verilator/include/verilated_imp.h
2017-11-23 10:43:34 -05:00

454 lines
17 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Copyright 2009-2017 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License.
// Version 2.0.
//
// Verilator is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
//=========================================================================
///
/// \file
/// \brief Verilator: Implementation Header, only for verilated.cpp internals.
///
/// Code available from: http://www.veripool.org/verilator
///
//=========================================================================
#ifndef _VERILATED_IMP_H_
#define _VERILATED_IMP_H_ 1 ///< Header Guard
#if !defined(_VERILATED_CPP_) && !defined(_VERILATED_DPI_CPP_)
# error "verilated_imp.h only to be included by verilated*.cpp internals"
#endif
#include "verilatedos.h"
#include "verilated.h"
#include "verilated_heavy.h"
#include "verilated_syms.h"
#include <map>
#include <set>
#include <vector>
#include <deque>
#include <string>
#ifdef VL_THREADED
# include <functional>
# include <queue>
#endif
class VerilatedScope;
//======================================================================
// Threaded message passing
#ifdef VL_THREADED
/// Message, enqueued on a train, and consumed on the main eval thread
class VerilatedMsg {
public:
// TYPES
struct Cmp {
bool operator() (const VerilatedMsg& a, const VerilatedMsg& b) {
return a.trainId() < b.trainId(); }
};
private:
// MEMBERS
vluint32_t m_trainId; ///< Train that did enqueue
std::function<void()> m_cb; ///< Lambda to execute when message received
public:
// CONSTRUCTORS
VerilatedMsg(const std::function<void()>& cb)
: m_trainId(Verilated::trainId()), m_cb(cb) {}
~VerilatedMsg() {}
// METHODS
vluint32_t trainId() const { return m_trainId; }
/// Execute the lambda function
void run() const { m_cb(); }
};
/// Each thread has a queue it pushes to
/// This assumes no thread starts pushing the next tick until the previous has drained.
/// If more aggressiveness is needed, a double-buffered scheme might work well.
class VerilatedEvalMsgQueue {
typedef std::multiset<VerilatedMsg, VerilatedMsg::Cmp> VerilatedThreadQueue;
std::atomic<vluint64_t> m_depth; ///< Current depth of queue (see comments below)
VerilatedMutex m_mutex; ///< Mutex protecting queue
VerilatedThreadQueue m_queue VL_GUARDED_BY(m_mutex); ///< Message queue
public:
// CONSTRUCTORS
VerilatedEvalMsgQueue() : m_depth(0) { }
~VerilatedEvalMsgQueue() { }
private:
VL_UNCOPYABLE(VerilatedEvalMsgQueue);
public:
// METHODS
//// Add message to queue (called by producer)
void post(const VerilatedMsg& msg) VL_EXCLUDES(m_mutex) {
Verilated::endOfEvalReqdInc(); // No mutex, threadsafe
VerilatedLockGuard guard(m_mutex);
m_queue.insert(msg); // Pass by value to copy the message into queue
++m_depth;
}
/// Service queue until completion (called by consumer)
void process() VL_EXCLUDES(m_mutex) {
// Tracking m_depth is redundant to e.g. getting the mutex and looking at queue size,
// but on the reader side it's 4x faster to test an atomic then getting a mutex
while (m_depth) {
// Wait for a message to be added to the queue
// We don't use unique_lock as want to unlock with the message copy still in scope
m_mutex.lock();
assert(!m_queue.empty()); // Otherwise m_depth is wrong
// Unfortunately to release the lock we need to copy the message
// (Or have the message be a pointer, but then new/delete cost on each message)
// We assume messages are small, so copy
auto it = m_queue.begin();
const VerilatedMsg msg = *(it);
m_queue.erase(it);
m_mutex.unlock();
m_depth--; // Ok if outside critical section as only this code checks the value
Verilated::endOfEvalReqdDec(); // No mutex, threadsafe
{
VL_DEBUG_IF(VL_DBG_MSGF("Executing callback from trainId=%d\n", msg.trainId()););
msg.run();
}
}
}
};
/// Each thread has a local queue to build up messages until the end of the eval() call
class VerilatedThreadMsgQueue {
std::queue<VerilatedMsg> m_queue;
public:
// CONSTRUCTORS
VerilatedThreadMsgQueue() { }
~VerilatedThreadMsgQueue() {
// The only call of this with a non-empty queue is a fatal error.
