verilator/include/verilated.cpp

2785 lines
105 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Copyright 2003-2020 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=========================================================================
///
/// \file
/// \brief Verilator: Linked against all applications using Verilated source.
///
/// This file must be compiled and linked against all objects
/// created from Verilator.
///
/// Code available from: https://verilator.org
///
//=========================================================================
#define _VERILATED_CPP_
#include "verilatedos.h"
#include "verilated_imp.h"
#include "verilated_config.h"
#include <algorithm>
#include <cctype>
#include <cerrno>
#include <sstream>
#include <sys/stat.h> // mkdir
#include <list>
#include <utility>
// clang-format off
#if defined(_WIN32) || defined(__MINGW32__)
# include <direct.h> // mkdir
#endif
// clang-format on
/// Max static char array for VL_VALUE_STRING
constexpr unsigned VL_VALUE_STRING_MAX_WIDTH = 8192;
//===========================================================================
// Static sanity checks (when get C++11 can use static_assert)
typedef union {
// cppcheck-suppress unusedStructMember // Unused as is assertion
char vluint8_incorrect[(sizeof(vluint8_t) == 1) ? 1 : -1];
// cppcheck-suppress unusedStructMember // Unused as is assertion
char vluint16_incorrect[(sizeof(vluint16_t) == 2) ? 1 : -1];
// cppcheck-suppress unusedStructMember // Unused as is assertion
char vluint32_incorrect[(sizeof(vluint32_t) == 4) ? 1 : -1];
// cppcheck-suppress unusedStructMember // Unused as is assertion
char vluint64_incorrect[(sizeof(vluint64_t) == 8) ? 1 : -1];
} vl_static_checks_t;
//===========================================================================
// Global variables
// Slow path variables
VerilatedMutex Verilated::m_mutex;
// Keep below together in one cache line
Verilated::Serialized Verilated::s_s;
Verilated::NonSerialized Verilated::s_ns;
VL_THREAD_LOCAL Verilated::ThreadLocal Verilated::t_s;
Verilated::CommandArgValues Verilated::s_args;
VerilatedImp::VerilatedImpU VerilatedImp::s_s;
struct VerilatedImpInitializer {
VerilatedImpInitializer() { VerilatedImp::setup(); }
~VerilatedImpInitializer() { VerilatedImp::teardown(); }
} g_VerilatedImpInitializer;
//===========================================================================
// User definable functions
// Note a TODO is a future version of the API will pass a structure so that
// the calling arguments allow for extension
#ifndef VL_USER_FINISH ///< Define this to override this function
void vl_finish(const char* filename, int linenum, const char* hier) VL_MT_UNSAFE {
if (false && hier) {}
VL_PRINTF( // Not VL_PRINTF_MT, already on main thread
"- %s:%d: Verilog $finish\n", filename, linenum);
if (Verilated::gotFinish()) {
VL_PRINTF( // Not VL_PRINTF_MT, already on main thread
"- %s:%d: Second verilog $finish, exiting\n", filename, linenum);
Verilated::runFlushCallbacks();
Verilated::runExitCallbacks();
exit(0);
}
Verilated::gotFinish(true);
}
#endif
#ifndef VL_USER_STOP ///< Define this to override this function
void vl_stop(const char* filename, int linenum, const char* hier) VL_MT_UNSAFE {
Verilated::gotFinish(true);
Verilated::runFlushCallbacks();
vl_fatal(filename, linenum, hier, "Verilog $stop");
}
#endif
#ifndef VL_USER_FATAL ///< Define this to override this function
void vl_fatal(const char* filename, int linenum, const char* hier, const char* msg) VL_MT_UNSAFE {
if (false && hier) {}
Verilated::gotFinish(true);
if (filename && filename[0]) {
// Not VL_PRINTF_MT, already on main thread
VL_PRINTF("%%Error: %s:%d: %s\n", filename, linenum, msg);
} else {
VL_PRINTF("%%Error: %s\n", msg);
}
Verilated::runFlushCallbacks();
VL_PRINTF("Aborting...\n"); // Not VL_PRINTF_MT, already on main thread
// Second flush in case VL_PRINTF does something needing a flush
Verilated::runFlushCallbacks();
// Callbacks prior to termination
Verilated::runExitCallbacks();
abort();
}
#endif
#ifndef VL_USER_STOP_MAYBE ///< Define this to override this function
void vl_stop_maybe(const char* filename, int linenum, const char* hier, bool maybe) VL_MT_UNSAFE {
Verilated::errorCountInc();
if (maybe && Verilated::errorCount() < Verilated::errorLimit()) {
VL_PRINTF( // Not VL_PRINTF_MT, already on main thread
"-Info: %s:%d: %s\n", filename, linenum,
"Verilog $stop, ignored due to +verilator+error+limit");
} else {
vl_stop(filename, linenum, hier);
}
}
#endif
//===========================================================================
// Wrapper to call certain functions via messages when multithreaded
void VL_FINISH_MT(const char* filename, int linenum, const char* hier) VL_MT_SAFE {
#ifdef VL_THREADED
VerilatedThreadMsgQueue::post(VerilatedMsg([=]() { //
vl_finish(filename, linenum, hier);
}));
#else
vl_finish(filename, linenum, hier);
#endif
}
void VL_STOP_MT(const char* filename, int linenum, const char* hier, bool maybe) VL_MT_SAFE {
#ifdef VL_THREADED
VerilatedThreadMsgQueue::post(VerilatedMsg([=]() { //
vl_stop_maybe(filename, linenum, hier, maybe);
}));
#else
vl_stop_maybe(filename, linenum, hier, maybe);
#endif
}
void VL_FATAL_MT(const char* filename, int linenum, const char* hier, const char* msg) VL_MT_SAFE {
#ifdef VL_THREADED
VerilatedThreadMsgQueue::post(VerilatedMsg([=]() { //
vl_fatal(filename, linenum, hier, msg);
}));
#else
vl_fatal(filename, linenum, hier, msg);
#endif
}
//===========================================================================
// Debug prints
/// sprintf but return as string (this isn't fast, for print messages only)
std::string _vl_string_vprintf(const char* formatp, va_list ap) VL_MT_SAFE {
va_list aq;
va_copy(aq, ap);
int len = VL_VSNPRINTF(nullptr, 0, formatp, aq);
va_end(aq);
if (VL_UNLIKELY(len < 1)) return "";
char* bufp = new char[len + 1];
VL_VSNPRINTF(bufp, len + 1, formatp, ap);
std::string out = std::string(bufp, len);
delete[] bufp;
return out;
}
vluint64_t _vl_dbg_sequence_number() VL_MT_SAFE {
#ifdef VL_THREADED
static std::atomic<vluint64_t> sequence;
#else
static vluint64_t sequence = 0;
#endif
return ++sequence;
}
vluint32_t VL_THREAD_ID() VL_MT_SAFE {
#ifdef VL_THREADED
// Alternative is to use std::this_thread::get_id, but that returns a
// hard-to-read number and is very slow
static std::atomic<vluint32_t> s_nextId(0);
static VL_THREAD_LOCAL vluint32_t t_myId = ++s_nextId;
return t_myId;
#else
return 0;
#endif
}
void VL_DBG_MSGF(const char* formatp, ...) VL_MT_SAFE {
// We're still using c printf formats instead of operator<< so we can avoid the heavy
// includes that otherwise would be required in every Verilated module
va_list ap;
va_start(ap, formatp);
std::string out = _vl_string_vprintf(formatp, ap);
va_end(ap);
// printf("-imm-V{t%d,%" VL_PRI64 "d}%s", VL_THREAD_ID(), _vl_dbg_sequence_number(),
// out.c_str());
// Using VL_PRINTF not VL_PRINTF_MT so that we can call VL_DBG_MSGF
// from within the guts of the thread execution machinery (and it goes
// to the screen and not into the queues we're debugging)
VL_PRINTF("-V{t%u,%" VL_PRI64 "u}%s", VL_THREAD_ID(), _vl_dbg_sequence_number(), out.c_str());
}
#ifdef VL_THREADED
void VL_PRINTF_MT(const char* formatp, ...) VL_MT_SAFE {
va_list ap;
va_start(ap, formatp);
std::string out = _vl_string_vprintf(formatp, ap);
va_end(ap);
VerilatedThreadMsgQueue::post(VerilatedMsg([=]() { //
VL_PRINTF("%s", out.c_str());
}));
}
#endif
//===========================================================================
// Overall class init
Verilated::Serialized::Serialized() {
s_debug = 0;
s_calcUnusedSigs = false;
s_gotFinish = false;
s_assertOn = true;
s_fatalOnVpiError = true; // retains old default behaviour
s_errorCount = 0;
s_errorLimit = 1;
s_randReset = 0;
s_randSeed = 0;
s_timeunit = VL_TIME_UNIT; // Initial value until overriden by _Vconfigure
s_timeprecision = VL_TIME_PRECISION; // Initial value until overriden by _Vconfigure
}
Verilated::NonSerialized::NonSerialized() {
s_profThreadsFilenamep = strdup("profile_threads.dat");
}
Verilated::NonSerialized::~NonSerialized() {
if (s_profThreadsFilenamep) {
VL_DO_CLEAR(free(const_cast<char*>(s_profThreadsFilenamep)),
s_profThreadsFilenamep = nullptr);
}
}
size_t Verilated::serialized2Size() VL_PURE { return sizeof(VerilatedImp::s_s.v.m_ser); }
void* Verilated::serialized2Ptr() VL_MT_UNSAFE { return &VerilatedImp::s_s.v.m_ser; }
//===========================================================================
// Random -- Mostly called at init time, so not inline.
static vluint32_t vl_sys_rand32() VL_MT_UNSAFE {
// Return random 32-bits using system library.
// Used only to construct seed for Verilator's PNRG.
#if defined(_WIN32) && !defined(__CYGWIN__)
// Windows doesn't have lrand48(), although Cygwin does.
return (rand() << 16) ^ rand();
#else
return (lrand48() << 16) ^ lrand48();
#endif
}
vluint64_t vl_rand64() VL_MT_SAFE {
static VerilatedMutex s_mutex;
static VL_THREAD_LOCAL bool t_seeded = false;
static VL_THREAD_LOCAL vluint64_t t_state[2];
if (VL_UNLIKELY(!t_seeded)) {
t_seeded = true;
{
const VerilatedLockGuard lock(s_mutex);
if (Verilated::randSeed() != 0) {
t_state[0] = ((static_cast<vluint64_t>(Verilated::randSeed()) << 32)
^ (static_cast<vluint64_t>(Verilated::randSeed())));
t_state[1] = ((static_cast<vluint64_t>(Verilated::randSeed()) << 32)
^ (static_cast<vluint64_t>(Verilated::randSeed())));
} else {
t_state[0] = ((static_cast<vluint64_t>(vl_sys_rand32()) << 32)
^ (static_cast<vluint64_t>(vl_sys_rand32())));
t_state[1] = ((static_cast<vluint64_t>(vl_sys_rand32()) << 32)
^ (static_cast<vluint64_t>(vl_sys_rand32())));
}
// Fix state as algorithm is slow to randomize if many zeros
// This causes a loss of ~ 1 bit of seed entropy, no big deal
if (VL_COUNTONES_I(t_state[0]) < 10) t_state[0] = ~t_state[0];
if (VL_COUNTONES_I(t_state[1]) < 10) t_state[1] = ~t_state[1];
}
}
// Xoroshiro128+ algorithm
vluint64_t result = t_state[0] + t_state[1];
t_state[1] ^= t_state[0];
t_state[0] = (((t_state[0] << 55) | (t_state[0] >> 9)) ^ t_state[1] ^ (t_state[1] << 14));
t_state[1] = (t_state[1] << 36) | (t_state[1] >> 28);
return result;
}
// VL_RANDOM_W currently unused as $random always 32 bits, left for backwards compatibility
// LCOV_EXCL_START
WDataOutP VL_RANDOM_W(int obits, WDataOutP outwp) VL_MT_SAFE {
for (int i = 0; i < VL_WORDS_I(obits); ++i) {
if (i < (VL_WORDS_I(obits) - 1)) {
outwp[i] = vl_rand64();
} else {
outwp[i] = vl_rand64() & VL_MASK_E(obits);
}
}
return outwp;
}
// LCOV_EXCL_STOP
IData VL_RAND_RESET_I(int obits) VL_MT_SAFE {
if (Verilated::randReset() == 0) return 0;
IData data = ~0;
if (Verilated::randReset() != 1) { // if 2, randomize
data = VL_RANDOM_I(obits);
}
data &= VL_MASK_I(obits);
return data;
}
QData VL_RAND_RESET_Q(int obits) VL_MT_SAFE {
if (Verilated::randReset() == 0) return 0;
QData data = ~0ULL;
if (Verilated::randReset() != 1) { // if 2, randomize
data = VL_RANDOM_Q(obits);
}
data &= VL_MASK_Q(obits);
return data;
}
WDataOutP VL_RAND_RESET_W(int obits, WDataOutP outwp) VL_MT_SAFE {
for (int i = 0; i < VL_WORDS_I(obits); ++i) {
if (i < (VL_WORDS_I(obits) - 1)) {
outwp[i] = VL_RAND_RESET_I(32);
} else {
outwp[i] = VL_RAND_RESET_I(32) & VL_MASK_E(obits);
}
}
return outwp;
}
WDataOutP VL_ZERO_RESET_W(int obits, WDataOutP outwp) VL_MT_SAFE {
for (int i = 0; i < VL_WORDS_I(obits); ++i) outwp[i] = 0;
return outwp;
}
//===========================================================================
// Debug
void _VL_DEBUG_PRINT_W(int lbits, WDataInP iwp) VL_MT_SAFE {
VL_PRINTF_MT(" Data: w%d: ", lbits);
for (int i = VL_WORDS_I(lbits) - 1; i >= 0; --i) VL_PRINTF_MT("%08x ", iwp[i]);
VL_PRINTF_MT("\n");
}
//===========================================================================
// Slow math
WDataOutP _vl_moddiv_w(int lbits, WDataOutP owp, WDataInP lwp, WDataInP rwp,
bool is_modulus) VL_MT_SAFE {
// See Knuth Algorithm D. Computes u/v = q.r
// This isn't massively tuned, as wide division is rare
// for debug see V3Number version
// Requires clean input
int words = VL_WORDS_I(lbits);
for (int i = 0; i < words; ++i) owp[i] = 0;
// Find MSB and check for zero.
