verilator/include/verilated_vcd_c.h
Geza Lore dc5c259069
Improve tracing performance. (#2257)
* Improve tracing performance.

Various tactics used to improve performance of both VCD and FST tracing:
- Both: Change tracing functions to templates to take variable widths as
  template parameters. For VCD, subsequently specialize these to the
  values used by Verilator. This avoids redundant instructions and hard
  to predict branches.
- Both: Check for value changes via direct pointer access into the
  previous signal value buffer. This eliminates a lot of simple pointer
  arithmetic instructions form the tracing code.
- Both: Verilator provides clean input, no need to mask out used bits.
- VCD: pre-compute identifier codes and use memory copy instead of
  re-computing them every time a code is emitted. This saves a lot of
  instructions and hard to predict branches. The added D-cache misses
  are cheaper than the removed branches/instructions.
- VCD: re-write the routines emitting the changes to be more efficient.
- FST: Use previous signal value buffer the same way as the VCD tracing
  code, and only call the FST API when a change is detected.

Performance as measured on SweRV EH1, with the pre-canned CoreMark
benchmark running from DCCM/ICCM, clang 6.0.0, Intel i7-3770 @ 3.40GHz,
and IO to ramdisk:

            +--------------+---------------+----------------------+
            | VCD          | FST           | FST separate thread  |
            | (--trace)    | (--trace-fst) | (--trace-fst-thread) |
------------+-----------------------------------------------------+
Before      |  30.2 s      | 121.1 s       |  69.8 s              |
============+==============+===============+======================+
After       |  24.7 s      |  45.7 s       |  32.4 s              |
------------+--------------+---------------+----------------------+
Speedup     |    22 %      |   256 %       |   215 %              |
------------+--------------+---------------+----------------------+
Rel. to VCD |     1 x      |  1.85 x       |  1.31 x              |
------------+--------------+---------------+----------------------+

In addition, FST trace size for the above reduced by 48%.
2020-04-14 00:13:10 +01:00

474 lines
21 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//=============================================================================
//
// THIS MODULE IS PUBLICLY LICENSED
//
// Copyright 2001-2020 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=============================================================================
///
/// \file
/// \brief C++ Tracing in VCD Format
///
//=============================================================================
// SPDIFF_OFF
#ifndef _VERILATED_VCD_C_H_
#define _VERILATED_VCD_C_H_ 1
#include "verilatedos.h"
#include "verilated.h"
#include <map>
#include <string>
#include <vector>
class VerilatedVcd;
class VerilatedVcdCallInfo;
// SPDIFF_ON
//=============================================================================
// VerilatedFile
/// File handling routines, which can be overrode for e.g. socket I/O
class VerilatedVcdFile {
private:
int m_fd; ///< File descriptor we're writing to
public:
// METHODS
VerilatedVcdFile()
: m_fd(0) {}
virtual ~VerilatedVcdFile() {}
virtual bool open(const std::string& name) VL_MT_UNSAFE;
virtual void close() VL_MT_UNSAFE;
virtual ssize_t write(const char* bufp, ssize_t len) VL_MT_UNSAFE;
};
//=============================================================================
// VerilatedVcdSig
/// Internal data on one signal being traced.
class VerilatedVcdSig {
protected:
friend class VerilatedVcd;
vluint32_t m_code; ///< VCD file code number
int m_bits; ///< Size of value in bits
VerilatedVcdSig(vluint32_t code, int bits)
: m_code(code)
, m_bits(bits) {}
public:
~VerilatedVcdSig() {}
};
//=============================================================================
typedef void (*VerilatedVcdCallback_t)(VerilatedVcd* vcdp, void* userthis, vluint32_t code);
//=============================================================================
// VerilatedVcd
/// Base class to create a Verilator VCD dump
/// This is an internally used class - see VerilatedVcdC for what to call from applications
class VerilatedVcd {
private:
VerilatedVcdFile* m_filep; ///< File we're writing to
bool m_fileNewed; ///< m_filep needs destruction
bool m_isOpen; ///< True indicates open file
bool m_evcd; ///< True for evcd format
std::string m_filename; ///< Filename we're writing to (if open)