// So this does not flush the queue, as the destination queue is not known to this class.
}
private:
VL_UNCOPYABLE(VerilatedThreadMsgQueue);
// METHODS
static VerilatedThreadMsgQueue& threadton() {
static VL_THREAD_LOCAL VerilatedThreadMsgQueue t_s;
return t_s;
}
public:
/// Add message to queue, called by producer
static void post(const VerilatedMsg& msg) VL_MT_SAFE {
Verilated::endOfEvalReqdInc();
threadton().m_queue.push(msg); // Pass by value to copy the message into queue
}
/// Push all messages to the eval's queue
static void flush(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE {
while (!threadton().m_queue.empty()) {
evalMsgQp->post(threadton().m_queue.front());
threadton().m_queue.pop();
Verilated::endOfEvalReqdDec();
}
}
};
#endif // VL_THREADED
//======================================================================
// VerilatedImp
class VerilatedImp {
// Whole class is internal use only - Global information shared between verilated*.cpp files.
// TYPES
typedef std::vector<std::string> ArgVec;
typedef std::map<std::pair<const void*,void*>,void*> UserMap;
typedef std::map<const char*, int, VerilatedCStrCmp> ExportNameMap;
// MEMBERS
static VerilatedImp s_s; ///< Static Singleton; One and only static this
// Nothing here is save-restored; users expected to re-register appropriately
VerilatedMutex m_argMutex; ///< Protect m_argVec, m_argVecLoaded
ArgVec m_argVec VL_GUARDED_BY(m_argMutex); ///< Argument list (NOT save-restored, may want different results)
bool m_argVecLoaded VL_GUARDED_BY(m_argMutex); ///< Ever loaded argument list
VerilatedMutex m_userMapMutex; ///< Protect m_userMap
UserMap m_userMap VL_GUARDED_BY(m_userMapMutex); ///< Map of <(scope,userkey), userData>
VerilatedMutex m_nameMutex; ///< Protect m_nameMap
VerilatedScopeNameMap m_nameMap VL_GUARDED_BY(m_nameMutex); ///< Map of <scope_name, scope pointer>
// Slow - somewhat static:
VerilatedMutex m_exportMutex; ///< Protect m_nameMap
ExportNameMap m_exportMap VL_GUARDED_BY(m_exportMutex); ///< Map of <export_func_proto, func number>
int m_exportNext VL_GUARDED_BY(m_exportMutex); ///< Next export funcnum
// File I/O
VerilatedMutex m_fdMutex; ///< Protect m_fdps, m_fdFree
std::vector<FILE*> m_fdps VL_GUARDED_BY(m_fdMutex); ///< File descriptors
std::deque<IData> m_fdFree VL_GUARDED_BY(m_fdMutex); ///< List of free descriptors (SLOW - FOPEN/CLOSE only)
// Threads
VerilatedMutex m_threadMutex; ///< Protect m_numThreads, etc
bool m_spawned VL_GUARDED_BY(m_threadMutex); ///< Already called spawnThreads()
unsigned m_numThreads VL_GUARDED_BY(m_threadMutex); ///< Number of threads user requested, 0x0=all cpus
public: // But only for verilated*.cpp
// CONSTRUCTORS
VerilatedImp()
: m_argVecLoaded(false), m_exportNext(0), m_spawned(false), m_numThreads(0) {
m_fdps.resize(3);
m_fdps[0] = stdin;
m_fdps[1] = stdout;
m_fdps[2] = stderr;
}
~VerilatedImp() {}
private:
VL_UNCOPYABLE(VerilatedImp);
public:
static void internalsDump() VL_MT_SAFE {
VerilatedLockGuard guard(s_s.m_argMutex);
VL_PRINTF_MT("internalsDump:\n");
VL_PRINTF_MT(" Argv:");
for (ArgVec::const_iterator it=s_s.m_argVec.begin(); it!=s_s.m_argVec.end(); ++it) {
VL_PRINTF_MT(" %s",it->c_str());
}
VL_PRINTF_MT("\n");
VL_PRINTF_MT(" Version: %s %s\n", Verilated::productName(), Verilated::productVersion());
scopesDump();
exportsDump();
userDump();
}
// METHODS - arguments
public:
static void commandArgs(int argc, const char** argv) VL_EXCLUDES(s_s.m_argMutex) {
VerilatedLockGuard guard(s_s.m_argMutex);
s_s.m_argVec.clear(); // Always clear
commandArgsAddGuts(argc, argv);
}
static void commandArgsAdd(int argc, const char** argv) VL_EXCLUDES(s_s.m_argMutex) {
VerilatedLockGuard guard(s_s.m_argMutex);
commandArgsAddGuts(argc, argv);
}
static std::string argPlusMatch(const char* prefixp) VL_EXCLUDES(s_s.m_argMutex) {
VerilatedLockGuard guard(s_s.m_argMutex);
// Note prefixp does not include the leading "+"
size_t len = strlen(prefixp);
if (VL_UNLIKELY(!s_s.m_argVecLoaded)) {
s_s.m_argVecLoaded = true; // Complain only once
VL_FATAL_MT("unknown",0,"",
"%Error: Verilog called $test$plusargs or $value$plusargs without"
" testbench C first calling Verilated::commandArgs(argc,argv).");
}
for (ArgVec::const_iterator it=s_s.m_argVec.begin(); it!=s_s.m_argVec.end(); ++it) {
if ((*it)[0]=='+') {
if (0==strncmp(prefixp, it->c_str()+1, len)) return *it;
}
}
return "";
}
private:
static void commandArgsAddGuts(int argc, const char** argv) VL_REQUIRES(s_s.m_argMutex) {
if (!s_s.m_argVecLoaded) s_s.m_argVec.clear();
for (int i=0; i<argc; ++i) s_s.m_argVec.push_back(argv[i]);
s_s.m_argVecLoaded = true; // Can't just test later for empty vector, no arguments is ok
}
public:
// METHODS - user scope tracking
// We implement this as a single large map instead of one map per scope
// There's often many more scopes than userdata's and thus having a ~48byte
// per map overhead * N scopes would take much more space and cache thrashing.
static inline void userInsert(const void* scopep, void* userKey, void* userData) VL_MT_SAFE {
VerilatedLockGuard guard(s_s.m_userMapMutex);
UserMap::iterator it=s_s.m_userMap.find(std::make_pair(scopep,userKey));
if (it != s_s.m_userMap.end()) it->second = userData;
// When we support VL_THREADs, we need a lock around this insert, as it's runtime
else s_s.m_userMap.insert(it, std::make_pair(std::make_pair(scopep,userKey),userData));
}
static inline void* userFind(const void* scopep, void* userKey) VL_MT_SAFE {
VerilatedLockGuard guard(s_s.m_userMapMutex);
UserMap::const_iterator it=s_s.m_userMap.find(std::make_pair(scopep,userKey));
if (VL_LIKELY(it != s_s.m_userMap.end())) return it->second;
else return NULL;
}
private:
/// Symbol table destruction cleans up the entries for each scope.
static void userEraseScope(const VerilatedScope* scopep) VL_MT_SAFE {
// Slow ok - called once/scope on destruction, so we simply iterate.
