verilator/src/V3Ast.h
2022-08-19 13:39:44 +01:00

3454 lines
146 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: Ast node structure
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
// Copyright 2003-2022 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
#ifndef VERILATOR_V3AST_H_
#define VERILATOR_V3AST_H_
#include "config_build.h"
#include "verilatedos.h"
#include "V3Broken.h"
#include "V3Error.h"
#include "V3FileLine.h"
#include "V3Global.h"
#include "V3Number.h"
#include "V3Ast__gen_classes.h" // From ./astgen
#include <cmath>
#include <functional>
#include <map>
#include <set>
#include <type_traits>
#include <unordered_set>
#include <utility>
#include <vector>
// Things like:
// class V3AstNode;
// Forward declarations
class V3Graph;
class ExecMTask;
// Hint class so we can choose constructors
class VFlagLogicPacked {};
class VFlagBitPacked {};
class VFlagChildDType {}; // Used by parser.y to select constructor that sets childDType
// Used as key for another map, needs operator<, hence not an unordered_set
using MTaskIdSet = std::set<int>; // Set of mtaskIds for Var sorting
//######################################################################
// For broken() function, return error string if have a match
#define BROKEN_RTN(test) \
do { \
if (VL_UNCOVERABLE(test)) return "'" #test "' @ " __FILE__ ":" VL_STRINGIFY(__LINE__); \
} while (false)
// For broken() function, return error string if a base of this class has a match
#define BROKEN_BASE_RTN(test) \
do { \
const char* const reasonp = (test); \
if (VL_UNCOVERABLE(reasonp)) return reasonp; \
} while (false)
// (V)erilator (N)ode is: Returns true if and only if AstNode is of the given AstNode subtype,
// and not nullptr.
#define VN_IS(nodep, nodetypename) (AstNode::privateIs<Ast##nodetypename, decltype(nodep)>(nodep))
// (V)erilator (N)ode cast: Similar to dynamic_cast, but more efficient, use this instead.
// Cast to given type if node is of such type, otherwise returns nullptr. If 'nodep' is nullptr,
// return nullptr. Pointer constness is preserved, i.e.: given a 'const AstNode*',
// a 'const Ast<nodetypename>*' is returned.
#define VN_CAST(nodep, nodetypename) \
(AstNode::privateCast<Ast##nodetypename, decltype(nodep)>(nodep))
// (V)erilator (N)ode as: Assert node is of given type then cast to that type. Use this to
// downcast instead of VN_CAST when you know the true type of the node. If 'nodep' is nullptr,
// return nullptr. Pointer constness is preserved, i.e.: given a 'const AstNode*', a 'const
// Ast<nodetypename>*' is returned.
#define VN_AS(nodep, nodetypename) (AstNode::privateAs<Ast##nodetypename, decltype(nodep)>(nodep))
// (V)erilator (N)ode deleted: Pointer to deleted AstNode (for assertions only)
#define VN_DELETED(nodep) VL_UNLIKELY((uint64_t)(nodep) == 0x1)
//######################################################################
class VNType final {
public:
#include "V3Ast__gen_types.h" // From ./astgen
// Above include has:
// enum en {...};
// const char* ascii() const {...};
enum en m_e;
// cppcheck-suppress uninitVar // responsibility of each subclass
inline VNType() = default;
// cppcheck-suppress noExplicitConstructor
inline VNType(en _e)
: m_e{_e} {}
explicit inline VNType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
};
inline bool operator==(const VNType& lhs, const VNType& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VNType& lhs, VNType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VNType::en lhs, const VNType& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const VNType& rhs) { return os << rhs.ascii(); }
//######################################################################
class VLifetime final {
public:
enum en : uint8_t { NONE, AUTOMATIC, STATIC };
enum en m_e;
const char* ascii() const {
static const char* const names[] = {"NONE", "VAUTOM", "VSTATIC"};
return names[m_e];
}
inline VLifetime()
: m_e{NONE} {}
// cppcheck-suppress noExplicitConstructor
inline VLifetime(en _e)
: m_e{_e} {}
explicit inline VLifetime(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
bool isNone() const { return m_e == NONE; }
bool isAutomatic() const { return m_e == AUTOMATIC; }
bool isStatic() const { return m_e == STATIC; }
};
inline bool operator==(const VLifetime& lhs, const VLifetime& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VLifetime& lhs, VLifetime::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VLifetime::en lhs, const VLifetime& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const VLifetime& rhs) {
return os << rhs.ascii();
}
//######################################################################
class VAccess final {
public:
enum en : uint8_t {
READ, // Read/Consumed, variable not changed
WRITE, // Written/Updated, variable might be updated, but not consumed
// // so variable might be removable if not consumed elsewhere
READWRITE, // Read/Consumed and written/updated, variable both set and
// // also consumed, cannot remove usage of variable.
// // For non-simple data types only e.g. no tristates/delayed vars.