int umsbp1 = VL_MOSTSETBITP1_W(words, lwp); // dividend
int vmsbp1 = VL_MOSTSETBITP1_W(words, rwp); // divisor
if (VL_UNLIKELY(vmsbp1 == 0) // rwp==0 so division by zero. Return 0.
|| VL_UNLIKELY(umsbp1 == 0)) { // 0/x so short circuit and return 0
return owp;
}
int uw = VL_WORDS_I(umsbp1); // aka "m" in the algorithm
int vw = VL_WORDS_I(vmsbp1); // aka "n" in the algorithm
if (vw == 1) { // Single divisor word breaks rest of algorithm
vluint64_t k = 0;
for (int j = uw - 1; j >= 0; --j) {
vluint64_t unw64 = ((k << 32ULL) + static_cast<vluint64_t>(lwp[j]));
owp[j] = unw64 / static_cast<vluint64_t>(rwp[0]);
k = unw64 - static_cast<vluint64_t>(owp[j]) * static_cast<vluint64_t>(rwp[0]);
}
if (is_modulus) {
owp[0] = k;
for (int i = 1; i < words; ++i) owp[i] = 0;
}
return owp;
}
// +1 word as we may shift during normalization
vluint32_t un[VL_MULS_MAX_WORDS + 1]; // Fixed size, as MSVC++ doesn't allow [words] here
vluint32_t vn[VL_MULS_MAX_WORDS + 1]; // v normalized
// Zero for ease of debugging and to save having to zero for shifts
// Note +1 as loop will use extra word
for (int i = 0; i < words + 1; ++i) { un[i] = vn[i] = 0; }
// Algorithm requires divisor MSB to be set
// Copy and shift to normalize divisor so MSB of vn[vw-1] is set
int s = 31 - VL_BITBIT_I(vmsbp1 - 1); // shift amount (0...31)
vluint32_t shift_mask = s ? 0xffffffff : 0; // otherwise >> 32 won't mask the value
for (int i = vw - 1; i > 0; --i) {
vn[i] = (rwp[i] << s) | (shift_mask & (rwp[i - 1] >> (32 - s)));
}
vn[0] = rwp[0] << s;
// Copy and shift dividend by same amount; may set new upper word
if (s) {
un[uw] = lwp[uw - 1] >> (32 - s);
} else {
un[uw] = 0;
}
for (int i = uw - 1; i > 0; --i) {
un[i] = (lwp[i] << s) | (shift_mask & (lwp[i - 1] >> (32 - s)));
}
un[0] = lwp[0] << s;
// Main loop
for (int j = uw - vw; j >= 0; --j) {
// Estimate
vluint64_t unw64 = (static_cast<vluint64_t>(un[j + vw]) << 32ULL
| static_cast<vluint64_t>(un[j + vw - 1]));
vluint64_t qhat = unw64 / static_cast<vluint64_t>(vn[vw - 1]);
vluint64_t rhat = unw64 - qhat * static_cast<vluint64_t>(vn[vw - 1]);
again:
if (qhat >= 0x100000000ULL || ((qhat * vn[vw - 2]) > ((rhat << 32ULL) + un[j + vw - 2]))) {
qhat = qhat - 1;
rhat = rhat + vn[vw - 1];
if (rhat < 0x100000000ULL) goto again;
}
vlsint64_t t = 0; // Must be signed
vluint64_t k = 0;
for (int i = 0; i < vw; ++i) {
vluint64_t p = qhat * vn[i]; // Multiply by estimate
t = un[i + j] - k - (p & 0xFFFFFFFFULL); // Subtract
un[i + j] = t;
k = (p >> 32ULL) - (t >> 32ULL);
}
t = un[j + vw] - k;
un[j + vw] = t;
owp[j] = qhat; // Save quotient digit
if (t < 0) {
// Over subtracted; correct by adding back
owp[j]--;
k = 0;
for (int i = 0; i < vw; ++i) {
t = static_cast<vluint64_t>(un[i + j]) + static_cast<vluint64_t>(vn[i]) + k;
un[i + j] = t;
k = t >> 32ULL;
}
un[j + vw] = un[j + vw] + k;
}
}
if (is_modulus) { // modulus
// Need to reverse normalization on copy to output
for (int i = 0; i < vw; ++i) {
owp[i] = (un[i] >> s) | (shift_mask & (un[i + 1] << (32 - s)));
}
for (int i = vw; i < words; ++i) owp[i] = 0;
return owp;
} else { // division
return owp;
}
}
WDataOutP VL_POW_WWW(int obits, int, int rbits, WDataOutP owp, WDataInP lwp,
WDataInP rwp) VL_MT_SAFE {
// obits==lbits, rbits can be different
owp[0] = 1;
for (int i = 1; i < VL_WORDS_I(obits); i++) owp[i] = 0;
// cppcheck-suppress variableScope
WData powstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
WData lastpowstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
WData lastoutstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
// cppcheck-suppress variableScope
VL_ASSIGN_W(obits, powstore, lwp);
for (int bit = 0; bit < rbits; bit++) {
if (bit > 0) { // power = power*power
VL_ASSIGN_W(obits, lastpowstore, powstore);
VL_MUL_W(VL_WORDS_I(obits), powstore, lastpowstore, lastpowstore);
}
if (VL_BITISSET_W(rwp, bit)) { // out *= power
VL_ASSIGN_W(obits, lastoutstore, owp);
VL_MUL_W(VL_WORDS_I(obits), owp, lastoutstore, powstore);
}
}
return owp;
}
WDataOutP VL_POW_WWQ(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
QData rhs) VL_MT_SAFE {
WData rhsw[VL_WQ_WORDS_E];
VL_SET_WQ(rhsw, rhs);
return VL_POW_WWW(obits, lbits, rbits, owp, lwp, rhsw);
}
QData VL_POW_QQW(int, int, int rbits, QData lhs, WDataInP rwp) VL_MT_SAFE {
// Skip check for rhs == 0, as short-circuit doesn't save time
if (VL_UNLIKELY(lhs == 0)) return 0;
QData power = lhs;
QData out = 1ULL;
for (int bit = 0; bit < rbits; ++bit) {
if (bit > 0) power = power * power;
if (VL_BITISSET_W(rwp, bit)) out *= power;
}
return out;
}
WDataOutP VL_POWSS_WWW(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, WDataInP rwp,
bool lsign, bool rsign) VL_MT_SAFE {
// obits==lbits, rbits can be different
if (rsign && VL_SIGN_W(rbits, rwp)) {
int words = VL_WORDS_I(obits);
VL_ZERO_W(obits, owp);
EData lor = 0; // 0=all zeros, ~0=all ones, else mix
for (int i = 1; i < (words - 1); ++i) { lor |= lwp[i]; }
lor |= ((lwp[words - 1] == VL_MASK_E(rbits)) ? ~VL_EUL(0) : 0);
if (lor == 0 && lwp[0] == 0) { // "X" so return 0
return owp;
} else if (lor == 0 && lwp[0] == 1) { // 1
owp[0] = 1;
return owp;
} else if (lsign && lor == ~VL_EUL(0) && lwp[0] == ~VL_EUL(0)) { // -1
if (rwp[0] & 1) { // -1^odd=-1
return VL_ALLONES_W(obits, owp);
} else { // -1^even=1
owp[0] = 1;
return owp;
}
}
return owp;
}
return VL_POW_WWW(obits, rbits, rbits, owp, lwp, rwp);
}
WDataOutP VL_POWSS_WWQ(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp, QData rhs,
bool lsign, bool rsign) VL_MT_SAFE {
WData rhsw[VL_WQ_WORDS_E];
VL_SET_WQ(rhsw, rhs);
return VL_POWSS_WWW(obits, lbits, rbits, owp, lwp, rhsw, lsign, rsign);
}
QData VL_POWSS_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp, bool lsign,
bool rsign) VL_MT_SAFE {
// Skip check for rhs == 0, as short-circuit doesn't save time
if (rsign && VL_SIGN_W(rbits, rwp)) {
if (lhs == 0) {
return 0; // "X"
} else if (lhs == 1) {
return 1;
} else if (lsign && lhs == VL_MASK_Q(obits)) { // -1
if (rwp[0] & 1) {
return VL_MASK_Q(obits); // -1^odd=-1
} else {
return 1; // -1^even=1
}
}
return 0;
}
return VL_POW_QQW(obits, rbits, rbits, lhs, rwp);
}
double VL_ITOR_D_W(int lbits, WDataInP lwp) VL_PURE {
int ms_word = VL_WORDS_I(lbits) - 1;
for (; !lwp[ms_word] && ms_word > 0;) --ms_word;
if (ms_word == 0) return static_cast<double>(lwp[0]);
if (ms_word == 1) return static_cast<double>(VL_SET_QW(lwp));
// We need 53 bits of mantissa, which might mean looking at 3 words
// namely ms_word, ms_word-1 and ms_word-2
EData ihi = lwp[ms_word];
EData imid = lwp[ms_word - 1];
EData ilo = lwp[ms_word - 2];
double hi = static_cast<double>(ihi) * exp2(2 * VL_EDATASIZE);
double mid = static_cast<double>(imid) * exp2(VL_EDATASIZE);
double lo = static_cast<double>(ilo);
double d = (hi + mid + lo) * exp2(VL_EDATASIZE * (ms_word - 2));
return d;
}
double VL_ISTOR_D_W(int lbits, WDataInP lwp) VL_PURE {
if (!VL_SIGN_W(lbits, lwp)) return VL_ITOR_D_W(lbits, lwp);
vluint32_t pos[VL_MULS_MAX_WORDS + 1]; // Fixed size, as MSVC++ doesn't allow [words] here
VL_NEGATE_W(VL_WORDS_I(lbits), pos, lwp);
_VL_CLEAN_INPLACE_W(lbits, pos);
return -VL_ITOR_D_W(lbits, pos);
}
//===========================================================================
// Formatting
/// Output a string representation of a wide number
std::string VL_DECIMAL_NW(int width, WDataInP lwp) VL_MT_SAFE {
int maxdecwidth = (width + 3) * 4 / 3;
// Or (maxdecwidth+7)/8], but can't have more than 4 BCD bits per word
WData bcd[VL_VALUE_STRING_MAX_WIDTH / 4 + 2];
VL_ZERO_RESET_W(maxdecwidth, bcd);
WData tmp[VL_VALUE_STRING_MAX_WIDTH / 4 + 2];
WData tmp2[VL_VALUE_STRING_MAX_WIDTH / 4 + 2];
int from_bit = width - 1;
// Skip all leading zeros
for (; from_bit >= 0 && !(VL_BITRSHIFT_W(lwp, from_bit) & 1); --from_bit) {}
// Double-dabble algorithm
for (; from_bit >= 0; --from_bit) {
// Any digits >= 5 need an add 3 (via tmp)
for (int nibble_bit = 0; nibble_bit < maxdecwidth; nibble_bit += 4) {
if ((VL_BITRSHIFT_W(bcd, nibble_bit) & 0xf) >= 5) {
VL_ZERO_RESET_W(maxdecwidth, tmp2);
tmp2[VL_BITWORD_E(nibble_bit)] |= VL_EUL(0x3) << VL_BITBIT_E(nibble_bit);
VL_ASSIGN_W(maxdecwidth, tmp, bcd);
VL_ADD_W(VL_WORDS_I(maxdecwidth), bcd, tmp, tmp2);
}
}
// Shift; bcd = bcd << 1
VL_ASSIGN_W(maxdecwidth, tmp, bcd);
VL_SHIFTL_WWI(maxdecwidth, maxdecwidth, 32, bcd, tmp, 1);
// bcd[0] = lwp[from_bit]
if (VL_BITISSET_W(lwp, from_bit)) bcd[0] |= 1;
}
std::string output;
int lsb = (maxdecwidth - 1) & ~3;
for (; lsb > 0; lsb -= 4) { // Skip leading zeros
if (VL_BITRSHIFT_W(bcd, lsb) & 0xf) break;
}
for (; lsb >= 0; lsb -= 4) {
output += ('0' + (VL_BITRSHIFT_W(bcd, lsb) & 0xf)); // 0..9
}
return output;
}
std::string _vl_vsformat_time(char* tmp, double ld, bool left, size_t width) {
// Double may lose precision, but sc_time_stamp has similar limit
std::string suffix = VerilatedImp::timeFormatSuffix();
int userUnits = VerilatedImp::timeFormatUnits(); // 0..-15
int fracDigits = VerilatedImp::timeFormatPrecision(); // 0..N
int prec = Verilated::timeprecision(); // 0..-15
int shift = prec - userUnits + fracDigits; // 0..-15
double shiftd = vl_time_multiplier(shift);
double scaled = ld * shiftd;
QData fracDiv = static_cast<QData>(vl_time_multiplier(fracDigits));
QData whole = static_cast<QData>(scaled) / fracDiv;
QData fraction = static_cast<QData>(scaled) % fracDiv;
int digits = 0;
if (!fracDigits) {
digits = sprintf(tmp, "%" VL_PRI64 "u%s", whole, suffix.c_str());
} else {
digits = sprintf(tmp, "%" VL_PRI64 "u.%0*" VL_PRI64 "u%s", whole, fracDigits, fraction,