VerilatedLockGuard guard(s_s.m_userMapMutex);
for (UserMap::iterator it=s_s.m_userMap.begin(); it!=s_s.m_userMap.end(); ) {
if (it->first.first == scopep) {
s_s.m_userMap.erase(it++);
} else {
++it;
}
}
}
static void userDump() VL_MT_SAFE {
VerilatedLockGuard guard(s_s.m_userMapMutex); // Avoid it changing in middle of dump
bool first = true;
for (UserMap::const_iterator it=s_s.m_userMap.begin(); it!=s_s.m_userMap.end(); ++it) {
if (first) { VL_PRINTF_MT(" userDump:\n"); first=false; }
VL_PRINTF_MT(" DPI_USER_DATA scope %p key %p: %p\n",
it->first.first, it->first.second, it->second);
}
}
public: // But only for verilated*.cpp
// METHODS - scope name
static void scopeInsert(const VerilatedScope* scopep) VL_MT_SAFE {
// Slow ok - called once/scope at construction
VerilatedLockGuard guard(s_s.m_nameMutex);
VerilatedScopeNameMap::iterator it=s_s.m_nameMap.find(scopep->name());
if (it == s_s.m_nameMap.end()) {
s_s.m_nameMap.insert(it, std::make_pair(scopep->name(),scopep));
}
}
static inline const VerilatedScope* scopeFind(const char* namep) VL_MT_SAFE {
VerilatedLockGuard guard(s_s.m_nameMutex); // If too slow, can assume this is only VL_MT_SAFE_POSINIT
VerilatedScopeNameMap::const_iterator it=s_s.m_nameMap.find(namep);
if (VL_LIKELY(it != s_s.m_nameMap.end())) return it->second;
else return NULL;
}
static void scopeErase(const VerilatedScope* scopep) VL_MT_SAFE {
// Slow ok - called once/scope at destruction
VerilatedLockGuard guard(s_s.m_nameMutex);
userEraseScope(scopep);
VerilatedScopeNameMap::iterator it=s_s.m_nameMap.find(scopep->name());
if (it != s_s.m_nameMap.end()) s_s.m_nameMap.erase(it);
}
static void scopesDump() VL_MT_SAFE {
VerilatedLockGuard guard(s_s.m_nameMutex);
VL_PRINTF_MT(" scopesDump:\n");
for (VerilatedScopeNameMap::const_iterator it=s_s.m_nameMap.begin(); it!=s_s.m_nameMap.end(); ++it) {
const VerilatedScope* scopep = it->second;
scopep->scopeDump();
}
VL_PRINTF_MT("\n");
}
static const VerilatedScopeNameMap* scopeNameMap() VL_MT_SAFE_POSTINIT {
// Thread save only assuming this is called only after model construction completed
return &s_s.m_nameMap;
}
public: // But only for verilated*.cpp
// METHODS - export names
// Each function prototype is converted to a function number which we
// then use to index a 2D table also indexed by scope number, because we
// can't know at Verilation time what scopes will exist in other modules
// in the design that also happen to have our same callback function.
// Rather than a 2D map, the integer scheme saves 500ish ns on a likely
// miss at the cost of a multiply, and all lookups move to slowpath.