vluint64_t m_rolloverMB; ///< MB of file size to rollover at
char m_scopeEscape; ///< Character to separate scope components
int m_modDepth; ///< Depth of module hierarchy
bool m_fullDump; ///< True indicates dump ignoring if changed
vluint32_t m_nextCode; ///< Next code number to assign
std::string m_modName; ///< Module name being traced now
double m_timeRes; ///< Time resolution (ns/ms etc)
double m_timeUnit; ///< Time units (ns/ms etc)
vluint64_t m_timeLastDump; ///< Last time we did a dump
char* m_wrBufp; ///< Output buffer
char* m_wrFlushp; ///< Output buffer flush trigger location
char* m_writep; ///< Write pointer into output buffer
vluint64_t m_wrChunkSize; ///< Output buffer size
vluint64_t m_wroteBytes; ///< Number of bytes written to this file
std::vector<char> m_suffixes; ///< VCD line end string codes + metadata
const char* m_suffixesp; ///< Pointer to first element of above
vluint32_t* m_sigs_oldvalp; ///< Pointer to old signal values
typedef std::vector<VerilatedVcdSig> SigVec;
SigVec m_sigs; ///< Pointer to signal information
typedef std::vector<VerilatedVcdCallInfo*> CallbackVec;
CallbackVec m_callbacks; ///< Routines to perform dumping
typedef std::map<std::string, std::string> NameMap;
NameMap* m_namemapp; ///< List of names for the header
VerilatedAssertOneThread m_assertOne; ///< Assert only called from single thread
void bufferResize(vluint64_t minsize);
void bufferFlush() VL_MT_UNSAFE_ONE;
inline void bufferCheck() {
// Flush the write buffer if there's not enough space left for new information
// We only call this once per vector, so we need enough slop for a very wide "b###" line
if (VL_UNLIKELY(m_writep > m_wrFlushp)) { bufferFlush(); }
}
void closePrev();
void closeErr();
void openNext();
void makeNameMap();
void deleteNameMap();
void printIndent(int level_change);
void printStr(const char* str);
void printQuad(vluint64_t n);
void printTime(vluint64_t timeui);
void declare(vluint32_t code, const char* name, const char* wirep, bool array, int arraynum,
bool tri, bool bussed, int msb, int lsb);
void dumpHeader();
void dumpPrep(vluint64_t timeui);
void dumpFull(vluint64_t timeui);
// cppcheck-suppress functionConst
void dumpDone();
char* writeCode(char* writep, vluint32_t code);
void finishLine(vluint32_t* oldp, char* writep);
// CONSTRUCTORS
VL_UNCOPYABLE(VerilatedVcd);
public:
explicit VerilatedVcd(VerilatedVcdFile* filep = NULL);
~VerilatedVcd();
/// Routines can only be called from one thread; allow next call from different thread
void changeThread() { m_assertOne.changeThread(); }
// ACCESSORS
/// Set size in megabytes after which new file should be created
void rolloverMB(vluint64_t rolloverMB) { m_rolloverMB = rolloverMB; }
/// Is file open?
bool isOpen() const { return m_isOpen; }
/// Change character that splits scopes. Note whitespace are ALWAYS escapes.
void scopeEscape(char flag) { m_scopeEscape = flag; }
/// Is this an escape?
inline bool isScopeEscape(char c) { return isspace(c) || c == m_scopeEscape; }
// METHODS
/// Open the file; call isOpen() to see if errors
void open(const char* filename) VL_MT_UNSAFE_ONE;
void openNext(bool incFilename); ///< Open next data-only file
void close() VL_MT_UNSAFE_ONE; ///< Close the file
/// Flush any remaining data to this file
void flush() VL_MT_UNSAFE_ONE { bufferFlush(); }
/// Flush any remaining data from all files
static void flush_all() VL_MT_UNSAFE_ONE;
void set_time_unit(const char* unitp); ///< Set time units (s/ms, defaults to ns)
void set_time_unit(const std::string& unit) { set_time_unit(unit.c_str()); }
void set_time_resolution(const char* unitp); ///< Set time resolution (s/ms, defaults to ns)
void set_time_resolution(const std::string& unit) { set_time_resolution(unit.c_str()); }
double timescaleToDouble(const char* unitp);
std::string doubleToTimescale(double value);
/// Inside dumping routines, called each cycle to make the dump
void dump(vluint64_t timeui);
/// Call dump with a absolute unscaled time in seconds
void dumpSeconds(double secs) { dump(static_cast<vluint64_t>(secs * m_timeRes)); }
/// Inside dumping routines, declare callbacks for tracings
void addCallback(VerilatedVcdCallback_t initcb, VerilatedVcdCallback_t fullcb,
VerilatedVcdCallback_t changecb, void* userthis) VL_MT_UNSAFE_ONE;
/// Inside dumping routines, declare a module
void module(const std::string& name);
/// Inside dumping routines, declare a signal
void declBit(vluint32_t code, const char* name, bool array, int arraynum);