suffix.c_str());
}
int needmore = width - digits;
std::string padding;
if (needmore > 0) padding.append(needmore, ' '); // Pad with spaces
return left ? (tmp + padding) : (padding + tmp);
}
// Do a va_arg returning a quad, assuming input argument is anything less than wide
#define _VL_VA_ARG_Q(ap, bits) (((bits) <= VL_IDATASIZE) ? va_arg(ap, IData) : va_arg(ap, QData))
void _vl_vsformat(std::string& output, const char* formatp, va_list ap) VL_MT_SAFE {
// Format a Verilog $write style format into the output list
// The format must be pre-processed (and lower cased) by Verilator
// Arguments are in "width, arg-value (or WDataIn* if wide)" form
//
// Note uses a single buffer internally; presumes only one usage per printf
// Note also assumes variables < 64 are not wide, this assumption is
// sometimes not true in low-level routines written here in verilated.cpp
static VL_THREAD_LOCAL char tmp[VL_VALUE_STRING_MAX_WIDTH];
const char* pctp = nullptr; // Most recent %##.##g format
bool inPct = false;
bool widthSet = false;
bool left = false;
size_t width = 0;
for (const char* pos = formatp; *pos; ++pos) {
if (!inPct && pos[0] == '%') {
pctp = pos;
inPct = true;
widthSet = false;
width = 0;
} else if (!inPct) { // Normal text
// Fast-forward to next escape and add to output
const char* ep = pos;
while (ep[0] && ep[0] != '%') ep++;
if (ep != pos) {
output.append(pos, ep - pos);
pos += ep - pos - 1;
}
} else { // Format character
inPct = false;
char fmt = pos[0];
switch (fmt) {
case '0': // FALLTHRU
case '1': // FALLTHRU
case '2': // FALLTHRU
case '3': // FALLTHRU
case '4': // FALLTHRU
case '5': // FALLTHRU
case '6': // FALLTHRU
case '7': // FALLTHRU
case '8': // FALLTHRU
case '9':
inPct = true; // Get more digits
widthSet = true;
width = width * 10 + (fmt - '0');
break;
case '-':
left = true;
inPct = true; // Get more digits
break;
case '.':
inPct = true; // Get more digits
break;
case '%': //
output += '%';
break;
case 'N': { // "C" string with name of module, add . if needed
const char* cstrp = va_arg(ap, const char*);
if (VL_LIKELY(*cstrp)) {
output += cstrp;
output += '.';
}
break;
}
case 'S': { // "C" string
const char* cstrp = va_arg(ap, const char*);
output += cstrp;
break;
}
case '@': { // Verilog/C++ string
va_arg(ap, int); // # bits is ignored
const std::string* cstrp = va_arg(ap, const std::string*);
std::string padding;
if (width > cstrp->size()) padding.append(width - cstrp->size(), ' ');
output += left ? (*cstrp + padding) : (padding + *cstrp);
break;
}
case 'e':
case 'f':
case 'g':
case '^': { // Realtime
const int lbits = va_arg(ap, int);
double d = va_arg(ap, double);
if (lbits) {} // UNUSED - always 64
if (fmt == '^') { // Realtime
if (!widthSet) width = VerilatedImp::timeFormatWidth();
output += _vl_vsformat_time(tmp, d, left, width);
} else {
std::string fmts(pctp, pos - pctp + 1);
sprintf(tmp, fmts.c_str(), d);
output += tmp;
}
break;
}
default: {
// Deal with all read-and-print somethings
const int lbits = va_arg(ap, int);
QData ld = 0;
WData qlwp[VL_WQ_WORDS_E];
WDataInP lwp = nullptr;
if (lbits <= VL_QUADSIZE) {
ld = _VL_VA_ARG_Q(ap, lbits);
VL_SET_WQ(qlwp, ld);
lwp = qlwp;
} else {
lwp = va_arg(ap, WDataInP);
ld = lwp[0];
}
int lsb = lbits - 1;
if (widthSet && width == 0) {
while (lsb && !VL_BITISSET_W(lwp, lsb)) --lsb;
}
switch (fmt) {
case 'c': {
IData charval = ld & 0xff;
output += static_cast<char>(charval);
break;
}
case 's': {
std::string field;
for (; lsb >= 0; --lsb) {
lsb = (lsb / 8) * 8; // Next digit
IData charval = VL_BITRSHIFT_W(lwp, lsb) & 0xff;
field += (charval == 0) ? ' ' : charval;
}
std::string padding;
if (width > field.size()) padding.append(width - field.size(), ' ');
output += left ? (field + padding) : (padding + field);
break;
}
case 'd': { // Signed decimal
int digits = 0;
std::string append;
if (lbits <= VL_QUADSIZE) {
digits = sprintf(tmp, "%" VL_PRI64 "d",
static_cast<vlsint64_t>(VL_EXTENDS_QQ(lbits, lbits, ld)));
append = tmp;
} else {
if (VL_SIGN_E(lbits, lwp[VL_WORDS_I(lbits) - 1])) {
WData neg[VL_VALUE_STRING_MAX_WIDTH / 4 + 2];
VL_NEGATE_W(VL_WORDS_I(lbits), neg, lwp);
append = std::string("-") + VL_DECIMAL_NW(lbits, neg);
} else {
append = VL_DECIMAL_NW(lbits, lwp);
}
digits = append.length();
}
int needmore = width - digits;
std::string padding;
if (needmore > 0) {
if (pctp && pctp[0] && pctp[1] == '0') { // %0
padding.append(needmore, '0'); // Pre-pad zero
} else {
padding.append(needmore, ' '); // Pre-pad spaces
}
}
output += left ? (append + padding) : (padding + append);
break;
}
case '#': { // Unsigned decimal
int digits = 0;
std::string append;
if (lbits <= VL_QUADSIZE) {
digits = sprintf(tmp, "%" VL_PRI64 "u", ld);
append = tmp;
} else {
append = VL_DECIMAL_NW(lbits, lwp);
digits = append.length();
}
int needmore = width - digits;
std::string padding;
if (needmore > 0) {
if (pctp && pctp[0] && pctp[1] == '0') { // %0
padding.append(needmore, '0'); // Pre-pad zero
} else {
padding.append(needmore, ' '); // Pre-pad spaces
}
}
output += left ? (append + padding) : (padding + append);
break;
}
case 't': { // Time
if (!widthSet) width = VerilatedImp::timeFormatWidth();
output += _vl_vsformat_time(tmp, static_cast<double>(ld), left, width);
break;
}
case 'b':
for (; lsb >= 0; --lsb) output += (VL_BITRSHIFT_W(lwp, lsb) & 1) + '0';
break;
case 'o':
for (; lsb >= 0; --lsb) {
lsb = (lsb / 3) * 3; // Next digit
// Octal numbers may span more than one wide word,
// so we need to grab each bit separately and check for overrun
// Octal is rare, so we'll do it a slow simple way
output += static_cast<char>(
'0' + ((VL_BITISSETLIMIT_W(lwp, lbits, lsb + 0)) ? 1 : 0)
+ ((VL_BITISSETLIMIT_W(lwp, lbits, lsb + 1)) ? 2 : 0)
+ ((VL_BITISSETLIMIT_W(lwp, lbits, lsb + 2)) ? 4 : 0));
}
break;
case 'u':
case 'z': { // Packed 4-state
const bool is_4_state = (fmt == 'z');
output.reserve(output.size() + ((is_4_state ? 2 : 1) * VL_WORDS_I(lbits)));
int bytes_to_go = VL_BYTES_I(lbits);
int bit = 0;
while (bytes_to_go > 0) {
const int wr_bytes = std::min(4, bytes_to_go);
for (int byte = 0; byte < wr_bytes; byte++, bit += 8)
output += static_cast<char>(VL_BITRSHIFT_W(lwp, bit) & 0xff);
output.append(4 - wr_bytes, static_cast<char>(0));
if (is_4_state) output.append(4, static_cast<char>(0));
bytes_to_go -= wr_bytes;
}
break;
}
case 'v': // Strength; assume always strong
for (lsb = lbits - 1; lsb >= 0; --lsb) {
if (VL_BITRSHIFT_W(lwp, lsb) & 1) {
output += "St1 ";
} else {
output += "St0 ";
}
}
break;
case 'x':
for (; lsb >= 0; --lsb) {
lsb = (lsb / 4) * 4; // Next digit
IData charval = VL_BITRSHIFT_W(lwp, lsb) & 0xf;
output += "0123456789abcdef"[charval];
}
break;
default: { // LCOV_EXCL_START
std::string msg = std::string("Unknown _vl_vsformat code: ") + pos[0];
VL_FATAL_MT(__FILE__, __LINE__, "", msg.c_str());
break;
} // LCOV_EXCL_STOP
} // switch
}
} // switch
}
}
}
static inline bool _vl_vsss_eof(FILE* fp, int floc) VL_MT_SAFE {
if (fp) {
return feof(fp) ? true : false; // true : false to prevent MSVC++ warning
} else {
return floc < 0;
}
}
static inline void _vl_vsss_advance(FILE* fp, int& floc) VL_MT_SAFE {
if (fp) {
fgetc(fp);
} else {
floc -= 8;
}
}
static inline int _vl_vsss_peek(FILE* fp, int& floc, WDataInP fromp,
const std::string& fstr) VL_MT_SAFE {
// Get a character without advancing
if (fp) {
int data = fgetc(fp);
if (data == EOF) return EOF;
ungetc(data, fp);
return data;
} else {
if (floc < 0) return EOF;
floc = floc & ~7; // Align to closest character
if (fromp == nullptr) {
return fstr[fstr.length() - 1 - (floc >> 3)];
} else {
return VL_BITRSHIFT_W(fromp, floc) & 0xff;
}
}
}
static inline void _vl_vsss_skipspace(FILE* fp, int& floc, WDataInP fromp,
const std::string& fstr) VL_MT_SAFE {
while (true) {
int c = _vl_vsss_peek(fp, floc, fromp, fstr);
if (c == EOF || !isspace(c)) return;
_vl_vsss_advance(fp, floc);
}
}
static inline void _vl_vsss_read_str(FILE* fp, int& floc, WDataInP fromp, const std::string& fstr,
char* tmpp, const char* acceptp) VL_MT_SAFE {
// Read into tmp, consisting of characters from acceptp list
char* cp = tmpp;
while (true) {
int c = _vl_vsss_peek(fp, floc, fromp, fstr);
if (c == EOF || isspace(c)) break;
if (acceptp && nullptr == strchr(acceptp, c)) break; // String - allow anything
if (acceptp) c = tolower(c); // Non-strings we'll simplify
*cp++ = c;
_vl_vsss_advance(fp, floc);
}
*cp++ = '\0';
// VL_DBG_MSGF(" _read got='"<<tmpp<<"'\n");
}
static inline char* _vl_vsss_read_bin(FILE* fp, int& floc, WDataInP fromp, const std::string& fstr,
char* beginp, std::size_t n, bool inhibit = false) {
// Variant of _vl_vsss_read_str using the same underlying I/O functions but optimized
// specifically for block reads of N bytes (read operations are not demarcated by
// whitespace). In the fp case, except descriptor to have been opened in binary mode.
while (n-- > 0) {
const int c = _vl_vsss_peek(fp, floc, fromp, fstr);
if (c == EOF) return nullptr;
if (!inhibit) *beginp++ = c;
_vl_vsss_advance(fp, floc);
}
return beginp;
}
static inline void _vl_vsss_setbit(WDataOutP owp, int obits, int lsb, int nbits,
IData ld) VL_MT_SAFE {
for (; nbits && lsb < obits; nbits--, lsb++, ld >>= 1) {
VL_ASSIGNBIT_WI(0, lsb, owp, ld & 1);
}
}
static inline void _vl_vsss_based(WDataOutP owp, int obits, int baseLog2, const char* strp,
size_t posstart, size_t posend) VL_MT_SAFE {
// Read in base "2^^baseLog2" digits from strp[posstart..posend-1] into owp of size obits.