static int exportInsert(const char* namep) VL_MT_SAFE {
// Slow ok - called once/function at creation
VerilatedLockGuard guard(s_s.m_exportMutex);
ExportNameMap::iterator it=s_s.m_exportMap.find(namep);
if (it == s_s.m_exportMap.end()) {
s_s.m_exportMap.insert(it, std::make_pair(namep, s_s.m_exportNext++));
return s_s.m_exportNext++;
} else {
return it->second;
}
}
static int exportFind(const char* namep) VL_MT_SAFE {
VerilatedLockGuard guard(s_s.m_exportMutex);
ExportNameMap::const_iterator it=s_s.m_exportMap.find(namep);
if (VL_LIKELY(it != s_s.m_exportMap.end())) return it->second;
std::string msg = (std::string("%Error: Testbench C called ")+namep
+" but no such DPI export function name exists in ANY model");
VL_FATAL_MT("unknown",0,"", msg.c_str());
return -1;
}
static const char* exportName(int funcnum) VL_MT_SAFE {
// Slowpath; find name for given export; errors only so no map to reverse-map it
VerilatedLockGuard guard(s_s.m_exportMutex);
for (ExportNameMap::const_iterator it=s_s.m_exportMap.begin(); it!=s_s.m_exportMap.end(); ++it) {
if (it->second == funcnum) return it->first;
}
return "*UNKNOWN*";
}
static void exportsDump() VL_MT_SAFE {
VerilatedLockGuard guard(s_s.m_exportMutex);
bool first = true;
for (ExportNameMap::const_iterator it=s_s.m_exportMap.begin(); it!=s_s.m_exportMap.end(); ++it) {
if (first) { VL_PRINTF_MT(" exportDump:\n"); first=false; }
VL_PRINTF_MT(" DPI_EXPORT_NAME %05d: %s\n", it->second, it->first);
}
}
// We don't free up m_exportMap until the end, because we can't be sure
// what other models are using the assigned funcnum's.
public: // But only for verilated*.cpp
// METHODS - file IO
static IData fdNew(FILE* fp) VL_MT_SAFE {
if (VL_UNLIKELY(!fp)) return 0;
// Bit 31 indicates it's a descriptor not a MCD
VerilatedLockGuard guard(s_s.m_fdMutex);
if (s_s.m_fdFree.empty()) {
// Need to create more space in m_fdps and m_fdFree
size_t start = s_s.m_fdps.size();
s_s.m_fdps.resize(start*2);
for (size_t i=start; i<start*2; ++i) s_s.m_fdFree.push_back(static_cast<IData>(i));
}
IData idx = s_s.m_fdFree.back(); s_s.m_fdFree.pop_back();
s_s.m_fdps[idx] = fp;
return (idx | (1UL<<31)); // bit 31 indicates not MCD
}
static void fdDelete(IData fdi) VL_MT_SAFE {
IData idx = VL_MASK_I(31) & fdi;
VerilatedLockGuard guard(s_s.m_fdMutex);
if (VL_UNLIKELY(!(fdi & (1ULL<<31)) || idx >= s_s.m_fdps.size())) return;
if (VL_UNLIKELY(!s_s.m_fdps[idx])) return; // Already free
s_s.m_fdps[idx] = NULL;
s_s.m_fdFree.push_back(idx);
}
static inline FILE* fdToFp(IData fdi) VL_MT_SAFE {
IData idx = VL_MASK_I(31) & fdi;
VerilatedLockGuard guard(s_s.m_fdMutex); // This might get slow, if it does we can cache it
if (VL_UNLIKELY(!(fdi & (1ULL<<31)) || idx >= s_s.m_fdps.size())) return NULL;
return s_s.m_fdps[idx];
}
public: // But only for verilated*.cpp
// METHODS - Threading
static void numThreads(unsigned threads) VL_MT_SAFE {
VerilatedLockGuard guard(s_s.m_threadMutex);
if (!s_s.m_spawned) s_s.m_numThreads = threads;
}
static unsigned numThreads() VL_MT_SAFE {
VerilatedLockGuard guard(s_s.m_threadMutex);
#ifdef VL_THREADED
unsigned threads = s_s.m_numThreads;
if (threads == 0x0) {
threads = std::thread::hardware_concurrency(); // Or 0=unknown, C++11
}
if (threads<1) threads = 1;
return threads;
#else
return 0;
#endif
}
static void spawnThreads() VL_MT_SAFE {
VerilatedLockGuard guard(s_s.m_threadMutex);
if (!s_s.m_spawned) {
// Convert numThreads from 0 to the spawned number
numThreads(numThreads());
s_s.m_spawned = true;
#ifdef VL_THREADED
// THREADED-TODO startup threads
#endif
}
}
};
//======================================================================
#endif // Guard