void declBus(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb);
void declQuad(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb);
void declArray(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb);
void declFloat(vluint32_t code, const char* name, bool array, int arraynum);
void declDouble(vluint32_t code, const char* name, bool array, int arraynum);
#ifndef VL_TRACE_VCD_OLD_API
void declTriBit(vluint32_t code, const char* name, bool array, int arraynum);
void declTriBus(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb);
void declTriQuad(vluint32_t code, const char* name, bool array, int arraynum, int msb,
int lsb);
void declTriArray(vluint32_t code, const char* name, bool array, int arraynum, int msb,
int lsb);
#endif // VL_TRACE_VCD_OLD_API
// ... other module_start for submodules (based on cell name)
//=========================================================================
// Inside dumping routines used by Verilator
vluint32_t* oldp(vluint32_t code) { return m_sigs_oldvalp + code; }
#ifndef VL_TRACE_VCD_OLD_API
//=========================================================================
// Write back to previous value buffer value and emit
void fullBit(vluint32_t* oldp, vluint32_t newval);
template <int T_Bits> void fullBus(vluint32_t* oldp, vluint32_t newval);
void fullQuad(vluint32_t* oldp, vluint64_t newval, int bits);
void fullArray(vluint32_t* oldp, const vluint32_t* newvalp, int bits);
void fullFloat(vluint32_t* oldp, float newval);
void fullDouble(vluint32_t* oldp, double newval);
//=========================================================================
// Check previous value and emit if changed
inline void chgBit(vluint32_t* oldp, vluint32_t newval) {
const vluint32_t diff = *oldp ^ newval;
if (VL_UNLIKELY(diff)) fullBit(oldp, newval);
}
template <int T_Bits> inline void chgBus(vluint32_t* oldp, vluint32_t newval) {
const vluint32_t diff = *oldp ^ newval;
if (VL_UNLIKELY(diff)) fullBus<T_Bits>(oldp, newval);
}
inline void chgQuad(vluint32_t* oldp, vluint64_t newval, int bits) {
const vluint64_t diff = *reinterpret_cast<vluint64_t*>(oldp) ^ newval;
if (VL_UNLIKELY(diff)) fullQuad(oldp, newval, bits);
}
inline void chgArray(vluint32_t* oldp, const vluint32_t* newvalp, int bits) {
for (int i = 0; i < (bits + 31) / 32; ++i) {
if (VL_UNLIKELY(oldp[i] ^ newvalp[i])) {
fullArray(oldp, newvalp, bits);
return;
}
}
}
inline void chgFloat(vluint32_t* oldp, float newval) {
// cppcheck-suppress invalidPointerCast
if (VL_UNLIKELY(*reinterpret_cast<float*>(oldp) != newval)) fullFloat(oldp, newval);
}
inline void chgDouble(vluint32_t* oldp, double newval) {
// cppcheck-suppress invalidPointerCast
if (VL_UNLIKELY(*reinterpret_cast<double*>(oldp) != newval)) fullDouble(oldp, newval);
}
#else // VL_TRACE_VCD_OLD_API
// Note: These are only for testing for backward compatibility. Verilator
// should use the more efficient versions above.
//=========================================================================
// Write back to previous value buffer value and emit
void fullBit(vluint32_t* oldp, vluint32_t newval) { fullBit(oldp - m_sigs_oldvalp, newval); }
template <int T_Bits> void fullBus(vluint32_t* oldp, vluint32_t newval) {
fullBus(oldp - m_sigs_oldvalp, newval, T_Bits);
}
void fullQuad(vluint32_t* oldp, vluint64_t newval, int bits) {
fullQuad(oldp - m_sigs_oldvalp, newval, bits);
}
void fullArray(vluint32_t* oldp, const vluint32_t* newvalp, int bits) {
fullArray(oldp - m_sigs_oldvalp, newvalp, bits);
}
void fullFloat(vluint32_t* oldp, float newval) { fullFloat(oldp - m_sigs_oldvalp, newval); }
void fullDouble(vluint32_t* oldp, double newval) { fullDouble(oldp - m_sigs_oldvalp, newval); }
//=========================================================================
// Check previous value and emit if changed
void chgBit(vluint32_t* oldp, vluint32_t newval) { chgBit(oldp - m_sigs_oldvalp, newval); }
template <int T_Bits> void chgBus(vluint32_t* oldp, vluint32_t newval) {
chgBus(oldp - m_sigs_oldvalp, newval, T_Bits);
}
void chgQuad(vluint32_t* oldp, vluint64_t newval, int bits) {
chgQuad(oldp - m_sigs_oldvalp, newval, bits);
}
void chgArray(vluint32_t* oldp, const vluint32_t* newvalp, int bits) {
chgArray(oldp - m_sigs_oldvalp, newvalp, bits);
}
void chgFloat(vluint32_t* oldp, float newval) { chgFloat(oldp - m_sigs_oldvalp, newval); }
void chgDouble(vluint32_t* oldp, double newval) { chgDouble(oldp - m_sigs_oldvalp, newval); }
/// Inside dumping routines, dump one signal, faster when not inlined
/// due to code size reduction.