int lsb = 0;
for (int i = 0, pos = static_cast<int>(posend) - 1;
i < obits && pos >= static_cast<int>(posstart); --pos) {
// clang-format off
switch (tolower (strp[pos])) {
case 'x': case 'z': case '?': // FALLTHRU
case '0': lsb += baseLog2; break;
case '1': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 1); lsb += baseLog2; break;
case '2': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 2); lsb += baseLog2; break;
case '3': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 3); lsb += baseLog2; break;
case '4': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 4); lsb += baseLog2; break;
case '5': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 5); lsb += baseLog2; break;
case '6': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 6); lsb += baseLog2; break;
case '7': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 7); lsb += baseLog2; break;
case '8': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 8); lsb += baseLog2; break;
case '9': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 9); lsb += baseLog2; break;
case 'a': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 10); lsb += baseLog2; break;
case 'b': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 11); lsb += baseLog2; break;
case 'c': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 12); lsb += baseLog2; break;
case 'd': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 13); lsb += baseLog2; break;
case 'e': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 14); lsb += baseLog2; break;
case 'f': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 15); lsb += baseLog2; break;
case '_': break;
}
// clang-format on
}
}
IData _vl_vsscanf(FILE* fp, // If a fscanf
int fbits, WDataInP fromp, // Else if a sscanf
const std::string& fstr, // if a sscanf to string
const char* formatp, va_list ap) VL_MT_SAFE {
// Read a Verilog $sscanf/$fscanf style format into the output list
// The format must be pre-processed (and lower cased) by Verilator
// Arguments are in "width, arg-value (or WDataIn* if wide)" form
static VL_THREAD_LOCAL char tmp[VL_VALUE_STRING_MAX_WIDTH];
int floc = fbits - 1;
IData got = 0;
bool inPct = false;
bool inIgnore = false;
const char* pos = formatp;
for (; *pos && !_vl_vsss_eof(fp, floc); ++pos) {
// VL_DBG_MSGF("_vlscan fmt='"<<pos[0]<<"' floc="<<floc<<" file='"<<_vl_vsss_peek(fp, floc,
// fromp, fstr)<<"'"<<endl);
if (!inPct && pos[0] == '%') {
inPct = true;
inIgnore = false;
} else if (!inPct && isspace(pos[0])) { // Format spaces
while (isspace(pos[1])) pos++;
_vl_vsss_skipspace(fp, floc, fromp, fstr);
} else if (!inPct) { // Expected Format
_vl_vsss_skipspace(fp, floc, fromp, fstr);
int c = _vl_vsss_peek(fp, floc, fromp, fstr);
if (c != pos[0]) goto done;
_vl_vsss_advance(fp, floc);
} else { // Format character
// Skip loading spaces
inPct = false;
char fmt = pos[0];
switch (fmt) {
case '%': {
int c = _vl_vsss_peek(fp, floc, fromp, fstr);
if (c != '%') goto done;
_vl_vsss_advance(fp, floc);
break;
}
case '*':
inPct = true;
inIgnore = true;
break;
default: {
// Deal with all read-and-scan somethings
// Note LSBs are preserved if there's an overflow
const int obits = inIgnore ? 0 : va_arg(ap, int);
WData qowp[VL_WQ_WORDS_E];
VL_SET_WQ(qowp, 0ULL);
WDataOutP owp = qowp;
if (obits == -1) { // string
owp = nullptr;
if (VL_UNCOVERABLE(fmt != 's')) {
VL_FATAL_MT(
__FILE__, __LINE__, "",
"Internal: format other than %s is passed to string"); // LCOV_EXCL_LINE
}
} else if (obits > VL_QUADSIZE) {
owp = va_arg(ap, WDataOutP);
}
for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
switch (fmt) {
case 'c': {
int c = _vl_vsss_peek(fp, floc, fromp, fstr);
if (c == EOF) goto done;
_vl_vsss_advance(fp, floc);
owp[0] = c;
break;
}
case 's': {
_vl_vsss_skipspace(fp, floc, fromp, fstr);
_vl_vsss_read_str(fp, floc, fromp, fstr, tmp, nullptr);
if (!tmp[0]) goto done;
if (owp) {
int lpos = (static_cast<int>(strlen(tmp))) - 1;
int lsb = 0;
for (int i = 0; i < obits && lpos >= 0; --lpos) {
_vl_vsss_setbit(owp, obits, lsb, 8, tmp[lpos]);
lsb += 8;
}
}
break;
}
case 'd': { // Signed decimal
_vl_vsss_skipspace(fp, floc, fromp, fstr);
_vl_vsss_read_str(fp, floc, fromp, fstr, tmp, "0123456789+-xXzZ?_");
if (!tmp[0]) goto done;
vlsint64_t ld = 0;
sscanf(tmp, "%30" VL_PRI64 "d", &ld);
VL_SET_WQ(owp, ld);
break;
}
case 'f':
case 'e':
case 'g': { // Real number
_vl_vsss_skipspace(fp, floc, fromp, fstr);
_vl_vsss_read_str(fp, floc, fromp, fstr, tmp, "+-.0123456789eE");
if (!tmp[0]) goto done;
// cppcheck-suppress unusedStructMember // It's used
union {
double r;
vlsint64_t ld;
} u;
u.r = strtod(tmp, nullptr);
VL_SET_WQ(owp, u.ld);
break;
}
case 't': // FALLTHRU // Time
case '#': { // Unsigned decimal
_vl_vsss_skipspace(fp, floc, fromp, fstr);
_vl_vsss_read_str(fp, floc, fromp, fstr, tmp, "0123456789+-xXzZ?_");
if (!tmp[0]) goto done;
QData ld = 0;
sscanf(tmp, "%30" VL_PRI64 "u", &ld);
VL_SET_WQ(owp, ld);
break;
}
case 'b': {
_vl_vsss_skipspace(fp, floc, fromp, fstr);
_vl_vsss_read_str(fp, floc, fromp, fstr, tmp, "01xXzZ?_");
if (!tmp[0]) goto done;
_vl_vsss_based(owp, obits, 1, tmp, 0, strlen(tmp));
break;
}
case 'o': {
_vl_vsss_skipspace(fp, floc, fromp, fstr);
_vl_vsss_read_str(fp, floc, fromp, fstr, tmp, "01234567xXzZ?_");
if (!tmp[0]) goto done;
_vl_vsss_based(owp, obits, 3, tmp, 0, strlen(tmp));
break;
}
case 'x': {
_vl_vsss_skipspace(fp, floc, fromp, fstr);
_vl_vsss_read_str(fp, floc, fromp, fstr, tmp, "0123456789abcdefABCDEFxXzZ?_");
if (!tmp[0]) goto done;
_vl_vsss_based(owp, obits, 4, tmp, 0, strlen(tmp));
break;
}
case 'u': {
// Read packed 2-value binary data
const int bytes = VL_BYTES_I(obits);
char* out = reinterpret_cast<char*>(owp);
if (!_vl_vsss_read_bin(fp, floc, fromp, fstr, out, bytes)) goto done;
const int last = bytes % 4;
if (last != 0
&& !_vl_vsss_read_bin(fp, floc, fromp, fstr, out, 4 - last, true))
goto done;
break;
}
case 'z': {
// Read packed 4-value binary data
char* out = reinterpret_cast<char*>(owp);
int bytes = VL_BYTES_I(obits);
while (bytes > 0) {
const int abytes = std::min(4, bytes);
// aval (4B) read {0, 1} state
out = _vl_vsss_read_bin(fp, floc, fromp, fstr, out, abytes);
if (!out) goto done;
// bval (4B) disregard {X, Z} state and align to new 8B boundary.
out = _vl_vsss_read_bin(fp, floc, fromp, fstr, out, 8 - abytes, true);
if (!out) goto done;
bytes -= abytes;
}
break;
}
default: { // LCOV_EXCL_START
std::string msg = std::string("Unknown _vl_vsscanf code: ") + pos[0];
VL_FATAL_MT(__FILE__, __LINE__, "", msg.c_str());
break;
} // LCOV_EXCL_STOP
} // switch
if (!inIgnore) ++got;
// Reload data if non-wide (if wide, we put it in the right place directly)
if (obits == 0) { // Due to inIgnore
} else if (obits == -1) { // string
std::string* p = va_arg(ap, std::string*);
*p = tmp;
} else if (obits <= VL_BYTESIZE) {
CData* p = va_arg(ap, CData*);
*p = owp[0];
} else if (obits <= VL_SHORTSIZE) {
SData* p = va_arg(ap, SData*);
*p = owp[0];
} else if (obits <= VL_IDATASIZE) {
IData* p = va_arg(ap, IData*);
*p = owp[0];
} else if (obits <= VL_QUADSIZE) {
QData* p = va_arg(ap, QData*);
*p = VL_SET_QW(owp);
}
}
} // switch
}
}
done:
return got;
}
//===========================================================================
// File I/O
FILE* VL_CVT_I_FP(IData lhs) VL_MT_SAFE {
// Expected non-MCD case; returns null on MCD descriptors.
return VerilatedImp::fdToFp(lhs);
}
void _VL_VINT_TO_STRING(int obits, char* destoutp, WDataInP sourcep) VL_MT_SAFE {
// See also VL_DATA_TO_STRING_NW
int lsb = obits - 1;
bool start = true;
char* destp = destoutp;
for (; lsb >= 0; --lsb) {
lsb = (lsb / 8) * 8; // Next digit
IData charval = VL_BITRSHIFT_W(sourcep, lsb) & 0xff;
if (!start || charval) {
*destp++ = (charval == 0) ? ' ' : charval;
start = false; // Drop leading 0s
}
}
*destp = '\0'; // Terminate
if (!start) { // Drop trailing spaces
while (isspace(*(destp - 1)) && destp > destoutp) *--destp = '\0';
}
}
void _VL_STRING_TO_VINT(int obits, void* destp, size_t srclen, const char* srcp) VL_MT_SAFE {
// Convert C string to Verilog format
size_t bytes = VL_BYTES_I(obits);
char* op = reinterpret_cast<char*>(destp);
if (srclen > bytes) srclen = bytes; // Don't overflow destination
size_t i = 0;
for (i = 0; i < srclen; ++i) { *op++ = srcp[srclen - 1 - i]; }
for (; i < bytes; ++i) { *op++ = 0; }
}
static IData getLine(std::string& str, IData fpi, size_t maxLen) VL_MT_SAFE {
str.clear();
// While threadsafe, each thread can only access different file handles
FILE* fp = VL_CVT_I_FP(fpi);
if (VL_UNLIKELY(!fp)) return 0;
// We don't use fgets, as we must read \0s.
while (str.size() < maxLen) {
const int c = getc(fp); // getc() is threadsafe
if (c == EOF) break;
str.push_back(c);
if (c == '\n') break;
}
return str.size();
}
IData VL_FGETS_IXI(int obits, void* destp, IData fpi) VL_MT_SAFE {
std::string str;
const IData bytes = VL_BYTES_I(obits);
IData got = getLine(str, fpi, bytes);
if (VL_UNLIKELY(str.empty())) return 0;
// V3Emit has static check that bytes < VL_TO_STRING_MAX_WORDS, but be safe
if (VL_UNCOVERABLE(bytes < str.size())) {
VL_FATAL_MT(__FILE__, __LINE__, "", "Internal: fgets buffer overrun"); // LCOV_EXCL_LINE
}
_VL_STRING_TO_VINT(obits, destp, got, str.data());
return got;
}
// declared in verilated_heavy.h
IData VL_FGETS_NI(std::string& dest, IData fpi) VL_MT_SAFE {
return getLine(dest, fpi, std::numeric_limits<size_t>::max());
}
IData VL_FERROR_IN(IData, std::string& outputr) VL_MT_SAFE {
// We ignore lhs/fpi - IEEE says "most recent error" so probably good enough
IData ret = errno;
outputr = std::string(::strerror(ret));
return ret;
}
IData VL_FOPEN_NN(const std::string& filename, const std::string& mode) {
return VerilatedImp::fdNew(filename.c_str(), mode.c_str());
}
IData VL_FOPEN_MCD_N(const std::string& filename) VL_MT_SAFE {
return VerilatedImp::fdNewMcd(filename.c_str());
}
void VL_FFLUSH_I(IData fdi) VL_MT_SAFE { VerilatedImp::fdFlush(fdi); }
IData VL_FSEEK_I(IData fdi, IData offset, IData origin) VL_MT_SAFE {
return VerilatedImp::fdSeek(fdi, offset, origin);
}
IData VL_FTELL_I(IData fdi) VL_MT_SAFE { return VerilatedImp::fdTell(fdi); }
void VL_FCLOSE_I(IData fdi) VL_MT_SAFE {
// While threadsafe, each thread can only access different file handles
VerilatedImp::fdClose(fdi);
}
void VL_FFLUSH_ALL() VL_MT_SAFE { fflush(stdout); }
void VL_SFORMAT_X(int obits, CData& destr, const char* formatp, ...) VL_MT_SAFE {
static VL_THREAD_LOCAL std::string output; // static only for speed
output = "";
va_list ap;
va_start(ap, formatp);
_vl_vsformat(output, formatp, ap);
va_end(ap);
_VL_STRING_TO_VINT(obits, &destr, output.length(), output.c_str());
}
void VL_SFORMAT_X(int obits, SData& destr, const char* formatp, ...) VL_MT_SAFE {
static VL_THREAD_LOCAL std::string output; // static only for speed
output = "";
va_list ap;
va_start(ap, formatp);
_vl_vsformat(output, formatp, ap);
va_end(ap);
_VL_STRING_TO_VINT(obits, &destr, output.length(), output.c_str());
}
void VL_SFORMAT_X(int obits, IData& destr, const char* formatp, ...) VL_MT_SAFE {
static VL_THREAD_LOCAL std::string output; // static only for speed
output = "";
va_list ap;
va_start(ap, formatp);
_vl_vsformat(output, formatp, ap);
va_end(ap);
_VL_STRING_TO_VINT(obits, &destr, output.length(), output.c_str());
}
void VL_SFORMAT_X(int obits, QData& destr, const char* formatp, ...) VL_MT_SAFE {
static VL_THREAD_LOCAL std::string output; // static only for speed
output = "";
va_list ap;
va_start(ap, formatp);
_vl_vsformat(output, formatp, ap);
va_end(ap);
_VL_STRING_TO_VINT(obits, &destr, output.length(), output.c_str());
}
void VL_SFORMAT_X(int obits, void* destp, const char* formatp, ...) VL_MT_SAFE {
static VL_THREAD_LOCAL std::string output; // static only for speed
output = "";
va_list ap;
va_start(ap, formatp);
_vl_vsformat(output, formatp, ap);
va_end(ap);
_VL_STRING_TO_VINT(obits, destp, output.length(), output.c_str());
}
void VL_SFORMAT_X(int obits_ignored, std::string& output, const char* formatp, ...) VL_MT_SAFE {
if (obits_ignored) {}
output = "";
va_list ap;
va_start(ap, formatp);
_vl_vsformat(output, formatp, ap);
va_end(ap);
}
std::string VL_SFORMATF_NX(const char* formatp, ...) VL_MT_SAFE {
static VL_THREAD_LOCAL std::string output; // static only for speed
output = "";
va_list ap;
va_start(ap, formatp);
_vl_vsformat(output, formatp, ap);
va_end(ap);
return output;
}
void VL_WRITEF(const char* formatp, ...) VL_MT_SAFE {
static VL_THREAD_LOCAL std::string output; // static only for speed
output = "";
va_list ap;
va_start(ap, formatp);
_vl_vsformat(output, formatp, ap);
va_end(ap);
VL_PRINTF_MT("%s", output.c_str());
}
void VL_FWRITEF(IData fpi, const char* formatp, ...) VL_MT_SAFE {
// While threadsafe, each thread can only access different file handles
static VL_THREAD_LOCAL std::string output; // static only for speed
output = "";
va_list ap;
va_start(ap, formatp);
_vl_vsformat(output, formatp, ap);
va_end(ap);
VerilatedImp::fdWrite(fpi, output);
}
IData VL_FSCANF_IX(IData fpi, const char* formatp, ...) VL_MT_SAFE {
// While threadsafe, each thread can only access different file handles
FILE* fp = VL_CVT_I_FP(fpi);
if (VL_UNLIKELY(!fp)) return 0;
va_list ap;
va_start(ap, formatp);
IData got = _vl_vsscanf(fp, 0, nullptr, "", formatp, ap);
va_end(ap);
return got;
}
IData VL_SSCANF_IIX(int lbits, IData ld, const char* formatp, ...) VL_MT_SAFE {
WData fnw[VL_WQ_WORDS_E];
VL_SET_WI(fnw, ld);
va_list ap;
va_start(ap, formatp);
IData got = _vl_vsscanf(nullptr, lbits, fnw, "", formatp, ap);
va_end(ap);
return got;
}
IData VL_SSCANF_IQX(int lbits, QData ld, const char* formatp, ...) VL_MT_SAFE {
WData fnw[VL_WQ_WORDS_E];
VL_SET_WQ(fnw, ld);
va_list ap;
va_start(ap, formatp);
IData got = _vl_vsscanf(nullptr, lbits, fnw, "", formatp, ap);
va_end(ap);
return got;
}
IData VL_SSCANF_IWX(int lbits, WDataInP lwp, const char* formatp, ...) VL_MT_SAFE {
va_list ap;
va_start(ap, formatp);
IData got = _vl_vsscanf(nullptr, lbits, lwp, "", formatp, ap);
va_end(ap);
return got;
}
IData VL_SSCANF_INX(int, const std::string& ld, const char* formatp, ...) VL_MT_SAFE {
va_list ap;
va_start(ap, formatp);
IData got = _vl_vsscanf(nullptr, ld.length() * 8, nullptr, ld, formatp, ap);
va_end(ap);
return got;
}
IData VL_FREAD_I(int width, int array_lsb, int array_size, void* memp, IData fpi, IData start,
IData count) VL_MT_SAFE {
// While threadsafe, each thread can only access different file handles
FILE* fp = VL_CVT_I_FP(fpi);
if (VL_UNLIKELY(!fp)) return 0;
if (count > (array_size - (start - array_lsb))) count = array_size - (start - array_lsb);
// Prep for reading
IData read_count = 0;
IData read_elements = 0;
int start_shift = (width - 1) & ~7; // bit+7:bit gets first character
int shift = start_shift;
// Read the data
// We process a character at a time, as then we don't need to deal
// with changing buffer sizes dynamically, etc.