NOCHANGE // No change to previous state, used only in V3LinkLValue
};
enum en m_e;
const char* ascii() const {
static const char* const names[] = {"RD", "WR", "RW", "--"};
return names[m_e];
}
const char* arrow() const {
static const char* const names[] = {"[RV] <-", "[LV] =>", "[LV] <=>", "--"};
return names[m_e];
}
inline VAccess()
: m_e{READ} {}
// cppcheck-suppress noExplicitConstructor
inline VAccess(en _e)
: m_e{_e} {}
explicit inline VAccess(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
VAccess invert() const {
return (m_e == READWRITE) ? VAccess(m_e) : (m_e == WRITE ? VAccess(READ) : VAccess(WRITE));
}
bool isReadOnly() const { return m_e == READ; } // False with READWRITE
bool isWriteOnly() const { return m_e == WRITE; } // False with READWRITE
bool isReadOrRW() const { return m_e == READ || m_e == READWRITE; }
bool isWriteOrRW() const { return m_e == WRITE || m_e == READWRITE; }
bool isRW() const { return m_e == READWRITE; }
};
inline bool operator==(const VAccess& lhs, const VAccess& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VAccess& lhs, VAccess::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VAccess::en lhs, const VAccess& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const VAccess& rhs) { return os << rhs.ascii(); }
//######################################################################
class VSigning final {
public:
enum en : uint8_t {
UNSIGNED,
SIGNED,
NOSIGN,
_ENUM_MAX // Leave last
};
enum en m_e;
const char* ascii() const {
static const char* const names[] = {"UNSIGNED", "SIGNED", "NOSIGN"};
return names[m_e];
}
inline VSigning()
: m_e{UNSIGNED} {}
// cppcheck-suppress noExplicitConstructor
inline VSigning(en _e)
: m_e{_e} {}
static inline VSigning fromBool(bool isSigned) { // Factory method
return isSigned ? VSigning(SIGNED) : VSigning(UNSIGNED);
}
explicit inline VSigning(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
inline bool isSigned() const { return m_e == SIGNED; }
inline bool isNosign() const { return m_e == NOSIGN; }
// No isUnsigned() as it's ambiguous if NOSIGN should be included or not.
};
inline bool operator==(const VSigning& lhs, const VSigning& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VSigning& lhs, VSigning::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VSigning::en lhs, const VSigning& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const VSigning& rhs) {
return os << rhs.ascii();
}
//######################################################################
class VPragmaType final {
public:
enum en : uint8_t {
ILLEGAL,
COVERAGE_BLOCK_OFF,
HIER_BLOCK,
INLINE_MODULE,
NO_INLINE_MODULE,
NO_INLINE_TASK,
PUBLIC_MODULE,
PUBLIC_TASK,
FULL_CASE,
PARALLEL_CASE,
ENUM_SIZE
};
enum en m_e;
inline VPragmaType()
: m_e{ILLEGAL} {}
// cppcheck-suppress noExplicitConstructor
inline VPragmaType(en _e)
: m_e{_e} {}
explicit inline VPragmaType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
};
inline bool operator==(const VPragmaType& lhs, const VPragmaType& rhs) {
return lhs.m_e == rhs.m_e;
}
inline bool operator==(const VPragmaType& lhs, VPragmaType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VPragmaType::en lhs, const VPragmaType& rhs) { return lhs == rhs.m_e; }
//######################################################################
class VEdgeType final {
public:
// REMEMBER to edit the strings below too
enum en : uint8_t {
// These must be in general -> most specific order, as we sort by it
// in V3Const::visit AstSenTree
ET_ILLEGAL,
// Involving a variable
ET_CHANGED, // Value changed
ET_BOTHEDGE, // POSEDGE | NEGEDGE (i.e.: 'edge' in Verilog)
ET_POSEDGE,
ET_NEGEDGE,
ET_EVENT, // VlEvent::isFired
// Involving an expression
ET_TRUE,
//
ET_COMBO, // Sensitive to all combo inputs to this block
ET_HYBRID, // This is like ET_COMB, but with explicit sensitivity to an expression
ET_STATIC, // static variable initializers (runs before 'initial')
ET_INITIAL, // 'initial' statements
ET_FINAL, // 'final' statements
ET_NEVER // Never occurs (optimized away)
};
enum en m_e;
bool clockedStmt() const {
static const bool clocked[] = {
false, // ET_ILLEGAL
true, // ET_CHANGED
true, // ET_BOTHEDGE
true, // ET_POSEDGE
true, // ET_NEGEDGE
true, // ET_EVENT
true, // ET_TRUE
false, // ET_COMBO
false, // ET_HYBRID
false, // ET_STATIC
false, // ET_INITIAL
false, // ET_FINAL
false, // ET_NEVER
};
return clocked[m_e];
}
VEdgeType invert() const {
switch (m_e) {
case ET_CHANGED: return ET_CHANGED;
case ET_BOTHEDGE: return ET_BOTHEDGE;
case ET_POSEDGE: return ET_NEGEDGE;
case ET_NEGEDGE: return ET_POSEDGE;
default: UASSERT_STATIC(0, "Inverting bad edgeType()");
}
return VEdgeType::ET_ILLEGAL;
}
const char* ascii() const {
static const char* const names[]
= {"%E-edge", "CHANGED", "BOTH", "POS", "NEG", "EVENT", "TRUE",
"COMBO", "HYBRID", "STATIC", "INITIAL", "FINAL", "NEVER"};
return names[m_e];
}
const char* verilogKwd() const {
static const char* const names[]
= {"%E-edge", "[changed]", "edge", "posedge", "negedge", "[event]", "[true]",
"*", "[hybrid]", "[static]", "[initial]", "[final]", "[never]"};
return names[m_e];
}
// Return true iff this and the other have mutually exclusive transitions
bool exclusiveEdge(const VEdgeType& other) const {
switch (m_e) {
