgeId(edgep);
|
|
if (markedEdgesp->end() == markedEdgesp->find(edgeId)) {
|
|
// This edge is not yet marked, so follow it.
|
|
markedEdgesp->insert(edgeId);
|
|
Vertex* const neighborp = castVertexp(edgep->top());
|
|
UINFO(6, "following edge " << edgeId << " from " << cur_vertexp->key()
|
|
<< " to " << neighborp->key() << endl);
|
|
cur_vertexp = neighborp;
|
|
goto found;
|
|
}
|
|
}
|
|
v3fatalSrc("No unmarked edges found in tour");
|
|
found:;
|
|
} while (cur_vertexp != startp);
|
|
UINFO(6, "stopped, got back to start of tour @ " << cur_vertexp->key() << endl);
|
|
|
|
// Look for nodes on the tour that still have
|
|
// un-marked edges. If we find one, recurse.
|
|
for (Vertex* vxp : tour) {
|
|
bool recursed;
|
|
do {
|
|
recursed = false;
|
|
// Look for an arbitrary edge at vxp we've not yet marked
|
|
for (V3GraphEdge* edgep = vxp->outBeginp(); edgep; edgep = edgep->outNextp()) {
|
|
const uint32_t edgeId = getEdgeId(edgep);
|
|
if (markedEdgesp->end() == markedEdgesp->find(edgeId)) {
|
|
UINFO(6, "Recursing.\n");
|
|
findEulerTourRecurse(markedEdgesp, vxp, sortedOutp);
|
|
recursed = true;
|
|
goto recursed;
|
|
}
|
|
}
|
|
recursed:;
|
|
} while (recursed);
|
|
sortedOutp->push_back(vxp->key());
|
|
}
|
|
|
|
UINFO(6, "Tour was: ");
|
|
for (const Vertex* vxp : tour) UINFONL(6, " " << vxp->key());
|
|
UINFONL(6, "\n");
|
|
}
|
|
|
|
void dumpGraph(std::ostream& os, const string& nameComment) const {
|
|
// UINFO(0) as controlled by caller
|
|
os << "At " << nameComment << ", dumping graph. Keys:\n";
|
|
for (V3GraphVertex* vxp = verticesBeginp(); vxp; vxp = vxp->verticesNextp()) {
|
|
const Vertex* const tspvp = castVertexp(vxp);
|
|
os << " " << tspvp->key() << '\n';
|
|
for (V3GraphEdge* edgep = tspvp->outBeginp(); edgep; edgep = edgep->outNextp()) {
|
|
const Vertex* const neighborp = castVertexp(edgep->top());
|
|
os << " has edge " << getEdgeId(edgep) << " to " << neighborp->key() << '\n';
|
|
}
|
|
}
|
|
}
|
|
void dumpGraphFilePrefixed(const string& nameComment) const {
|
|
if (v3Global.opt.dumpTree()) {
|
|
const string filename = v3Global.debugFilename(nameComment) + ".txt";
|
|
const std::unique_ptr<std::ofstream> logp{V3File::new_ofstream(filename)};
|
|
if (logp->fail()) v3fatal("Can't write " << filename);
|
|
dumpGraph(*logp, nameComment);
|
|
}
|
|
}
|
|
|
|
void findEulerTour(std::vector<T_Key>* sortedOutp) {
|
|
UASSERT(sortedOutp->empty(), "Output graph must start empty");
|
|
if (debug() >= 6) dumpDotFilePrefixed("findEulerTour");
|
|
std::unordered_set<unsigned /*edgeID*/> markedEdges;
|
|
// Pick a start node
|
|
Vertex* const start_vertexp = castVertexp(verticesBeginp());
|
|
findEulerTourRecurse(&markedEdges, start_vertexp, sortedOutp);
|
|
}
|
|
|
|
std::vector<T_Key> getOddDegreeKeys() const {
|
|
std::vector<T_Key> result;
|
|
for (V3GraphVertex* vxp = verticesBeginp(); vxp; vxp = vxp->verticesNextp()) {
|
|
const Vertex* const tspvp = castVertexp(vxp);
|
|
uint32_t degree = 0;
|
|
for (V3GraphEdge* edgep = vxp->outBeginp(); edgep; edgep = edgep->outNextp()) {
|
|
degree++;
|
|
}
|
|
if (degree & 1) result.push_back(tspvp->key());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
Vertex* findVertex(const T_Key& key) const {
|
|
const auto it = m_vertices.find(key);
|
|
UASSERT(it != m_vertices.end(), "Vertex not found");
|
|
return it->second;
|
|
}
|
|
VL_UNCOPYABLE(TspGraphTmpl);
|
|
};
|
|
|
|
//######################################################################
|
|
// Main algorithm
|
|
|
|
void V3TSP::tspSort(const V3TSP::StateVec& states, V3TSP::StateVec* resultp) {
|
|
UASSERT(resultp->empty(), "Output graph must start empty");
|
|
|
|
// Make this TSP implementation work for graphs of size 0 or 1
|
|
// which, unfortunately, is a special case as the following
|
|
// code assumes >= 2 nodes.