while (true) {
int c = fgetc(fp);
if (VL_UNLIKELY(c == EOF)) break;
// Shift value in
IData entry = read_elements + start - array_lsb;
if (width <= 8) {
CData* datap = &(reinterpret_cast<CData*>(memp))[entry];
if (shift == start_shift) { *datap = 0; }
*datap |= (c << shift) & VL_MASK_I(width);
} else if (width <= 16) {
SData* datap = &(reinterpret_cast<SData*>(memp))[entry];
if (shift == start_shift) { *datap = 0; }
*datap |= (c << shift) & VL_MASK_I(width);
} else if (width <= VL_IDATASIZE) {
IData* datap = &(reinterpret_cast<IData*>(memp))[entry];
if (shift == start_shift) { *datap = 0; }
*datap |= (c << shift) & VL_MASK_I(width);
} else if (width <= VL_QUADSIZE) {
QData* datap = &(reinterpret_cast<QData*>(memp))[entry];
if (shift == start_shift) { *datap = 0; }
*datap |= ((static_cast<QData>(c) << static_cast<QData>(shift)) & VL_MASK_Q(width));
} else {
WDataOutP datap = &(reinterpret_cast<WDataOutP>(memp))[entry * VL_WORDS_I(width)];
if (shift == start_shift) VL_ZERO_RESET_W(width, datap);
datap[VL_BITWORD_E(shift)] |= (static_cast<EData>(c) << VL_BITBIT_E(shift));
}
// Prep for next
++read_count;
shift -= 8;
if (shift < 0) {
shift = start_shift;
++read_elements;
if (VL_UNLIKELY(read_elements >= count)) break;
}
}
return read_count;
}
IData VL_SYSTEM_IQ(QData lhs) VL_MT_SAFE {
WData lhsw[VL_WQ_WORDS_E];
VL_SET_WQ(lhsw, lhs);
return VL_SYSTEM_IW(VL_WQ_WORDS_E, lhsw);
}
IData VL_SYSTEM_IW(int lhswords, WDataInP lhsp) VL_MT_SAFE {
char filenamez[VL_TO_STRING_MAX_WORDS * VL_EDATASIZE + 1];
_VL_VINT_TO_STRING(lhswords * VL_EDATASIZE, filenamez, lhsp);
int code = system(filenamez); // Yes, system() is threadsafe
return code >> 8; // Want exit status
}
IData VL_TESTPLUSARGS_I(const char* formatp) VL_MT_SAFE {
const std::string& match = VerilatedImp::argPlusMatch(formatp);
return match.empty() ? 0 : 1;
}
IData VL_VALUEPLUSARGS_INW(int rbits, const std::string& ld, WDataOutP rwp) VL_MT_SAFE {
std::string prefix;
bool inPct = false;
bool done = false;
char fmt = ' ';
for (const char* posp = ld.c_str(); !done && *posp; ++posp) {
if (!inPct && posp[0] == '%') {
inPct = true;
} else if (!inPct) { // Normal text
prefix += *posp;
} else { // Format character
switch (tolower(*posp)) {
case '%':
prefix += *posp;
inPct = false;
break;
default:
fmt = *posp;
done = true;
break;
}
}
}
const std::string& match = VerilatedImp::argPlusMatch(prefix.c_str());
const char* dp = match.c_str() + 1 /*leading + */ + prefix.length();
if (match.empty()) return 0;
VL_ZERO_RESET_W(rbits, rwp);
switch (tolower(fmt)) {
case 'd': {
vlsint64_t lld = 0;
sscanf(dp, "%30" VL_PRI64 "d", &lld);
VL_SET_WQ(rwp, lld);
break;
}
case 'b': _vl_vsss_based(rwp, rbits, 1, dp, 0, strlen(dp)); break;
case 'o': _vl_vsss_based(rwp, rbits, 3, dp, 0, strlen(dp)); break;
case 'h': // FALLTHRU
case 'x': _vl_vsss_based(rwp, rbits, 4, dp, 0, strlen(dp)); break;
case 's': { // string/no conversion
for (int i = 0, lsb = 0, posp = static_cast<int>(strlen(dp)) - 1; i < rbits && posp >= 0;
--posp) {
_vl_vsss_setbit(rwp, rbits, lsb, 8, dp[posp]);
lsb += 8;
}
break;
}
case 'e': {
double temp = 0.F;
sscanf(dp, "%le", &temp);
VL_SET_WQ(rwp, VL_CVT_Q_D(temp));
break;
}
case 'f': {
double temp = 0.F;
sscanf(dp, "%lf", &temp);
VL_SET_WQ(rwp, VL_CVT_Q_D(temp));
break;
}
case 'g': {
double temp = 0.F;
sscanf(dp, "%lg", &temp);
VL_SET_WQ(rwp, VL_CVT_Q_D(temp));
break;
}
default: // Other simulators simply return 0 in these cases and don't error out
return 0;
}
_VL_CLEAN_INPLACE_W(rbits, rwp);
return 1;
}
IData VL_VALUEPLUSARGS_INN(int, const std::string& ld, std::string& rdr) VL_MT_SAFE {
std::string prefix;
bool inPct = false;
bool done = false;
for (const char* posp = ld.c_str(); !done && *posp; ++posp) {
if (!inPct && posp[0] == '%') {
inPct = true;
} else if (!inPct) { // Normal text
prefix += *posp;
} else { // Format character
switch (tolower(*posp)) {
case '%':
prefix += *posp;
inPct = false;
break;
default: //
done = true;
break;
}
}
}
const std::string& match = VerilatedImp::argPlusMatch(prefix.c_str());
const char* dp = match.c_str() + 1 /*leading + */ + prefix.length();
if (match.empty()) return 0;
rdr = std::string(dp);
return 1;
}
const char* vl_mc_scan_plusargs(const char* prefixp) VL_MT_SAFE {
const std::string& match = VerilatedImp::argPlusMatch(prefixp);
static VL_THREAD_LOCAL char outstr[VL_VALUE_STRING_MAX_WIDTH];
if (match.empty()) return nullptr;
outstr[0] = '\0';
strncat(outstr, match.c_str() + strlen(prefixp) + 1, // +1 to skip the "+"
VL_VALUE_STRING_MAX_WIDTH - 1);
return outstr;
}
//===========================================================================
// Heavy string functions
std::string VL_TO_STRING(CData lhs) { return VL_SFORMATF_NX("'h%0x", 8, lhs); }
std::string VL_TO_STRING(SData lhs) { return VL_SFORMATF_NX("'h%0x", 16, lhs); }
std::string VL_TO_STRING(IData lhs) { return VL_SFORMATF_NX("'h%0x", 32, lhs); }
std::string VL_TO_STRING(QData lhs) { return VL_SFORMATF_NX("'h%0x", 64, lhs); }
std::string VL_TO_STRING_W(int words, WDataInP obj) {
return VL_SFORMATF_NX("'h%0x", words * VL_EDATASIZE, obj);
}
std::string VL_TOLOWER_NN(const std::string& ld) VL_MT_SAFE {
std::string out = ld;
for (auto& cr : out) cr = tolower(cr);
return out;
}
std::string VL_TOUPPER_NN(const std::string& ld) VL_MT_SAFE {
std::string out = ld;
for (auto& cr : out) cr = toupper(cr);
return out;
}
std::string VL_CVT_PACK_STR_NW(int lwords, WDataInP lwp) VL_MT_SAFE {
// See also _VL_VINT_TO_STRING
char destout[VL_TO_STRING_MAX_WORDS * VL_EDATASIZE + 1];
int obits = lwords * VL_EDATASIZE;
int lsb = obits - 1;
bool start = true;
char* destp = destout;
int len = 0;
for (; lsb >= 0; --lsb) {
lsb = (lsb / 8) * 8; // Next digit
IData charval = VL_BITRSHIFT_W(lwp, lsb) & 0xff;
if (!start || charval) {
*destp++ = (charval == 0) ? ' ' : charval;
len++;
start = false; // Drop leading 0s
}
}
return std::string(destout, len);
}
std::string VL_PUTC_N(const std::string& lhs, IData rhs, CData ths) VL_PURE {
std::string lstring = lhs;
const vlsint32_t rhs_s = rhs; // To signed value
// 6.16.2:str.putc(i, c) does not change the value when i < 0 || i >= str.len() || c == 0
if (0 <= rhs_s && rhs < lhs.length() && ths != 0) lstring[rhs] = ths;
return lstring;
}
CData VL_GETC_N(const std::string& lhs, IData rhs) VL_PURE {
CData v = 0;
const vlsint32_t rhs_s = rhs; // To signed value
// 6.16.3:str.getc(i) returns 0 if i < 0 || i >= str.len()
if (0 <= rhs_s && rhs < lhs.length()) v = lhs[rhs];
return v;
}
std::string VL_SUBSTR_N(const std::string& lhs, IData rhs, IData ths) VL_PURE {
const vlsint32_t rhs_s = rhs; // To signed value
const vlsint32_t ths_s = ths; // To signed value
// 6.16.8:str.substr(i, j) returns an empty string when i < 0 || j < i || j >= str.len()
if (rhs_s < 0 || ths_s < rhs_s || ths >= lhs.length()) return "";
// Second parameter of std::string::substr(i, n) is length, not position as in SystemVerilog
return lhs.substr(rhs, ths - rhs + 1);
}
IData VL_ATOI_N(const std::string& str, int base) VL_PURE {
std::string str_mod = str;
// IEEE 1800-2017 6.16.9 says '_' may exist.