case VEdgeType::ET_POSEDGE:
if (other.m_e == VEdgeType::ET_NEGEDGE) return true;
break;
case VEdgeType::ET_NEGEDGE:
if (other.m_e == VEdgeType::ET_POSEDGE) return true;
break;
default: break;
}
return false;
}
inline VEdgeType()
: m_e{ET_ILLEGAL} {}
// cppcheck-suppress noExplicitConstructor
inline VEdgeType(en _e)
: m_e{_e} {}
explicit inline VEdgeType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
};
inline bool operator==(const VEdgeType& lhs, const VEdgeType& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VEdgeType& lhs, VEdgeType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VEdgeType::en lhs, const VEdgeType& rhs) { return lhs == rhs.m_e; }
//######################################################################
class VAttrType final {
public:
// clang-format off
enum en: uint8_t {
ILLEGAL,
//
DIM_BITS, // V3Const converts to constant
DIM_DIMENSIONS, // V3Width converts to constant
DIM_HIGH, // V3Width processes
DIM_INCREMENT, // V3Width processes
DIM_LEFT, // V3Width processes
DIM_LOW, // V3Width processes
DIM_RIGHT, // V3Width processes
DIM_SIZE, // V3Width processes
DIM_UNPK_DIMENSIONS, // V3Width converts to constant
//
DT_PUBLIC, // V3LinkParse moves to AstTypedef::attrPublic
//
ENUM_BASE, // V3LinkResolve creates for AstPreSel, V3LinkParam removes
ENUM_FIRST, // V3Width processes
ENUM_LAST, // V3Width processes
ENUM_NUM, // V3Width processes
ENUM_NEXT, // V3Width processes
ENUM_PREV, // V3Width processes
ENUM_NAME, // V3Width processes
ENUM_VALID, // V3Width processes
//
MEMBER_BASE, // V3LinkResolve creates for AstPreSel, V3LinkParam removes
//
TYPENAME, // V3Width processes
//
VAR_BASE, // V3LinkResolve creates for AstPreSel, V3LinkParam removes
VAR_CLOCK_ENABLE, // Ignored, accepted for compatibility
VAR_FORCEABLE, // V3LinkParse moves to AstVar::isForceable
VAR_PUBLIC, // V3LinkParse moves to AstVar::sigPublic
VAR_PUBLIC_FLAT, // V3LinkParse moves to AstVar::sigPublic
VAR_PUBLIC_FLAT_RD, // V3LinkParse moves to AstVar::sigPublic
VAR_PUBLIC_FLAT_RW, // V3LinkParse moves to AstVar::sigPublic
VAR_ISOLATE_ASSIGNMENTS, // V3LinkParse moves to AstVar::attrIsolateAssign
VAR_SC_BV, // V3LinkParse moves to AstVar::attrScBv
VAR_SFORMAT, // V3LinkParse moves to AstVar::attrSFormat
VAR_CLOCKER, // V3LinkParse moves to AstVar::attrClocker
VAR_NO_CLOCKER, // V3LinkParse moves to AstVar::attrClocker
VAR_SPLIT_VAR // V3LinkParse moves to AstVar::attrSplitVar
};
// clang-format on
enum en m_e;
const char* ascii() const {
// clang-format off
static const char* const names[] = {
"%E-AT",
"DIM_BITS", "DIM_DIMENSIONS", "DIM_HIGH", "DIM_INCREMENT", "DIM_LEFT",
"DIM_LOW", "DIM_RIGHT", "DIM_SIZE", "DIM_UNPK_DIMENSIONS",
"DT_PUBLIC",
"ENUM_BASE", "ENUM_FIRST", "ENUM_LAST", "ENUM_NUM",
"ENUM_NEXT", "ENUM_PREV", "ENUM_NAME", "ENUM_VALID",
"MEMBER_BASE",
"TYPENAME",
"VAR_BASE", "VAR_CLOCK_ENABLE", "VAR_FORCEABLE", "VAR_PUBLIC",
"VAR_PUBLIC_FLAT", "VAR_PUBLIC_FLAT_RD", "VAR_PUBLIC_FLAT_RW",
"VAR_ISOLATE_ASSIGNMENTS", "VAR_SC_BV", "VAR_SFORMAT", "VAR_CLOCKER",
"VAR_NO_CLOCKER", "VAR_SPLIT_VAR"
};
// clang-format on
return names[m_e];
}
inline VAttrType()
: m_e{ILLEGAL} {}
// cppcheck-suppress noExplicitConstructor
inline VAttrType(en _e)
: m_e{_e} {}
explicit inline VAttrType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
};
inline bool operator==(const VAttrType& lhs, const VAttrType& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VAttrType& lhs, VAttrType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VAttrType::en lhs, const VAttrType& rhs) { return lhs == rhs.m_e; }
//######################################################################
class VBasicDTypeKwd final {
public:
enum en : uint8_t {
UNKNOWN,
BIT,
BYTE,
CHANDLE,
EVENT,
INT,
INTEGER,
LOGIC,
LONGINT,
DOUBLE,
SHORTINT,
TIME,
// Closer to a class type, but limited usage
STRING,
// Internal types for mid-steps
SCOPEPTR,
CHARPTR,
MTASKSTATE,
TRIGGERVEC,
// Unsigned and two state; fundamental types
UINT32,
UINT64,
// Internal types, eliminated after parsing
LOGIC_IMPLICIT,
// Leave last
_ENUM_MAX
};
enum en m_e;
const char* ascii() const {
static const char* const names[]
= {"%E-unk", "bit", "byte", "chandle", "event",
"int", "integer", "logic", "longint", "real",
"shortint", "time", "string", "VerilatedScope*", "char*",
"VlMTaskState", "VlTriggerVec", "IData", "QData", "LOGIC_IMPLICIT",
" MAX"};
return names[m_e];
}
const char* dpiType() const {
static const char* const names[]
= {"%E-unk", "svBit", "char", "void*", "char",
"int", "%E-integer", "svLogic", "long long", "double",
"short", "%E-time", "const char*", "dpiScope", "const char*",
"%E-mtaskstate", "%E-triggervec", "IData", "QData", "%E-logic-implct",
" MAX"};
return names[m_e];
}
static void selfTest() {
UASSERT(0 == strcmp(VBasicDTypeKwd(_ENUM_MAX).ascii(), " MAX"), "SelfTest: Enum mismatch");
UASSERT(0 == strcmp(VBasicDTypeKwd(_ENUM_MAX).dpiType(), " MAX"),
"SelfTest: Enum mismatch");
}
inline VBasicDTypeKwd()
: m_e{UNKNOWN} {}
// cppcheck-suppress noExplicitConstructor
inline VBasicDTypeKwd(en _e)
: m_e{_e} {}
explicit inline VBasicDTypeKwd(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
int width() const {
switch (m_e) {
case BIT: return 1; // scalar, can't bit extract unless ranged