|
|
if (states.empty()) return;
|
|
if (states.size() == 1) {
|
|
resultp->push_back(*(states.begin()));
|
|
return;
|
|
}
|
|
|
|
// Build the initial graph from the starting state set.
|
|
using Graph = TspGraphTmpl<const TspStateBase*>;
|
|
Graph graph;
|
|
for (const auto& state : states) graph.addVertex(state);
|
|
for (V3TSP::StateVec::const_iterator it = states.begin(); it != states.end(); ++it) {
|
|
for (V3TSP::StateVec::const_iterator jt = it; jt != states.end(); ++jt) {
|
|
if (it == jt) continue;
|
|
graph.addEdge(*it, *jt, (*it)->cost(*jt));
|
|
}
|
|
}
|
|
|
|
// Create the minimum spanning tree
|
|
Graph minGraph;
|
|
graph.makeMinSpanningTree(&minGraph);
|
|
if (debug() >= 6) minGraph.dumpGraphFilePrefixed("minGraph");
|
|
|
|
const std::vector<const TspStateBase*> oddDegree = minGraph.getOddDegreeKeys();
|
|
Graph matching;
|
|
graph.perfectMatching(oddDegree, &matching);
|
|
if (debug() >= 6) matching.dumpGraphFilePrefixed("matching");
|
|
|
|
// Adds edges to minGraph, the resulting graph will have even number of
|
|
// edge counts at every vertex:
|
|
minGraph.combineGraph(matching);
|
|
|
|
V3TSP::StateVec prelim_result;
|
|
minGraph.findEulerTour(&prelim_result);
|
|
|
|
UASSERT(prelim_result.size() >= states.size(), "Algorithm size error");
|
|
|
|
// Discard duplicate nodes that the Euler tour might contain.
|
|
{
|
|
std::unordered_set<const TspStateBase*> seen;
|
|
for (V3TSP::StateVec::iterator it = prelim_result.begin(); it != prelim_result.end();
|
|
++it) {
|
|
const TspStateBase* const elemp = *it;
|
|
if (seen.find(elemp) == seen.end()) {
|
|
seen.insert(elemp);
|
|
resultp->push_back(elemp);
|
|
}
|
|
}
|
|
}
|
|
|
|
UASSERT(resultp->size() == states.size(), "Algorithm size error");
|
|
|
|
// Find the most expensive arc and rotate the list so that the most
|
|
// expensive arc connects the last and first elements. (Since we're not
|
|
// modeling something that actually cycles back, we don't need to pay
|
|
// that cost at all.)