str_mod.erase(std::remove(str_mod.begin(), str_mod.end(), '_'), str_mod.end());
errno = 0;
auto v = std::strtol(str_mod.c_str(), nullptr, base);
if (errno != 0) v = 0;
return static_cast<IData>(v);
}
//===========================================================================
// Dumping
const char* vl_dumpctl_filenamep(bool setit, const std::string& filename) VL_MT_SAFE {
// This function performs both accessing and setting so it's easy to make an in-function static
static VL_THREAD_LOCAL std::string t_filename;
if (setit) {
t_filename = filename;
} else {
static VL_THREAD_LOCAL bool t_warned = false;
if (VL_UNLIKELY(t_filename.empty() && !t_warned)) {
t_warned = true;
VL_PRINTF_MT("%%Warning: $dumpvar ignored as not proceeded by $dumpfile\n");
return "";
}
}
return t_filename.c_str();
}
//===========================================================================
// Readmem/writemem
static const char* memhFormat(int nBits) {
assert((nBits >= 1) && (nBits <= 32));
static VL_THREAD_LOCAL char buf[32];
switch ((nBits - 1) / 4) {
case 0: VL_SNPRINTF(buf, 32, "%%01x"); break;
case 1: VL_SNPRINTF(buf, 32, "%%02x"); break;
case 2: VL_SNPRINTF(buf, 32, "%%03x"); break;
case 3: VL_SNPRINTF(buf, 32, "%%04x"); break;
case 4: VL_SNPRINTF(buf, 32, "%%05x"); break;
case 5: VL_SNPRINTF(buf, 32, "%%06x"); break;
case 6: VL_SNPRINTF(buf, 32, "%%07x"); break;
case 7: VL_SNPRINTF(buf, 32, "%%08x"); break;
default: assert(false); break; // LCOV_EXCL_LINE
}
return buf;
}
static const char* formatBinary(int nBits, vluint32_t bits) {
assert((nBits >= 1) && (nBits <= 32));
static VL_THREAD_LOCAL char buf[64];
for (int i = 0; i < nBits; i++) {
bool isOne = bits & (1 << (nBits - 1 - i));
buf[i] = (isOne ? '1' : '0');
}
buf[nBits] = '\0';
return buf;
}
VlReadMem::VlReadMem(bool hex, int bits, const std::string& filename, QData start, QData end)
: m_hex{hex}
, m_bits{bits}
, m_filename(filename) // Need () or GCC 4.8 false warning
, m_end{end}
, m_addr{start}
, m_linenum{0} {
m_fp = fopen(filename.c_str(), "r");
if (VL_UNLIKELY(!m_fp)) {
// We don't report the Verilog source filename as it slow to have to pass it down
VL_FATAL_MT(filename.c_str(), 0, "", "$readmem file not found");
// cppcheck-suppress resourceLeak // m_fp is nullptr - bug in cppcheck
return;
}
}
VlReadMem::~VlReadMem() {
if (m_fp) {
fclose(m_fp);
m_fp = nullptr;
}
}
bool VlReadMem::get(QData& addrr, std::string& valuer) {
if (VL_UNLIKELY(!m_fp)) return false;
valuer = "";
// Prep for reading
bool indata = false;
bool ignore_to_eol = false;
bool ignore_to_cmt = false;
bool reading_addr = false;
int lastc = ' ';
// Read the data
// We process a character at a time, as then we don't need to deal
// with changing buffer sizes dynamically, etc.
while (true) {
int c = fgetc(m_fp);
if (VL_UNLIKELY(c == EOF)) break;
// printf("%d: Got '%c' Addr%lx IN%d IgE%d IgC%d\n",
// m_linenum, c, m_addr, indata, ignore_to_eol, ignore_to_cmt);
// See if previous data value has completed, and if so return
if (c == '_') continue; // Ignore _ e.g. inside a number
if (indata && !isxdigit(c) && c != 'x' && c != 'X') {
// printf("Got data @%lx = %s\n", m_addr, valuer.c_str());
ungetc(c, m_fp);
addrr = m_addr;
++m_addr;
return true;
}
// Parse line
if (c == '\n') {
++m_linenum;
ignore_to_eol = false;
reading_addr = false;
} else if (c == '\t' || c == ' ' || c == '\r' || c == '\f') {
reading_addr = false;
}
// Skip // comments and detect /* comments
else if (ignore_to_cmt && lastc == '*' && c == '/') {
ignore_to_cmt = false;
reading_addr = false;
} else if (!ignore_to_eol && !ignore_to_cmt) {
if (lastc == '/' && c == '*') {
ignore_to_cmt = true;
} else if (lastc == '/' && c == '/') {
ignore_to_eol = true;
} else if (c == '/') { // Part of /* or //
} else if (c == '#') {
ignore_to_eol = true;
} else if (c == '@') {
reading_addr = true;
m_addr = 0;
}
// Check for hex or binary digits as file format requests
else if (isxdigit(c) || (!reading_addr && (c == 'x' || c == 'X'))) {
c = tolower(c);
int value
= (c >= 'a' ? (c == 'x' ? VL_RAND_RESET_I(4) : (c - 'a' + 10)) : (c - '0'));
if (reading_addr) {
// Decode @ addresses
m_addr = (m_addr << 4) + value;
} else {
indata = true;
valuer += static_cast<char>(c);
// printf(" Value width=%d @%x = %c\n", width, m_addr, c);
if (VL_UNLIKELY(value > 1 && !m_hex)) {
VL_FATAL_MT(m_filename.c_str(), m_linenum, "",
"$readmemb (binary) file contains hex characters");
}
}
} else {
VL_FATAL_MT(m_filename.c_str(), m_linenum, "", "$readmem file syntax error");
}
}
lastc = c;
}
if (VL_UNLIKELY(m_end != ~0ULL && m_addr <= m_end)) {
VL_FATAL_MT(m_filename.c_str(), m_linenum, "",
"$readmem file ended before specified final address (IEEE 2017 21.4)");
}
return false; // EOF
}
void VlReadMem::setData(void* valuep, const std::string& rhs) {
QData shift = m_hex ? 4ULL : 1ULL;
bool innum = false;
// Shift value in
for (const auto& i : rhs) {
char c = tolower(i);
int value = (c >= 'a' ? (c == 'x' ? VL_RAND_RESET_I(4) : (c - 'a' + 10)) : (c - '0'));
if (m_bits <= 8) {
CData* datap = reinterpret_cast<CData*>(valuep);
if (!innum) { *datap = 0; }
*datap = ((*datap << shift) + value) & VL_MASK_I(m_bits);
} else if (m_bits <= 16) {
SData* datap = reinterpret_cast<SData*>(valuep);
if (!innum) { *datap = 0; }
*datap = ((*datap << shift) + value) & VL_MASK_I(m_bits);
} else if (m_bits <= VL_IDATASIZE) {
IData* datap = reinterpret_cast<IData*>(valuep);
if (!innum) { *datap = 0; }
*datap = ((*datap << shift) + value) & VL_MASK_I(m_bits);
} else if (m_bits <= VL_QUADSIZE) {
QData* datap = reinterpret_cast<QData*>(valuep);
if (!innum) { *datap = 0; }
*datap = ((*datap << static_cast<QData>(shift)) + static_cast<QData>(value))
& VL_MASK_Q(m_bits);
} else {
WDataOutP datap = reinterpret_cast<WDataOutP>(valuep);
if (!innum) VL_ZERO_RESET_W(m_bits, datap);
_VL_SHIFTL_INPLACE_W(m_bits, datap, static_cast<IData>(shift));
datap[0] |= value;
}
innum = true;
}
}
VlWriteMem::VlWriteMem(bool hex, int bits, const std::string& filename, QData start, QData end)
: m_hex{hex}
, m_bits{bits}
, m_addr{0} {
if (VL_UNLIKELY(start > end)) {
VL_FATAL_MT(filename.c_str(), 0, "", "$writemem invalid address range");
return;
}
m_fp = fopen(filename.c_str(), "w");
if (VL_UNLIKELY(!m_fp)) {
VL_FATAL_MT(filename.c_str(), 0, "", "$writemem file not found");
// cppcheck-suppress resourceLeak // m_fp is nullptr - bug in cppcheck
return;
}
}
VlWriteMem::~VlWriteMem() {
if (m_fp) {
fclose(m_fp);
m_fp = nullptr;
}
}
void VlWriteMem::print(QData addr, bool addrstamp, const void* valuep) {
if (VL_UNLIKELY(!m_fp)) return;
if (addr != m_addr && addrstamp) { // Only assoc has time stamps
fprintf(m_fp, "@%" VL_PRI64 "x\n", addr);
}
m_addr = addr + 1;
if (m_bits <= 8) {
const CData* datap = reinterpret_cast<const CData*>(valuep);
if (m_hex) {
fprintf(m_fp, memhFormat(m_bits), VL_MASK_I(m_bits) & *datap);
fprintf(m_fp, "\n");
} else {
fprintf(m_fp, "%s\n", formatBinary(m_bits, *datap));
}
} else if (m_bits <= 16) {
const SData* datap = reinterpret_cast<const SData*>(valuep);
if (m_hex) {
fprintf(m_fp, memhFormat(m_bits), VL_MASK_I(m_bits) & *datap);
fprintf(m_fp, "\n");
} else {
fprintf(m_fp, "%s\n", formatBinary(m_bits, *datap));
}
} else if (m_bits <= 32) {
const IData* datap = reinterpret_cast<const IData*>(valuep);
if (m_hex) {
fprintf(m_fp, memhFormat(m_bits), VL_MASK_I(m_bits) & *datap);
fprintf(m_fp, "\n");
} else {
fprintf(m_fp, "%s\n", formatBinary(m_bits, *datap));
}
} else if (m_bits <= 64) {
const QData* datap = reinterpret_cast<const QData*>(valuep);
vluint64_t value = VL_MASK_Q(m_bits) & *datap;
vluint32_t lo = value & 0xffffffff;
vluint32_t hi = value >> 32;
if (m_hex) {
fprintf(m_fp, memhFormat(m_bits - 32), hi);
fprintf(m_fp, "%08x\n", lo);
} else {
fprintf(m_fp, "%s", formatBinary(m_bits - 32, hi));
fprintf(m_fp, "%s\n", formatBinary(32, lo));
}
} else {
WDataInP datap = reinterpret_cast<WDataInP>(valuep);
// output as a sequence of VL_EDATASIZE'd words
// from MSB to LSB. Mask off the MSB word which could
// contain junk above the top of valid data.
int word_idx = ((m_bits - 1) / VL_EDATASIZE);
bool first = true;
while (word_idx >= 0) {
EData data = datap[word_idx];
if (first) {
data &= VL_MASK_E(m_bits);
int top_word_nbits = VL_BITBIT_E(m_bits - 1) + 1;
if (m_hex) {
fprintf(m_fp, memhFormat(top_word_nbits), data);
} else {
fprintf(m_fp, "%s", formatBinary(top_word_nbits, data));
}
} else {
if (m_hex) {
fprintf(m_fp, "%08x", data);
} else {
fprintf(m_fp, "%s", formatBinary(32, data));
}
}
word_idx--;
first = false;
}
fprintf(m_fp, "\n");
}
}
void VL_READMEM_N(bool hex, // Hex format, else binary
int bits, // M_Bits of each array row
QData depth, // Number of rows
int array_lsb, // Index of first row. Valid row addresses
// // range from array_lsb up to (array_lsb + depth - 1)
const std::string& filename, // Input file name
void* memp, // Array state
QData start, // First array row address to read
QData end // Last row address to read
) VL_MT_SAFE {
if (start < static_cast<QData>(array_lsb)) start = array_lsb;
VlReadMem rmem(hex, bits, filename, start, end);
if (VL_UNLIKELY(!rmem.isOpen())) return;
while (true) {
QData addr = 0;
std::string value;
if (rmem.get(addr /*ref*/, value /*ref*/)) {
if (VL_UNLIKELY(addr < static_cast<QData>(array_lsb)
|| addr >= static_cast<QData>(array_lsb + depth))) {
VL_FATAL_MT(filename.c_str(), rmem.linenum(), "",
"$readmem file address beyond bounds of array");
} else {
QData entry = addr - array_lsb;
if (bits <= 8) {
CData* datap = &(reinterpret_cast<CData*>(memp))[entry];
rmem.setData(datap, value);
} else if (bits <= 16) {
SData* datap = &(reinterpret_cast<SData*>(memp))[entry];
rmem.setData(datap, value);
} else if (bits <= VL_IDATASIZE) {
IData* datap = &(reinterpret_cast<IData*>(memp))[entry];
rmem.setData(datap, value);
} else if (bits <= VL_QUADSIZE) {
QData* datap = &(reinterpret_cast<QData*>(memp))[entry];
rmem.setData(datap, value);
} else {
WDataOutP datap
= &(reinterpret_cast<WDataOutP>(memp))[entry * VL_WORDS_I(bits)];
rmem.setData(datap, value);
}
}
} else {
break;
}
}
}
void VL_WRITEMEM_N(bool hex, // Hex format, else binary
int bits, // Width of each array row
QData depth, // Number of rows
int array_lsb, // Index of first row. Valid row addresses
// // range from array_lsb up to (array_lsb + depth - 1)
const std::string& filename, // Output file name
const void* memp, // Array state
QData start, // First array row address to write
QData end // Last address to write, or ~0 when not specified
) VL_MT_SAFE {
QData addr_max = array_lsb + depth - 1;
if (start < static_cast<QData>(array_lsb)) start = array_lsb;
if (end > addr_max) end = addr_max;
VlWriteMem wmem(hex, bits, filename, start, end);
if (VL_UNLIKELY(!wmem.isOpen())) return;
for (QData addr = start; addr <= end; ++addr) {
QData row_offset = addr - array_lsb;
if (bits <= 8) {
const CData* datap = &(reinterpret_cast<const CData*>(memp))[row_offset];
wmem.print(addr, false, datap);
} else if (bits <= 16) {
const SData* datap = &(reinterpret_cast<const SData*>(memp))[row_offset];
wmem.print(addr, false, datap);
} else if (bits <= 32) {
const IData* datap = &(reinterpret_cast<const IData*>(memp))[row_offset];
wmem.print(addr, false, datap);
} else if (bits <= 64) {
const QData* datap = &(reinterpret_cast<const QData*>(memp))[row_offset];
wmem.print(addr, false, datap);
} else {
WDataInP memDatap = reinterpret_cast<WDataInP>(memp);
WDataInP datap = &memDatap[row_offset * VL_WORDS_I(bits)];
wmem.print(addr, false, datap);
}
}
}
//===========================================================================
// Timescale conversion
// Helper function for conversion of timescale strings
// Converts (1|10|100)(s|ms|us|ns|ps|fs) to power of then
int VL_TIME_STR_CONVERT(const char* strp) {
int scale = 0;
if (!strp) return 0;
if (*strp++ != '1') return 0;
while (*strp == '0') {
scale++;
strp++;
}
switch (*strp++) {
case 's': break;
case 'm': scale -= 3; break;
case 'u': scale -= 6; break;
case 'n': scale -= 9; break;
case 'p': scale -= 12; break;
case 'f': scale -= 15; break;
default: return 0;
}
if ((scale < 0) && (*strp++ != 's')) return 0;
if (*strp) return 0;
return scale;
}
static const char* vl_time_str(int scale) {
static const char* const names[]
= {"100s", "10s", "1s", "100ms", "10ms", "1ms", "100us", "10us", "1us",
"100ns", "10ns", "1ns", "100ps", "10ps", "1ps", "100fs", "10fs", "1fs"};
if (VL_UNLIKELY(scale > 2 || scale < -15)) scale = 0;
return names[2 - scale];
}
double vl_time_multiplier(int scale) {
// Return timescale multipler -18 to +18
// For speed, this does not check for illegal values
if (scale < 0) {
static const double neg10[] = {1.0,
0.1,
0.01,
0.001,
0.0001,
0.00001,
0.000001,
0.0000001,
0.00000001,
0.000000001,
0.0000000001,
0.00000000001,
0.000000000001,
0.0000000000001,
0.00000000000001,
0.000000000000001,
0.0000000000000001,
0.00000000000000001,
0.000000000000000001};
return neg10[-scale];
} else {
static const double pow10[] = {1.0,
10.0,
100.0,
1000.0,
10000.0,
100000.0,
1000000.0,
10000000.0,
100000000.0,
1000000000.0,
10000000000.0,
100000000000.0,
1000000000000.0,
10000000000000.0,
100000000000000.0,
1000000000000000.0,
10000000000000000.0,
100000000000000000.0,
1000000000000000000.0};
return pow10[scale];
}
}
const char* Verilated::timeunitString() VL_MT_SAFE { return vl_time_str(timeunit()); }
const char* Verilated::timeprecisionString() VL_MT_SAFE { return vl_time_str(timeprecision()); }
void VL_PRINTTIMESCALE(const char* namep, const char* timeunitp) VL_MT_SAFE {
VL_PRINTF_MT("Time scale of %s is %s / %s\n", namep, timeunitp,
Verilated::timeprecisionString());
}
void VL_TIMEFORMAT_IINI(int units, int precision, const std::string& suffix,
int width) VL_MT_SAFE {
VerilatedImp::timeFormatUnits(units);
VerilatedImp::timeFormatPrecision(precision);
VerilatedImp::timeFormatSuffix(suffix);
VerilatedImp::timeFormatWidth(width);
}
//===========================================================================
// Verilated:: Methods
void Verilated::debug(int level) VL_MT_SAFE {
const VerilatedLockGuard lock(m_mutex);
s_s.s_debug = level;
if (level) {
#ifdef VL_DEBUG
VL_DEBUG_IF(VL_DBG_MSGF("- Verilated::debug is on."