case BYTE: return 8;
case CHANDLE: return 64;
case EVENT: return 1;
case INT: return 32;
case INTEGER: return 32;
case LOGIC: return 1; // scalar, can't bit extract unless ranged
case LONGINT: return 64;
case DOUBLE: return 64; // opaque
case SHORTINT: return 16;
case TIME: return 64;
case STRING: return 64; // opaque // Just the pointer, for today
case SCOPEPTR: return 0; // opaque
case CHARPTR: return 0; // opaque
case MTASKSTATE: return 0; // opaque
case TRIGGERVEC: return 0; // opaque
case UINT32: return 32;
case UINT64: return 64;
default: return 0;
}
}
bool isSigned() const {
return m_e == BYTE || m_e == SHORTINT || m_e == INT || m_e == LONGINT || m_e == INTEGER
|| m_e == DOUBLE;
}
bool isUnsigned() const {
return m_e == CHANDLE || m_e == EVENT || m_e == STRING || m_e == SCOPEPTR || m_e == CHARPTR
|| m_e == UINT32 || m_e == UINT64 || m_e == BIT || m_e == LOGIC || m_e == TIME;
}
bool isFourstate() const {
return m_e == INTEGER || m_e == LOGIC || m_e == LOGIC_IMPLICIT || m_e == TIME;
}
bool isZeroInit() const { // Otherwise initializes to X
return (m_e == BIT || m_e == BYTE || m_e == CHANDLE || m_e == EVENT || m_e == INT
|| m_e == LONGINT || m_e == SHORTINT || m_e == STRING || m_e == DOUBLE);
}
bool isIntNumeric() const { // Enum increment supported
return (m_e == BIT || m_e == BYTE || m_e == INT || m_e == INTEGER || m_e == LOGIC
|| m_e == LONGINT || m_e == SHORTINT || m_e == UINT32 || m_e == UINT64);
}
bool isBitLogic() const { // Bit/logic vector types; can form a packed array
return (m_e == LOGIC || m_e == BIT);
}
bool isDpiUnsignable() const { // Can add "unsigned" to DPI
return (m_e == BYTE || m_e == SHORTINT || m_e == INT || m_e == LONGINT || m_e == INTEGER);
}
bool isDpiCLayout() const { // Uses standard C layout, for DPI runtime access
return (m_e == BIT || m_e == BYTE || m_e == CHANDLE || m_e == INT || m_e == LONGINT
|| m_e == DOUBLE || m_e == SHORTINT || m_e == UINT32 || m_e == UINT64);
}
bool isOpaque() const { // IE not a simple number we can bit optimize
return (m_e == EVENT || m_e == STRING || m_e == SCOPEPTR || m_e == CHARPTR
|| m_e == MTASKSTATE || m_e == TRIGGERVEC || m_e == DOUBLE);
}
bool isDouble() const { return m_e == DOUBLE; }
bool isEvent() const { return m_e == EVENT; }
bool isString() const { return m_e == STRING; }
bool isMTaskState() const { return m_e == MTASKSTATE; }
// Does this represent a C++ LiteralType? (can be constexpr)
bool isLiteralType() const {
switch (m_e) {
case BIT:
case BYTE:
case CHANDLE:
case INT:
case INTEGER:
case LOGIC:
case LONGINT:
case DOUBLE:
case SHORTINT:
case SCOPEPTR:
case CHARPTR:
case UINT32:
case UINT64: return true;
default: return false;
}
}
};
inline bool operator==(const VBasicDTypeKwd& lhs, const VBasicDTypeKwd& rhs) {
return lhs.m_e == rhs.m_e;
}
inline bool operator==(const VBasicDTypeKwd& lhs, VBasicDTypeKwd::en rhs) {
return lhs.m_e == rhs;
}
inline bool operator==(VBasicDTypeKwd::en lhs, const VBasicDTypeKwd& rhs) {
return lhs == rhs.m_e;
}
//######################################################################
class VDirection final {
public:
enum en : uint8_t { NONE, INPUT, OUTPUT, INOUT, REF, CONSTREF };
enum en m_e;
inline VDirection()
: m_e{NONE} {}
// cppcheck-suppress noExplicitConstructor
inline VDirection(en _e)
: m_e{_e} {}
explicit inline VDirection(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
const char* ascii() const {
static const char* const names[] = {"NONE", "INPUT", "OUTPUT", "INOUT", "REF", "CONSTREF"};
return names[m_e];
}
string verilogKwd() const {
static const char* const names[] = {"", "input", "output", "inout", "ref", "const ref"};
return names[m_e];
}
string xmlKwd() const { // For historical reasons no "put" suffix
static const char* const names[] = {"", "in", "out", "inout", "ref", "const ref"};
return names[m_e];
}
string prettyName() const { return verilogKwd(); }
bool isAny() const { return m_e != NONE; }
// Looks like inout - "ish" because not identical to being an INOUT
bool isInoutish() const { return m_e == INOUT; }
bool isNonOutput() const {
return m_e == INPUT || m_e == INOUT || m_e == REF || m_e == CONSTREF;
}
bool isReadOnly() const { return m_e == INPUT || m_e == CONSTREF; }
bool isWritable() const { return m_e == OUTPUT || m_e == INOUT || m_e == REF; }
bool isRefOrConstRef() const { return m_e == REF || m_e == CONSTREF; }
};
inline bool operator==(const VDirection& lhs, const VDirection& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VDirection& lhs, VDirection::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VDirection::en lhs, const VDirection& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const VDirection& rhs) {
return os << rhs.ascii();
}
//######################################################################
/// Boolean or unknown
class VBoolOrUnknown final {
public:
enum en : uint8_t { BU_FALSE = 0, BU_TRUE = 1, BU_UNKNOWN = 2, _ENUM_END };
enum en m_e;
// CONSTRUCTOR - note defaults to *UNKNOWN*
inline VBoolOrUnknown()
: m_e{BU_UNKNOWN} {}
// cppcheck-suppress noExplicitConstructor
inline VBoolOrUnknown(en _e)
: m_e{_e} {}
explicit inline VBoolOrUnknown(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
const char* ascii() const {