|
|
{
|
|
unsigned max_cost = 0;
|
|
unsigned max_cost_idx = 0;
|
|
for (unsigned i = 0; i < resultp->size(); ++i) {
|
|
const TspStateBase* const ap = (*resultp)[i];
|
|
const TspStateBase* const bp
|
|
= (i + 1 == resultp->size()) ? (*resultp)[0] : (*resultp)[i + 1];
|
|
const unsigned cost = ap->cost(bp);
|
|
if (cost > max_cost) {
|
|
max_cost = cost;
|
|
max_cost_idx = i;
|
|
}
|
|
}
|
|
|
|
if (max_cost_idx == resultp->size() - 1) {
|
|
// List is already rotated for minimum cost. stop.
|
|
return;
|
|
}
|
|
|
|
V3TSP::StateVec new_result;
|
|
unsigned i = max_cost_idx + 1;
|
|
UASSERT(i < resultp->size(), "Algorithm size error");
|
|
while (i != max_cost_idx) {
|
|
new_result.push_back((*resultp)[i]);
|
|
i++;
|
|
if (i >= resultp->size()) i = 0;
|
|
}
|
|
new_result.push_back((*resultp)[i]);
|
|
|
|
UASSERT(resultp->size() == new_result.size(), "Algorithm size error");
|
|
*resultp = new_result;
|
|
}
|
|
}
|
|
|
|
//######################################################################
|
|
// Self Tests
|
|
|
|
class TspTestState final : public V3TSP::TspStateBase {
|
|
public:
|
|
TspTestState(unsigned xpos, unsigned ypos)
|
|
: m_xpos{xpos}
|
|
, m_ypos{ypos}
|
|
, m_serial{++s_serialNext} {}
|
|
~TspTestState() override = default;
|
|
int cost(const TspStateBase* otherp) const override {
|
|
return cost(dynamic_cast<const TspTestState*>(otherp));
|
|
}
|
|
static unsigned diff(unsigned a, unsigned b) {
|
|
if (a > b) return a - b;
|
|
return b - a;
|
|
}
|
|
virtual int cost(const TspTestState* otherp) const {
|
|
// For test purposes, each TspTestState is merely a point
|
|
// on the Cartesian plane; cost is the linear distance
|
|
// between two points.
|
|
unsigned xabs;
|
|
unsigned yabs;
|
|
xabs = diff(otherp->m_xpos, m_xpos);
|
|
yabs = diff(otherp->m_ypos, m_ypos);
|
|
return std::lround(std::sqrt(xabs * xabs + yabs * yabs));
|
|
}
|
|
unsigned xpos() const { return m_xpos; }
|
|
unsigned ypos() const { return m_ypos; }
|
|
|
|
bool operator<(const TspStateBase& other) const override {
|
|
return operator<(dynamic_cast<const TspTestState&>(other));
|
|
}
|
|
bool operator<(const TspTestState& other) const { return m_serial < other.m_serial; }
|
|
|
|
private:
|
|
const unsigned m_xpos;
|
|
const unsigned m_ypos;
|
|
const unsigned m_serial;
|
|
static unsigned s_serialNext;
|
|
};
|
|
|
|
unsigned TspTestState::s_serialNext = 0;
|
|
|
|
void V3TSP::selfTestStates() {
|
|
// Linear test -- coords all along the x-axis
|
|
{
|
|
V3TSP::StateVec states;
|
|
const TspTestState s10(10, 0);
|
|
const TspTestState s60(60, 0);
|
|
const TspTestState s20(20, 0);
|
|
const TspTestState s100(100, 0);
|
|
const TspTestState s5(5, 0);
|
|
states.push_back(&s10);
|
|
states.push_back(&s60);
|
|
states.push_back(&s20);
|
|
states.push_back(&s100);
|
|
states.push_back(&s5);
|
|
|
|
V3TSP::StateVec result;
|
|
tspSort(states, &result);
|
|
|
|
V3TSP::StateVec expect;
|
|
expect.push_back(&s100);
|
|
expect.push_back(&s60);
|
|
expect.push_back(&s20);
|
|
expect.push_back(&s10);
|
|
expect.push_back(&s5);
|
|
if (VL_UNCOVERABLE(expect != result)) {
|
|
for (V3TSP::StateVec::iterator it = result.begin(); it != result.end(); ++it) {
|
|
const TspTestState* const statep = dynamic_cast<const TspTestState*>(*it);
|
|
cout << statep->xpos() << " ";
|
|
}
|
|
cout << endl;
|
|
v3fatalSrc("TSP linear self-test fail. Result (above) did not match expectation.");
|
|
}
|
|
}
|
|
|
|
// Second test. Coords are distributed in 2D space.