void fullBit(vluint32_t code, const vluint32_t newval);
void fullBus(vluint32_t code, const vluint32_t newval, int bits);
void fullQuad(vluint32_t code, const vluint64_t newval, int bits);
void fullArray(vluint32_t code, const vluint32_t* newvalp, int bits);
void fullArray(vluint32_t code, const vluint64_t* newvalp, int bits);
void fullTriBit(vluint32_t code, const vluint32_t newval, const vluint32_t newtri);
void fullTriBus(vluint32_t code, const vluint32_t newval, const vluint32_t newtri, int bits);
void fullTriQuad(vluint32_t code, const vluint64_t newval, const vluint32_t newtri, int bits);
void fullTriArray(vluint32_t code, const vluint32_t* newvalp, const vluint32_t* newtrip,
int bits);
void fullDouble(vluint32_t code, const double newval);
void fullFloat(vluint32_t code, const float newval);
/// Inside dumping routines, dump one signal as unknowns
/// Presently this code doesn't change the oldval vector.
/// Thus this is for special standalone applications that after calling
/// fullBitX, must when then value goes non-X call fullBit.
void fullBitX(vluint32_t code);
void fullBusX(vluint32_t code, int bits);
void fullQuadX(vluint32_t code, int bits);
void fullArrayX(vluint32_t code, int bits);
/// Inside dumping routines, dump one signal if it has changed.
/// We do want to inline these to avoid calls when the value did not change.
inline void chgBit(vluint32_t code, const vluint32_t newval) {
vluint32_t diff = m_sigs_oldvalp[code] ^ newval;
if (VL_UNLIKELY(diff)) fullBit(code, newval);
}
inline void chgBus(vluint32_t code, const vluint32_t newval, int bits) {
vluint32_t diff = m_sigs_oldvalp[code] ^ newval;
if (VL_UNLIKELY(diff)) {
if (VL_UNLIKELY(bits == 32 || (diff & ((1U << bits) - 1)))) {
fullBus(code, newval, bits);
}
}
}
inline void chgQuad(vluint32_t code, const vluint64_t newval, int bits) {
vluint64_t diff = (*(reinterpret_cast<vluint64_t*>(&m_sigs_oldvalp[code]))) ^ newval;
if (VL_UNLIKELY(diff)) {
if (VL_UNLIKELY(bits == 64 || (diff & ((VL_ULL(1) << bits) - 1)))) {
fullQuad(code, newval, bits);
}
}
}
inline void chgArray(vluint32_t code, const vluint32_t* newvalp, int bits) {
for (int word = 0; word < (((bits - 1) / 32) + 1); ++word) {
if (VL_UNLIKELY(m_sigs_oldvalp[code + word] ^ newvalp[word])) {
fullArray(code, newvalp, bits);
return;
}
}
}
inline void chgArray(vluint32_t code, const vluint64_t* newvalp, int bits) {
for (int word = 0; word < (((bits - 1) / 64) + 1); ++word) {
if (VL_UNLIKELY(m_sigs_oldvalp[code + word] ^ newvalp[word])) {
fullArray(code, newvalp, bits);
return;
}
}
}
inline void chgTriBit(vluint32_t code, const vluint32_t newval, const vluint32_t newtri) {
vluint32_t diff = ((m_sigs_oldvalp[code] ^ newval) | (m_sigs_oldvalp[code + 1] ^ newtri));
if (VL_UNLIKELY(diff)) {
// Verilator 3.510 and newer provide clean input, so the below
// is only for back compatibility
if (VL_UNLIKELY(diff & 1)) { // Change after clean?