static const char* const names[] = {"FALSE", "TRUE", "UNK"};
return names[m_e];
}
bool trueKnown() const { return m_e == BU_TRUE; }
bool trueUnknown() const { return m_e == BU_TRUE || m_e == BU_UNKNOWN; }
bool falseKnown() const { return m_e == BU_FALSE; }
bool falseUnknown() const { return m_e == BU_FALSE || m_e == BU_UNKNOWN; }
bool unknown() const { return m_e == BU_UNKNOWN; }
void setTrueOrFalse(bool flag) { m_e = flag ? BU_TRUE : BU_FALSE; }
};
inline bool operator==(const VBoolOrUnknown& lhs, const VBoolOrUnknown& rhs) {
return lhs.m_e == rhs.m_e;
}
inline bool operator==(const VBoolOrUnknown& lhs, VBoolOrUnknown::en rhs) {
return lhs.m_e == rhs;
}
inline bool operator==(VBoolOrUnknown::en lhs, const VBoolOrUnknown& rhs) {
return lhs == rhs.m_e;
}
inline std::ostream& operator<<(std::ostream& os, const VBoolOrUnknown& rhs) {
return os << rhs.ascii();
}
//######################################################################
/// Join type
class VJoinType final {
public:
enum en : uint8_t { JOIN = 0, JOIN_ANY = 1, JOIN_NONE = 2 };
enum en m_e;
// CONSTRUCTOR - note defaults to *UNKNOWN*
inline VJoinType()
: m_e{JOIN} {}
// cppcheck-suppress noExplicitConstructor
inline VJoinType(en _e)
: m_e{_e} {}
explicit inline VJoinType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
const char* ascii() const {
static const char* const names[] = {"JOIN", "JOIN_ANY", "JOIN_NONE"};
return names[m_e];
}
const char* verilogKwd() const {
static const char* const names[] = {"join", "join_any", "join_none"};
return names[m_e];
}
bool join() const { return m_e == JOIN; }
bool joinAny() const { return m_e == JOIN_ANY; }
bool joinNone() const { return m_e == JOIN_NONE; }
};
inline bool operator==(const VJoinType& lhs, const VJoinType& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VJoinType& lhs, VJoinType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VJoinType::en lhs, const VJoinType& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const VJoinType& rhs) {
return os << rhs.ascii();
}
//######################################################################
class VVarType final {
public:
enum en : uint8_t {
UNKNOWN,
GPARAM,
LPARAM,
GENVAR,
VAR, // Reg, integer, logic, etc
SUPPLY0,
SUPPLY1,
WIRE,
WREAL,
IMPLICITWIRE,
TRIWIRE,
TRI0,
TRI1,
PORT, // Temp type used in parser only
BLOCKTEMP,
MODULETEMP,
STMTTEMP,
XTEMP,
IFACEREF, // Used to link Interfaces between modules
MEMBER
};
enum en m_e;
inline VVarType()
: m_e{UNKNOWN} {}
// cppcheck-suppress noExplicitConstructor
inline VVarType(en _e)
: m_e{_e} {}
explicit inline VVarType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
const char* ascii() const {
static const char* const names[] = {
"?", "GPARAM", "LPARAM", "GENVAR", "VAR", "SUPPLY0", "SUPPLY1",
"WIRE", "WREAL", "IMPLICITWIRE", "TRIWIRE", "TRI0", "TRI1", "PORT",
"BLOCKTEMP", "MODULETEMP", "STMTTEMP", "XTEMP", "IFACEREF", "MEMBER"};
return names[m_e];
}
bool isSignal() const {
return (m_e == WIRE || m_e == WREAL || m_e == IMPLICITWIRE || m_e == TRIWIRE || m_e == TRI0
|| m_e == TRI1 || m_e == PORT || m_e == SUPPLY0 || m_e == SUPPLY1 || m_e == VAR);
}
bool isContAssignable() const { // In Verilog, always ok in SystemVerilog
return (m_e == SUPPLY0 || m_e == SUPPLY1 || m_e == WIRE || m_e == WREAL
|| m_e == IMPLICITWIRE || m_e == TRIWIRE || m_e == TRI0 || m_e == TRI1
|| m_e == PORT || m_e == BLOCKTEMP || m_e == MODULETEMP || m_e == STMTTEMP
|| m_e == XTEMP || m_e == IFACEREF);
}
bool isProcAssignable() const {
return (m_e == GPARAM || m_e == LPARAM || m_e == GENVAR || m_e == VAR || m_e == BLOCKTEMP
|| m_e == MODULETEMP || m_e == STMTTEMP || m_e == XTEMP || m_e == IFACEREF
|| m_e == MEMBER);
}
bool isTemp() const {
return (m_e == BLOCKTEMP || m_e == MODULETEMP || m_e == STMTTEMP || m_e == XTEMP);
}
};
inline bool operator==(const VVarType& lhs, const VVarType& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VVarType& lhs, VVarType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VVarType::en lhs, const VVarType& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const VVarType& rhs) {
return os << rhs.ascii();
}
//######################################################################
class VBranchPred final {
public:
enum en : uint8_t { BP_UNKNOWN = 0, BP_LIKELY, BP_UNLIKELY, _ENUM_END };
enum en m_e;
// CONSTRUCTOR - note defaults to *UNKNOWN*
inline VBranchPred()
: m_e{BP_UNKNOWN} {}
// cppcheck-suppress noExplicitConstructor
inline VBranchPred(en _e)
: m_e{_e} {}
explicit inline VBranchPred(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
bool unknown() const { return m_e == BP_UNKNOWN; }
bool likely() const { return m_e == BP_LIKELY; }
bool unlikely() const { return m_e == BP_UNLIKELY; }
VBranchPred invert() const {
if (m_e == BP_UNLIKELY) {
return BP_LIKELY;
} else if (m_e == BP_LIKELY) {
return BP_UNLIKELY;
} else {
return m_e;
}
}
const char* ascii() const {
static const char* const names[] = {"", "VL_LIKELY", "VL_UNLIKELY"};
return names[m_e];
}
};
inline bool operator==(const VBranchPred& lhs, const VBranchPred& rhs) {
return lhs.m_e == rhs.m_e;
}
inline bool operator==(const VBranchPred& lhs, VBranchPred::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VBranchPred::en lhs, const VBranchPred& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const VBranchPred& rhs) {