" Message prefix indicates {<thread>,<sequence_number>}.\n"););
#else
VL_PRINTF_MT("- Verilated::debug attempted,"
" but compiled without VL_DEBUG, so messages suppressed.\n"
"- Suggest remake using 'make ... CPPFLAGS=-DVL_DEBUG'\n");
#endif
}
}
void Verilated::randReset(int val) VL_MT_SAFE {
const VerilatedLockGuard lock(m_mutex);
s_s.s_randReset = val;
}
void Verilated::randSeed(int val) VL_MT_SAFE {
const VerilatedLockGuard lock(m_mutex);
s_s.s_randSeed = val;
}
void Verilated::calcUnusedSigs(bool flag) VL_MT_SAFE {
const VerilatedLockGuard lock(m_mutex);
s_s.s_calcUnusedSigs = flag;
}
void Verilated::errorCount(int val) VL_MT_SAFE {
const VerilatedLockGuard lock(m_mutex);
s_s.s_errorCount = val;
}
void Verilated::errorCountInc() VL_MT_SAFE {
const VerilatedLockGuard lock(m_mutex);
++s_s.s_errorCount;
}
void Verilated::errorLimit(int val) VL_MT_SAFE {
const VerilatedLockGuard lock(m_mutex);
s_s.s_errorLimit = val;
}
void Verilated::gotFinish(bool flag) VL_MT_SAFE {
const VerilatedLockGuard lock(m_mutex);
s_s.s_gotFinish = flag;
}
void Verilated::assertOn(bool flag) VL_MT_SAFE {
const VerilatedLockGuard lock(m_mutex);
s_s.s_assertOn = flag;
}
void Verilated::fatalOnVpiError(bool flag) VL_MT_SAFE {
const VerilatedLockGuard lock(m_mutex);
s_s.s_fatalOnVpiError = flag;
}
void Verilated::timeunit(int value) VL_MT_SAFE {
if (value < 0) value = -value; // Stored as 0..15
const VerilatedLockGuard lock(m_mutex);
s_s.s_timeunit = value;
}
void Verilated::timeprecision(int value) VL_MT_SAFE {
if (value < 0) value = -value; // Stored as 0..15
const VerilatedLockGuard lock(m_mutex);
s_s.s_timeprecision = value;
#ifdef SYSTEMC_VERSION
sc_time sc_res = sc_get_time_resolution();
int sc_prec = 99;
if (sc_res == sc_time(1, SC_SEC)) {
sc_prec = 0;
} else if (sc_res == sc_time(1, SC_MS)) {
sc_prec = 3;
} else if (sc_res == sc_time(1, SC_US)) {
sc_prec = 6;
} else if (sc_res == sc_time(1, SC_NS)) {
sc_prec = 9;
} else if (sc_res == sc_time(1, SC_PS)) {
sc_prec = 12;
} else if (sc_res == sc_time(1, SC_FS)) {
sc_prec = 15;
}
if (value != sc_prec) {
std::ostringstream msg;
msg << "SystemC's sc_set_time_resolution is 10^-" << sc_prec
<< ", which does not match Verilog timeprecision 10^-" << value
<< ". Suggest use 'sc_set_time_resolution(" << vl_time_str(value)
<< ")', or Verilator '--timescale-override " << vl_time_str(sc_prec) << "/"
<< vl_time_str(sc_prec) << "'";
std::string msgs = msg.str();
VL_FATAL_MT("", 0, "", msgs.c_str());
}
#endif
}
void Verilated::profThreadsStart(vluint64_t flag) VL_MT_SAFE {
const VerilatedLockGuard lock(m_mutex);
s_ns.s_profThreadsStart = flag;
}
void Verilated::profThreadsWindow(vluint64_t flag) VL_MT_SAFE {
const VerilatedLockGuard lock(m_mutex);
s_ns.s_profThreadsWindow = flag;
}
void Verilated::profThreadsFilenamep(const char* flagp) VL_MT_SAFE {
const VerilatedLockGuard lock(m_mutex);
if (s_ns.s_profThreadsFilenamep) free(const_cast<char*>(s_ns.s_profThreadsFilenamep));
s_ns.s_profThreadsFilenamep = strdup(flagp);
}
const char* Verilated::catName(const char* n1, const char* n2, const char* delimiter) VL_MT_SAFE {
// Returns new'ed data
// Used by symbol table creation to make module names
static VL_THREAD_LOCAL char* strp = nullptr;
static VL_THREAD_LOCAL size_t len = 0;
size_t newlen = strlen(n1) + strlen(n2) + strlen(delimiter) + 1;
if (!strp || newlen > len) {
if (strp) delete[] strp;
strp = new char[newlen];
len = newlen;
}
strcpy(strp, n1);
if (*n1) strcat(strp, delimiter);
strcat(strp, n2);
return strp;
}
//=========================================================================
// Flush and exit callbacks
// Keeping these out of class Verilated to avoid having to include <list>
// in verilated.h (for compilation speed)
typedef std::list<std::pair<Verilated::VoidPCb, void*>> VoidPCbList;
static VoidPCbList g_flushCbs;
static VoidPCbList g_exitCbs;
static void addCb(Verilated::VoidPCb cb, void* datap, VoidPCbList& cbs) {
std::pair<Verilated::VoidPCb, void*> pair(cb, datap);
cbs.remove(pair); // Just in case it's a duplicate
cbs.push_back(pair);
}
static void removeCb(Verilated::VoidPCb cb, void* datap, VoidPCbList& cbs) {
std::pair<Verilated::VoidPCb, void*> pair(cb, datap);
cbs.remove(pair);
}
static void runCallbacks(VoidPCbList& cbs) VL_MT_SAFE {
for (const auto& i : cbs) i.first(i.second);
}
void Verilated::addFlushCb(VoidPCb cb, void* datap) VL_MT_SAFE {
const VerilatedLockGuard lock(m_mutex);
addCb(cb, datap, g_flushCbs);
}
void Verilated::removeFlushCb(VoidPCb cb, void* datap) VL_MT_SAFE {
const VerilatedLockGuard lock(m_mutex);
removeCb(cb, datap, g_flushCbs);
}
void Verilated::runFlushCallbacks() VL_MT_SAFE {
const VerilatedLockGuard lock(m_mutex);
runCallbacks(g_flushCbs);
fflush(stderr);
fflush(stdout);
// When running internal code coverage (gcc --coverage, as opposed to
// verilator --coverage), dump coverage data to properly cover failing
// tests.
VL_GCOV_FLUSH();
}
void Verilated::addExitCb(VoidPCb cb, void* datap) VL_MT_SAFE {
const VerilatedLockGuard lock(m_mutex);
addCb(cb, datap, g_exitCbs);
}
void Verilated::removeExitCb(VoidPCb cb, void* datap) VL_MT_SAFE {
const VerilatedLockGuard lock(m_mutex);
removeCb(cb, datap, g_exitCbs);
}
void Verilated::runExitCallbacks() VL_MT_SAFE {
const VerilatedLockGuard lock(m_mutex);
runCallbacks(g_exitCbs);
}
const char* Verilated::productName() VL_PURE { return VERILATOR_PRODUCT; }
const char* Verilated::productVersion() VL_PURE { return VERILATOR_VERSION; }
void Verilated::commandArgs(int argc, const char** argv) VL_MT_SAFE {
const VerilatedLockGuard lock(s_args.m_argMutex);
s_args.argc = argc;
s_args.argv = argv;
VerilatedImp::commandArgs(argc, argv);
}
const char* Verilated::commandArgsPlusMatch(const char* prefixp) VL_MT_SAFE {
const std::string& match = VerilatedImp::argPlusMatch(prefixp);
static VL_THREAD_LOCAL char outstr[VL_VALUE_STRING_MAX_WIDTH];
if (match.empty()) return "";
outstr[0] = '\0';
strncat(outstr, match.c_str(), VL_VALUE_STRING_MAX_WIDTH - 1);
return outstr;
}
void Verilated::nullPointerError(const char* filename, int linenum) VL_MT_SAFE {
// Slowpath - Called only on error
VL_FATAL_MT(filename, linenum, "", "Null pointer dereferenced");
VL_UNREACHABLE
}
void Verilated::overWidthError(const char* signame) VL_MT_SAFE {
// Slowpath - Called only when signal sets too high of a bit
std::string msg = (std::string("Testbench C set input '") + signame
+ "' to value that overflows what the signal's width can fit");
VL_FATAL_MT("unknown", 0, "", msg.c_str());
VL_UNREACHABLE
}
void Verilated::mkdir(const char* dirname) VL_MT_UNSAFE {
#if defined(_WIN32) || defined(__MINGW32__)
::mkdir(dirname);
#else
::mkdir(dirname, 0777);
#endif
}
void Verilated::quiesce() VL_MT_SAFE {
#ifdef VL_THREADED
// Wait until all threads under this evaluation are quiet
// THREADED-TODO
#endif
}
void Verilated::internalsDump() VL_MT_SAFE { VerilatedImp::internalsDump(); }
void Verilated::scopesDump() VL_MT_SAFE { VerilatedImp::scopesDump(); }
const VerilatedScope* Verilated::scopeFind(const char* namep) VL_MT_SAFE {
return VerilatedImp::scopeFind(namep);
}
int Verilated::exportFuncNum(const char* namep) VL_MT_SAFE {
return VerilatedImp::exportFind(namep);
}
const VerilatedScopeNameMap* Verilated::scopeNameMap() VL_MT_SAFE {
return VerilatedImp::scopeNameMap();
}
#ifdef VL_THREADED
void Verilated::endOfThreadMTaskGuts(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE {
VL_DEBUG_IF(VL_DBG_MSGF("End of thread mtask\n"););
VerilatedThreadMsgQueue::flush(evalMsgQp);
}
void Verilated::endOfEvalGuts(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE {
VL_DEBUG_IF(VL_DBG_MSGF("End-of-eval cleanup\n"););
evalMsgQp->process();
}
#endif
//===========================================================================
// VerilatedImp:: Constructors
// verilated.o may exist both in protect-lib and main module.
// Both the main module and the protec-lib refer the same instance of
// static variables such as Verilated or VerilatedImplData.
// This is important to share the state such as Verilated::gotFinish.
// But the sharing may cause double-free error when shutting down because destructors
// are called twice.