fullTriBit(code, newval, newtri);
}
}
}
inline void chgTriBus(vluint32_t code, const vluint32_t newval, const vluint32_t newtri,
int bits) {
vluint32_t diff = ((m_sigs_oldvalp[code] ^ newval) | (m_sigs_oldvalp[code + 1] ^ newtri));
if (VL_UNLIKELY(diff)) {
if (VL_UNLIKELY(bits == 32 || (diff & ((1U << bits) - 1)))) {
fullTriBus(code, newval, newtri, bits);
}
}
}
inline void chgTriQuad(vluint32_t code, const vluint64_t newval, const vluint32_t newtri,
int bits) {
vluint64_t diff
= (((*(reinterpret_cast<vluint64_t*>(&m_sigs_oldvalp[code]))) ^ newval)
| ((*(reinterpret_cast<vluint64_t*>(&m_sigs_oldvalp[code + 1]))) ^ newtri));
if (VL_UNLIKELY(diff)) {
if (VL_UNLIKELY(bits == 64 || (diff & ((VL_ULL(1) << bits) - 1)))) {
fullTriQuad(code, newval, newtri, bits);
}
}
}
inline void chgTriArray(vluint32_t code, const vluint32_t* newvalp, const vluint32_t* newtrip,
int bits) {
for (int word = 0; word < (((bits - 1) / 32) + 1); ++word) {
if (VL_UNLIKELY((m_sigs_oldvalp[code + word * 2] ^ newvalp[word])
| (m_sigs_oldvalp[code + word * 2 + 1] ^ newtrip[word]))) {
fullTriArray(code, newvalp, newtrip, bits);
return;
}
}
}
inline void chgDouble(vluint32_t code, const double newval) {
// cppcheck-suppress invalidPointerCast
if (VL_UNLIKELY((*(reinterpret_cast<double*>(&m_sigs_oldvalp[code]))) != newval)) {
fullDouble(code, newval);
}
}
inline void chgFloat(vluint32_t code, const float newval) {
// cppcheck-suppress invalidPointerCast
if (VL_UNLIKELY((*(reinterpret_cast<float*>(&m_sigs_oldvalp[code]))) != newval)) {
fullFloat(code, newval);
}
}
#endif // VL_TRACE_VCD_OLD_API
protected:
// METHODS
void evcd(bool flag) { m_evcd = flag; }
};
//=============================================================================
// VerilatedVcdC
/// Create a VCD dump file in C standalone (no SystemC) simulations.
/// Also derived for use in SystemC simulations.
/// Thread safety: Unless otherwise indicated, every function is VL_MT_UNSAFE_ONE
class VerilatedVcdC {
VerilatedVcd m_sptrace; ///< Trace file being created
// CONSTRUCTORS
VL_UNCOPYABLE(VerilatedVcdC);
public:
explicit VerilatedVcdC(VerilatedVcdFile* filep = NULL)
: m_sptrace(filep) {}
~VerilatedVcdC() { close(); }
/// Routines can only be called from one thread; allow next call from different thread
void changeThread() { spTrace()->changeThread(); }
public:
// ACCESSORS
/// Is file open?
bool isOpen() const { return m_sptrace.isOpen(); }
// METHODS
/// Open a new VCD file
/// This includes a complete header dump each time it is called,
/// just as if this object was deleted and reconstructed.
void open(const char* filename) VL_MT_UNSAFE_ONE { m_sptrace.open(filename); }
/// Continue a VCD dump by rotating to a new file name
/// The header is only in the first file created, this allows
/// "cat" to be used to combine the header plus any number of data files.
void openNext(bool incFilename = true) VL_MT_UNSAFE_ONE { m_sptrace.openNext(incFilename); }
/// Set size in megabytes after which new file should be created
void rolloverMB(size_t rolloverMB) { m_sptrace.rolloverMB(rolloverMB); }
/// Close dump
void close() VL_MT_UNSAFE_ONE { m_sptrace.close(); }
/// Flush dump
void flush() VL_MT_UNSAFE_ONE { m_sptrace.flush(); }
/// Write one cycle of dump data
void dump(vluint64_t timeui) { m_sptrace.dump(timeui); }
/// Write one cycle of dump data - backward compatible and to reduce
/// conversion warnings. It's better to use a vluint64_t time instead.
void dump(double timestamp) { dump(static_cast<vluint64_t>(timestamp)); }
void dump(vluint32_t timestamp) { dump(static_cast<vluint64_t>(timestamp)); }
void dump(int timestamp) { dump(static_cast<vluint64_t>(timestamp)); }
/// Set time units (s/ms, defaults to ns)
/// See also VL_TIME_PRECISION, and VL_TIME_MULTIPLIER in verilated.h
void set_time_unit(const char* unit) { m_sptrace.set_time_unit(unit); }
void set_time_unit(const std::string& unit) { set_time_unit(unit.c_str()); }
/// Set time resolution (s/ms, defaults to ns)
/// See also VL_TIME_PRECISION, and VL_TIME_MULTIPLIER in verilated.h
void set_time_resolution(const char* unit) { m_sptrace.set_time_resolution(unit); }
void set_time_resolution(const std::string& unit) { set_time_resolution(unit.c_str()); }
/// Internal class access
inline VerilatedVcd* spTrace() { return &m_sptrace; }
};
#endif // guard