return os << rhs.ascii();
}
//######################################################################
class VVarAttrClocker final {
public:
enum en : uint8_t { CLOCKER_UNKNOWN = 0, CLOCKER_YES, CLOCKER_NO, _ENUM_END };
enum en m_e;
// CONSTRUCTOR - note defaults to *UNKNOWN*
inline VVarAttrClocker()
: m_e{CLOCKER_UNKNOWN} {}
// cppcheck-suppress noExplicitConstructor
inline VVarAttrClocker(en _e)
: m_e{_e} {}
explicit inline VVarAttrClocker(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
bool unknown() const { return m_e == CLOCKER_UNKNOWN; }
VVarAttrClocker invert() const {
if (m_e == CLOCKER_YES) {
return CLOCKER_NO;
} else if (m_e == CLOCKER_NO) {
return CLOCKER_YES;
} else {
return m_e;
}
}
const char* ascii() const {
static const char* const names[] = {"", "clker", "non_clker"};
return names[m_e];
}
};
inline bool operator==(const VVarAttrClocker& lhs, const VVarAttrClocker& rhs) {
return lhs.m_e == rhs.m_e;
}
inline bool operator==(const VVarAttrClocker& lhs, VVarAttrClocker::en rhs) {
return lhs.m_e == rhs;
}
inline bool operator==(VVarAttrClocker::en lhs, const VVarAttrClocker& rhs) {
return lhs == rhs.m_e;
}
inline std::ostream& operator<<(std::ostream& os, const VVarAttrClocker& rhs) {
return os << rhs.ascii();
}
//######################################################################
class VAlwaysKwd final {
public:
enum en : uint8_t { ALWAYS, ALWAYS_FF, ALWAYS_LATCH, ALWAYS_COMB };
enum en m_e;
inline VAlwaysKwd()
: m_e{ALWAYS} {}
// cppcheck-suppress noExplicitConstructor
inline VAlwaysKwd(en _e)
: m_e{_e} {}
explicit inline VAlwaysKwd(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
const char* ascii() const {
static const char* const names[] = {"always", "always_ff", "always_latch", "always_comb"};
return names[m_e];
}
};
inline bool operator==(const VAlwaysKwd& lhs, const VAlwaysKwd& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VAlwaysKwd& lhs, VAlwaysKwd::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VAlwaysKwd::en lhs, const VAlwaysKwd& rhs) { return lhs == rhs.m_e; }
//######################################################################
class VCaseType final {
public:
enum en : uint8_t { CT_CASE, CT_CASEX, CT_CASEZ, CT_CASEINSIDE };
enum en m_e;
inline VCaseType()
: m_e{CT_CASE} {}
// cppcheck-suppress noExplicitConstructor
inline VCaseType(en _e)
: m_e{_e} {}
explicit inline VCaseType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
};
inline bool operator==(const VCaseType& lhs, const VCaseType& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VCaseType& lhs, VCaseType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VCaseType::en lhs, const VCaseType& rhs) { return lhs == rhs.m_e; }
//######################################################################
class VDisplayType final {
public:
enum en : uint8_t {
DT_DISPLAY,
DT_WRITE,
DT_MONITOR,
DT_STROBE,
DT_INFO,
DT_ERROR,
DT_WARNING,
DT_FATAL
};
enum en m_e;
VDisplayType()
: m_e{DT_DISPLAY} {}
// cppcheck-suppress noExplicitConstructor
VDisplayType(en _e)
: m_e{_e} {}
explicit inline VDisplayType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
bool addNewline() const { return m_e != DT_WRITE; }
bool needScopeTracking() const { return m_e != DT_DISPLAY && m_e != DT_WRITE; }
const char* ascii() const {
static const char* const names[]
= {"display", "write", "monitor", "strobe", "info", "error", "warning", "fatal"};
return names[m_e];
}
};
inline bool operator==(const VDisplayType& lhs, const VDisplayType& rhs) {
return lhs.m_e == rhs.m_e;
}
inline bool operator==(const VDisplayType& lhs, VDisplayType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VDisplayType::en lhs, const VDisplayType& rhs) { return lhs == rhs.m_e; }
//######################################################################
class VDumpCtlType final {
public:
enum en : uint8_t { FILE, VARS, ALL, FLUSH, LIMIT, OFF, ON };
enum en m_e;
inline VDumpCtlType()
: m_e{ON} {}
// cppcheck-suppress noExplicitConstructor
inline VDumpCtlType(en _e)
: m_e{_e} {}
explicit inline VDumpCtlType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
const char* ascii() const {
static const char* const names[] = {"$dumpfile", "$dumpvars", "$dumpall", "$dumpflush",
"$dumplimit", "$dumpoff", "$dumpon"};
return names[m_e];
}
};
inline bool operator==(const VDumpCtlType& lhs, const VDumpCtlType& rhs) {
return lhs.m_e == rhs.m_e;
}
inline bool operator==(const VDumpCtlType& lhs, VDumpCtlType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VDumpCtlType::en lhs, const VDumpCtlType& rhs) { return lhs == rhs.m_e; }
//######################################################################
class VParseRefExp final {
public:
enum en : uint8_t {
PX_NONE, // Used in V3LinkParse only
PX_ROOT,
PX_TEXT // Unknown ID component
};
enum en m_e;
inline VParseRefExp()
: m_e{PX_NONE} {}
// cppcheck-suppress noExplicitConstructor
inline VParseRefExp(en _e)
: m_e{_e} {}
explicit inline VParseRefExp(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
const char* ascii() const {
static const char* const names[] = {"", "$root", "TEXT", "PREDOT"};
return names[m_e];
}
};
inline bool operator==(const VParseRefExp& lhs, const VParseRefExp& rhs) {