// 1st time:From protec-lib shared object on the way of unloading after exitting main()
// 2nd time:From main executable.
//
// To avoid the trouble, all member variables are enclosed in VerilatedImpU union.
// ctor nor dtor of members are not called automatically.
// VerilatedImp::setup() and teardown() guarantees to initialize/destruct just once.
void VerilatedImp::setup() {
static bool done = false;
if (!done) {
new (&VerilatedImp::s_s) VerilatedImpData();
done = true;
}
}
void VerilatedImp::teardown() {
static bool done = false;
if (!done) {
VerilatedImp::s_s.~VerilatedImpU();
done = true;
}
}
//===========================================================================
// VerilatedImp:: Methods
std::string VerilatedImp::timeFormatSuffix() VL_MT_SAFE {
const VerilatedLockGuard lock(s_s.v.m_sergMutex);
return s_s.v.m_serg.m_timeFormatSuffix;
}
void VerilatedImp::timeFormatSuffix(const std::string& value) VL_MT_SAFE {
const VerilatedLockGuard lock(s_s.v.m_sergMutex);
s_s.v.m_serg.m_timeFormatSuffix = value;
}
void VerilatedImp::timeFormatUnits(int value) VL_MT_SAFE { s_s.v.m_ser.m_timeFormatUnits = value; }
void VerilatedImp::timeFormatPrecision(int value) VL_MT_SAFE {
s_s.v.m_ser.m_timeFormatPrecision = value;
}
void VerilatedImp::timeFormatWidth(int value) VL_MT_SAFE { s_s.v.m_ser.m_timeFormatWidth = value; }
void VerilatedImp::internalsDump() VL_MT_SAFE {
const VerilatedLockGuard lock(s_s.v.m_argMutex);
VL_PRINTF_MT("internalsDump:\n");
versionDump();
VL_PRINTF_MT(" Argv:");
for (const auto& i : s_s.v.m_argVec) VL_PRINTF_MT(" %s", i.c_str());
VL_PRINTF_MT("\n");
scopesDump();
exportsDump();
userDump();
}
void VerilatedImp::versionDump() VL_MT_SAFE {
VL_PRINTF_MT(" Version: %s %s\n", Verilated::productName(), Verilated::productVersion());
}
void VerilatedImp::commandArgs(int argc, const char** argv) VL_EXCLUDES(s_s.v.m_argMutex) {
const VerilatedLockGuard lock(s_s.v.m_argMutex);
s_s.v.m_argVec.clear(); // Always clear
commandArgsAddGuts(argc, argv);
}
void VerilatedImp::commandArgsAdd(int argc, const char** argv) VL_EXCLUDES(s_s.v.m_argMutex) {
const VerilatedLockGuard lock(s_s.v.m_argMutex);
commandArgsAddGuts(argc, argv);
}
void VerilatedImp::commandArgsAddGuts(int argc, const char** argv) VL_REQUIRES(s_s.v.m_argMutex) {
if (!s_s.v.m_argVecLoaded) s_s.v.m_argVec.clear();
for (int i = 0; i < argc; ++i) {
s_s.v.m_argVec.push_back(argv[i]);
commandArgVl(argv[i]);
}
s_s.v.m_argVecLoaded = true; // Can't just test later for empty vector, no arguments is ok
}
void VerilatedImp::commandArgVl(const std::string& arg) {
if (0 == strncmp(arg.c_str(), "+verilator+", strlen("+verilator+"))) {
std::string value;
if (arg == "+verilator+debug") {
Verilated::debug(4);
} else if (commandArgVlValue(arg, "+verilator+debugi+", value /*ref*/)) {
Verilated::debug(atoi(value.c_str()));
} else if (commandArgVlValue(arg, "+verilator+error+limit+", value /*ref*/)) {
Verilated::errorLimit(atoi(value.c_str()));
} else if (arg == "+verilator+help") {
versionDump();
VL_PRINTF_MT("For help, please see 'verilator --help'\n");
VL_FATAL_MT("COMMAND_LINE", 0, "",
"Exiting due to command line argument (not an error)");
} else if (commandArgVlValue(arg, "+verilator+prof+threads+start+", value /*ref*/)) {
Verilated::profThreadsStart(atoll(value.c_str()));
} else if (commandArgVlValue(arg, "+verilator+prof+threads+window+", value /*ref*/)) {
Verilated::profThreadsWindow(atol(value.c_str()));
} else if (commandArgVlValue(arg, "+verilator+prof+threads+file+", value /*ref*/)) {
Verilated::profThreadsFilenamep(value.c_str());
} else if (commandArgVlValue(arg, "+verilator+rand+reset+", value /*ref*/)) {
Verilated::randReset(atoi(value.c_str()));
} else if (commandArgVlValue(arg, "+verilator+seed+", value /*ref*/)) {
Verilated::randSeed(atoi(value.c_str()));
} else if (arg == "+verilator+noassert") {
Verilated::assertOn(false);
} else if (arg == "+verilator+V") {
versionDump(); // Someday more info too
VL_FATAL_MT("COMMAND_LINE", 0, "",
"Exiting due to command line argument (not an error)");
} else if (arg == "+verilator+version") {
versionDump();
VL_FATAL_MT("COMMAND_LINE", 0, "",
"Exiting due to command line argument (not an error)");
} else {
VL_PRINTF_MT("%%Warning: Unknown +verilator runtime argument: '%s'\n", arg.c_str());
}
}
}
bool VerilatedImp::commandArgVlValue(const std::string& arg, const std::string& prefix,
std::string& valuer) {
size_t len = prefix.length();
if (0 == strncmp(prefix.c_str(), arg.c_str(), len)) {
valuer = arg.substr(len);
return true;
} else {
return false;
}
}
//======================================================================
// VerilatedSyms:: Methods
VerilatedSyms::VerilatedSyms() {
#ifdef VL_THREADED
__Vm_evalMsgQp = new VerilatedEvalMsgQueue;
#endif
}
VerilatedSyms::~VerilatedSyms() {
#ifdef VL_THREADED
delete __Vm_evalMsgQp;
#endif
}
//===========================================================================
// VerilatedModule:: Methods
VerilatedModule::VerilatedModule(const char* namep)
: m_namep{strdup(namep)} {}
VerilatedModule::~VerilatedModule() {
// Memory cleanup - not called during normal operation
// NOLINTNEXTLINE(google-readability-casting)
if (m_namep) VL_DO_CLEAR(free((void*)(m_namep)), m_namep = nullptr);
}
//======================================================================
// VerilatedVar:: Methods
// cppcheck-suppress unusedFunction // Used by applications
vluint32_t VerilatedVarProps::entSize() const {
vluint32_t size = 1;
switch (vltype()) {
case VLVT_PTR: size = sizeof(void*); break;
case VLVT_UINT8: size = sizeof(CData); break;
case VLVT_UINT16: size = sizeof(SData); break;
case VLVT_UINT32: size = sizeof(IData); break;
case VLVT_UINT64: size = sizeof(QData); break;
case VLVT_WDATA: size = VL_WORDS_I(packed().elements()) * sizeof(IData); break;
default: size = 0; break; // LCOV_EXCL_LINE
}
return size;
}
size_t VerilatedVarProps::totalSize() const {
size_t size = entSize();
for (int udim = 0; udim <= udims(); ++udim) size *= m_unpacked[udim].elements();
return size;
}
void* VerilatedVarProps::datapAdjustIndex(void* datap, int dim, int indx) const {
if (VL_UNLIKELY(dim <= 0 || dim > udims())) return nullptr;
if (VL_UNLIKELY(indx < low(dim) || indx > high(dim))) return nullptr;
int indxAdj = indx - low(dim);
vluint8_t* bytep = reinterpret_cast<vluint8_t*>(datap);
// If on index 1 of a 2 index array, then each index 1 is index2sz*entsz
size_t slicesz = entSize();
for (int d = dim + 1; d <= m_udims; ++d) slicesz *= elements(d);
bytep += indxAdj * slicesz;
return bytep;
}
//======================================================================
// VerilatedScope:: Methods
VerilatedScope::~VerilatedScope() {
// Memory cleanup - not called during normal operation
VerilatedImp::scopeErase(this);
if (m_namep) VL_DO_CLEAR(delete[] m_namep, m_namep = nullptr);
if (m_callbacksp) VL_DO_CLEAR(delete[] m_callbacksp, m_callbacksp = nullptr);
if (m_varsp) VL_DO_CLEAR(delete m_varsp, m_varsp = nullptr);
m_funcnumMax = 0; // Force callback table to empty
}
void VerilatedScope::configure(VerilatedSyms* symsp, const char* prefixp, const char* suffixp,
const char* identifier, vlsint8_t timeunit,
const Type& type) VL_MT_UNSAFE {
// Slowpath - called once/scope at construction
// We don't want the space and reference-count access overhead of strings.
m_symsp = symsp;
m_type = type;
m_timeunit = timeunit;
char* namep = new char[strlen(prefixp) + strlen(suffixp) + 2];
strcpy(namep, prefixp);
if (*prefixp && *suffixp) strcat(namep, ".");
strcat(namep, suffixp);
m_namep = namep;
m_identifierp = identifier;
VerilatedImp::scopeInsert(this);
}
void VerilatedScope::exportInsert(int finalize, const char* namep, void* cb) VL_MT_UNSAFE {
// Slowpath - called once/scope*export at construction
// Insert a exported function into scope table
int funcnum = VerilatedImp::exportInsert(namep);
if (!finalize) {
// Need two passes so we know array size to create
// Alternative is to dynamically stretch the array, which is more code, and slower.
if (funcnum >= m_funcnumMax) { m_funcnumMax = funcnum + 1; }
} else {
if (VL_UNCOVERABLE(funcnum >= m_funcnumMax)) {
VL_FATAL_MT(__FILE__, __LINE__, "", // LCOV_EXCL_LINE
"Internal: Bad funcnum vs. pre-finalize maximum");
}
if (VL_UNLIKELY(!m_callbacksp)) { // First allocation
m_callbacksp = new void*[m_funcnumMax];
memset(m_callbacksp, 0, m_funcnumMax * sizeof(void*));
}
m_callbacksp[funcnum] = cb;
}
}
void VerilatedScope::varInsert(int finalize, const char* namep, void* datap, bool isParam,
VerilatedVarType vltype, int vlflags, int dims, ...) VL_MT_UNSAFE {
// Grab dimensions
// In the future we may just create a large table at emit time and
// statically construct from that.
if (!finalize) return;
if (!m_varsp) m_varsp = new VerilatedVarNameMap();
VerilatedVar var(namep, datap, vltype, static_cast<VerilatedVarFlags>(vlflags), dims, isParam);
va_list ap;
va_start(ap, dims);
for (int i = 0; i < dims; ++i) {
int msb = va_arg(ap, int);
int lsb = va_arg(ap, int);
if (i == 0) {
var.m_packed.m_left = msb;
var.m_packed.m_right = lsb;
} else if (i >= 1 && i <= var.udims()) {
var.m_unpacked[i - 1].m_left = msb;
var.m_unpacked[i - 1].m_right = lsb;
} else {
// We could have a linked list of ranges, but really this whole thing needs
// to be generalized to support structs and unions, etc.
VL_FATAL_MT(
__FILE__, __LINE__, "",
(std::string("Unsupported multi-dimensional public varInsert: ") + namep).c_str());
}
}
va_end(ap);
m_varsp->insert(std::make_pair(namep, var));
}
// cppcheck-suppress unusedFunction // Used by applications
VerilatedVar* VerilatedScope::varFind(const char* namep) const VL_MT_SAFE_POSTINIT {
if (VL_LIKELY(m_varsp)) {
const auto it = m_varsp->find(namep);
if (VL_LIKELY(it != m_varsp->end())) return &(it->second);
}
return nullptr;
}
void* VerilatedScope::exportFindNullError(int funcnum) VL_MT_SAFE {
// Slowpath - Called only when find has failed
std::string msg = (std::string("Testbench C called '") + VerilatedImp::exportName(funcnum)
+ "' but scope wasn't set, perhaps due to dpi import call without "
+ "'context', or missing svSetScope. See IEEE 1800-2017 35.5.3.");
VL_FATAL_MT("unknown", 0, "", msg.c_str());
return nullptr;
}
void* VerilatedScope::exportFindError(int funcnum) const {
// Slowpath - Called only when find has failed
std::string msg = (std::string("Testbench C called '") + VerilatedImp::exportName(funcnum)
+ "' but this DPI export function exists only in other scopes, not scope '"
+ name() + "'");
VL_FATAL_MT("unknown", 0, "", msg.c_str());
return nullptr;
}
void VerilatedScope::scopeDump() const {
VL_PRINTF_MT(" SCOPE %p: %s\n", this, name());
for (int i = 0; i < m_funcnumMax; ++i) {
if (m_callbacksp && m_callbacksp[i]) {
VL_PRINTF_MT(" DPI-EXPORT %p: %s\n", m_callbacksp[i],
VerilatedImp::exportName(i));
}
}
if (VerilatedVarNameMap* varsp = this->varsp()) {
for (const auto& i : *varsp) VL_PRINTF_MT(" VAR %p: %s\n", &(i.second), i.first);
}
}
void VerilatedHierarchy::add(VerilatedScope* fromp, VerilatedScope* top) {
VerilatedImp::hierarchyAdd(fromp, top);
}
//===========================================================================
// VerilatedOneThreaded:: Methods
#if defined(VL_THREADED) && defined(VL_DEBUG)
void VerilatedAssertOneThread::fatal_different() VL_MT_SAFE {
VL_FATAL_MT(__FILE__, __LINE__, "",
"Routine called that is single threaded, but called from"
" a different thread then the expected constructing thread");
}
#endif
//===========================================================================