|
|
// Test that tspSort() will rotate the list for minimum cost.
|
|
{
|
|
V3TSP::StateVec states;
|
|
const TspTestState a(0, 0);
|
|
const TspTestState b(100, 0);
|
|
const TspTestState c(200, 0);
|
|
const TspTestState d(200, 100);
|
|
const TspTestState e(150, 150);
|
|
const TspTestState f(0, 150);
|
|
const TspTestState g(0, 100);
|
|
|
|
states.push_back(&a);
|
|
states.push_back(&b);
|
|
states.push_back(&c);
|
|
states.push_back(&d);
|
|
states.push_back(&e);
|
|
states.push_back(&f);
|
|
states.push_back(&g);
|
|
|
|
V3TSP::StateVec result;
|
|
tspSort(states, &result);
|
|
|
|
V3TSP::StateVec expect;
|
|
expect.push_back(&f);
|
|
expect.push_back(&g);
|
|
expect.push_back(&a);
|
|
expect.push_back(&b);
|
|
expect.push_back(&c);
|
|
expect.push_back(&d);
|
|
expect.push_back(&e);
|
|
|
|
if (VL_UNCOVERABLE(expect != result)) {
|
|
for (V3TSP::StateVec::iterator it = result.begin(); it != result.end(); ++it) {
|
|
const TspTestState* const statep = dynamic_cast<const TspTestState*>(*it);
|
|
cout << statep->xpos() << "," << statep->ypos() << " ";
|
|
}
|
|
cout << endl;
|
|
v3fatalSrc(
|
|
"TSP 2d cycle=false self-test fail. Result (above) did not match expectation.");
|
|
}
|
|
}
|
|
}
|
|
|
|
void V3TSP::selfTestString() {
|
|
using Graph = TspGraphTmpl<std::string>;
|
|
Graph graph;
|
|
graph.addVertex("0");
|
|
graph.addVertex("1");
|
|
graph.addVertex("2");
|
|
graph.addVertex("3");
|
|
|
|
graph.addEdge("0", "1", 3943);
|
|
graph.addEdge("0", "2", 3456);
|
|
graph.addEdge("0", "3", 4920);
|
|
graph.addEdge("1", "2", 2730);
|
|
graph.addEdge("1", "3", 8199);
|
|
graph.addEdge("2", "3", 4130);
|
|
|
|
Graph minGraph;
|
|
graph.makeMinSpanningTree(&minGraph);
|
|
if (debug() >= 6) minGraph.dumpGraphFilePrefixed("minGraph");
|
|
|
|
const std::vector<string> oddDegree = minGraph.getOddDegreeKeys();
|
|
Graph matching;
|
|
graph.perfectMatching(oddDegree, &matching);
|
|
if (debug() >= 6) matching.dumpGraphFilePrefixed("matching");
|
|
|
|
minGraph.combineGraph(matching);
|
|
|
|
std::vector<string> result;
|
|
minGraph.findEulerTour(&result);
|
|
|
|
std::vector<string> expect;
|
|
expect.emplace_back("0");
|
|
expect.emplace_back("2");
|
|
expect.emplace_back("1");
|
|
expect.emplace_back("2");
|
|
expect.emplace_back("3");
|
|
|
|
if (VL_UNCOVERABLE(expect != result)) {
|
|
for (const string& i : result) cout << i << " ";
|
|
cout << endl;
|
|
v3fatalSrc("TSP string self-test fail. Result (above) did not match expectation.");
|
|
}
|
|
}
|
|
|
|
void V3TSP::selfTest() {
|
|
selfTestString();
|
|
selfTestStates();
|
|
}
|