return lhs.m_e == rhs.m_e;
}
inline bool operator==(const VParseRefExp& lhs, VParseRefExp::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VParseRefExp::en lhs, const VParseRefExp& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const VParseRefExp& rhs) {
return os << rhs.ascii();
}
//######################################################################
// VNumRange - Structure containing numeric range information
// See also AstRange, which is a symbolic version of this
class VNumRange final {
public:
int m_left = 0;
int m_right = 0;
bool m_ranged = false; // Has a range
bool operator==(const VNumRange& rhs) const {
return m_left == rhs.m_left && m_right == rhs.m_right && m_ranged == rhs.m_ranged;
}
bool operator<(const VNumRange& rhs) const {
if ((m_left < rhs.m_left)) return true;
if (!(m_left == rhs.m_left)) return false; // lhs > rhs
if ((m_right < rhs.m_right)) return true;
if (!(m_right == rhs.m_right)) return false; // lhs > rhs
if ((m_ranged < rhs.m_ranged)) return true;
if (!(m_ranged == rhs.m_ranged)) return false; // lhs > rhs
return false;
}
//
VNumRange() = default;
VNumRange(int hi, int lo, bool littleEndian) { init(hi, lo, littleEndian); }
VNumRange(int left, int right)
: m_left{left}
, m_right{right}
, m_ranged{true} {}
~VNumRange() = default;
// MEMBERS
void init(int hi, int lo, bool littleEndian) {
if (lo > hi) {
const int t = hi;
hi = lo;
lo = t;
}
m_left = littleEndian ? lo : hi;
m_right = littleEndian ? hi : lo;
m_ranged = true;
}
int left() const { return m_left; }
int right() const { return m_right; }
int hi() const { return m_left > m_right ? m_left : m_right; } // How to show a declaration
int lo() const { return m_left > m_right ? m_right : m_left; } // How to show a declaration
int leftToRightInc() const { return littleEndian() ? 1 : -1; }
int elements() const { return hi() - lo() + 1; }
bool ranged() const { return m_ranged; }
bool littleEndian() const { return m_left < m_right; }
int hiMaxSelect() const {
return (lo() < 0 ? hi() - lo() : hi());
} // Maximum value a [] select may index
void dump(std::ostream& str) const {
if (ranged()) {
str << "[" << left() << ":" << right() << "]";
} else {
str << "[norg]";
}
}
};
inline std::ostream& operator<<(std::ostream& os, const VNumRange& rhs) {
rhs.dump(os);
return os;
}
//######################################################################
class VUseType final {
public:
enum en : uint8_t {
IMP_INCLUDE, // Implementation (.cpp) needs an include
INT_INCLUDE, // Interface (.h) needs an include
IMP_FWD_CLASS, // Implementation (.cpp) needs a forward class declaration
INT_FWD_CLASS, // Interface (.h) needs a forward class declaration
};
enum en m_e;
inline VUseType()
: m_e{IMP_FWD_CLASS} {}
// cppcheck-suppress noExplicitConstructor
inline VUseType(en _e)
: m_e{_e} {}
explicit inline VUseType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
bool isInclude() const { return m_e == IMP_INCLUDE || m_e == INT_INCLUDE; }
bool isFwdClass() const { return m_e == IMP_FWD_CLASS || m_e == INT_FWD_CLASS; }
operator en() const { return m_e; }
const char* ascii() const {
static const char* const names[] = {"IMP_INC", "INT_INC", "IMP_FWD", "INT_FWD"};
return names[m_e];
}
};
inline bool operator==(const VUseType& lhs, const VUseType& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VUseType& lhs, VUseType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VUseType::en lhs, const VUseType& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const VUseType& rhs) {
return os << rhs.ascii();
}
//######################################################################
class VBasicTypeKey final {
public:
const int m_width; // From AstNodeDType: Bit width of operation
const int m_widthMin; // From AstNodeDType: If unsized, bitwidth of minimum implementation
const VSigning m_numeric; // From AstNodeDType: Node is signed
const VBasicDTypeKwd m_keyword; // From AstBasicDType: What keyword created basic type
const VNumRange m_nrange; // From AstBasicDType: Numeric msb/lsb (if non-opaque keyword)
bool operator==(const VBasicTypeKey& rhs) const {
return m_width == rhs.m_width && m_widthMin == rhs.m_widthMin && m_numeric == rhs.m_numeric
&& m_keyword == rhs.m_keyword && m_nrange == rhs.m_nrange;
}
bool operator<(const VBasicTypeKey& rhs) const {
if ((m_width < rhs.m_width)) return true;
if (!(m_width == rhs.m_width)) return false; // lhs > rhs
if ((m_widthMin < rhs.m_widthMin)) return true;
if (!(m_widthMin == rhs.m_widthMin)) return false; // lhs > rhs
if ((m_numeric < rhs.m_numeric)) return true;
if (!(m_numeric == rhs.m_numeric)) return false; // lhs > rhs
if ((m_keyword < rhs.m_keyword)) return true;
if (!(m_keyword == rhs.m_keyword)) return false; // lhs > rhs
if ((m_nrange < rhs.m_nrange)) return true;
if (!(m_nrange == rhs.m_nrange)) return false; // lhs > rhs
return false;
}
VBasicTypeKey(int width, int widthMin, VSigning numeric, VBasicDTypeKwd kwd,
const VNumRange& nrange)
: m_width{width}
, m_widthMin{widthMin}
, m_numeric{numeric}
, m_keyword{kwd}
, m_nrange{nrange} {}
~VBasicTypeKey() = default;
};
//######################################################################
// AstNUser - Generic base class for AST User nodes.
// - Also used to allow parameter passing up/down iterate calls
class WidthVP;
class V3GraphVertex;
class VSymEnt;
class VNUser final {
union {
void* up;
int ui;
} m_u;
public:
VNUser() = default;
// non-explicit:
// cppcheck-suppress noExplicitConstructor
VNUser(int i) {
m_u.up = 0;
m_u.ui = i;
}
explicit VNUser(void* p) { m_u.up = p; }
~VNUser() = default;
// Casters
template <class T>
typename std::enable_if<std::is_pointer<T>::value, T>::type to() const {
return reinterpret_cast<T>(m_u.up);
}
WidthVP* c() const { return to<WidthVP*>(); }
VSymEnt* toSymEnt() const { return to<VSymEnt*>(); }
AstNode* toNodep() const { return to<AstNode*>(); }
V3GraphVertex* toGraphVertex() const { return to<V3GraphVertex*>(); }
int toInt() const { return m_u.ui; }
static VNUser fromInt(int i) { return VNUser(i); }
};
//######################################################################
// AstUserResource - Generic pointer base class for tracking usage of user()
//
// Where AstNode->user2() is going to be used, for example, you write:
//
// VNUser2InUse m_userres;
//
// This will clear the tree, and prevent another visitor from clobbering
// user2. When the member goes out of scope it will be automagically
// freed up.
class VNUserInUseBase VL_NOT_FINAL {
protected:
static void allocate(int id, uint32_t& cntGblRef, bool& userBusyRef) {
// Perhaps there's still a AstUserInUse in scope for this?
UASSERT_STATIC(!userBusyRef, "Conflicting user use; AstUser" + cvtToStr(id)
+ "InUse request when under another AstUserInUse");
userBusyRef = true;
clearcnt(id, cntGblRef, userBusyRef);
}
static void free(int id, uint32_t& cntGblRef, bool& userBusyRef) {
UASSERT_STATIC(userBusyRef, "Free of User" + cvtToStr(id) + "() not under AstUserInUse");
clearcnt(id, cntGblRef, userBusyRef); // Includes a checkUse for us
userBusyRef = false;
}
static void clearcnt(int id, uint32_t& cntGblRef, const bool& userBusyRef) {
UASSERT_STATIC(userBusyRef, "Clear of User" + cvtToStr(id) + "() not under AstUserInUse");
// If this really fires and is real (after 2^32 edits???)
// we could just walk the tree and clear manually
++cntGblRef;
UASSERT_STATIC(cntGblRef, "User*() overflowed!");
}
static void checkcnt(int id, uint32_t&, const bool& userBusyRef) {
UASSERT_STATIC(userBusyRef,
"Check of User" + cvtToStr(id) + "() failed, not under AstUserInUse");
}
};
// For each user() declare the in use structure
// We let AstNode peek into here, because when under low optimization even
// an accessor would be way too slow.
// clang-format off
class VNUser1InUse final : VNUserInUseBase {
protected:
friend class AstNode;
static uint32_t s_userCntGbl; // Count of which usage of userp() this is
static bool s_userBusy; // Count is in use
public:
VNUser1InUse() { allocate(1, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
~VNUser1InUse() { free (1, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void clear() { clearcnt(1, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void check() { checkcnt(1, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
};
class VNUser2InUse final : VNUserInUseBase {
protected:
friend class AstNode;
static uint32_t s_userCntGbl; // Count of which usage of userp() this is
static bool s_userBusy; // Count is in use
public:
VNUser2InUse() { allocate(2, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
~VNUser2InUse() { free (2, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void clear() { clearcnt(2, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void check() { checkcnt(2, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
};
class VNUser3InUse final : VNUserInUseBase {
protected:
friend class AstNode;
static uint32_t s_userCntGbl; // Count of which usage of userp() this is
static bool s_userBusy; // Count is in use
public:
VNUser3InUse() { allocate(3, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
~VNUser3InUse() { free (3, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void clear() { clearcnt(3, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void check() { checkcnt(3, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
};
class VNUser4InUse final : VNUserInUseBase {
protected:
friend class AstNode;
static uint32_t s_userCntGbl; // Count of which usage of userp() this is
static bool s_userBusy; // Count is in use
public:
VNUser4InUse() { allocate(4, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
~VNUser4InUse() { free (4, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void clear() { clearcnt(4, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void check() { checkcnt(4, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
};
class VNUser5InUse final : VNUserInUseBase {
protected:
friend class AstNode;
static uint32_t s_userCntGbl; // Count of which usage of userp() this is
static bool s_userBusy; // Count is in use
public:
VNUser5InUse() { allocate(5, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
~VNUser5InUse() { free (5, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void clear() { clearcnt(5, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void check() { checkcnt(5, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
};
// clang-format on
//######################################################################
// Node deleter, deletes all enqueued AstNode* on destruction, or when
// explicitly told to do so. This is useful when the deletion of removed
// nodes needs to be deferred to a later time, because pointers to the
// removed nodes might still exist.
class VNDeleter VL_NOT_FINAL {
// MEMBERS
std::vector<AstNode*> m_deleteps; // Nodes to delete
public:
// METHODS
// Enqueue node for deletion on next 'doDelete' (or destruction)
void pushDeletep(AstNode* nodep) {
UASSERT_STATIC(nodep, "Cannot delete nullptr node");
m_deleteps.push_back(nodep);
}
// Delete all previously pushed nodes (by callint deleteTree)
void doDeletes();
// Do the deletions on destruction
virtual ~VNDeleter() { doDeletes(); }
};
//######################################################################
// VNVisitor -- Allows new functions to be called on each node
// type without changing the base classes. See "Modern C++ Design".
class VNVisitor VL_NOT_FINAL : public VNDeleter {
friend class AstNode;
public:
/// Call visit()s on nodep
void iterate(AstNode* nodep);
/// Call visit()s on nodep
void iterateNull(AstNode* nodep);
/// Call visit()s on nodep's children
void iterateChildren(AstNode* nodep);
/// Call visit()s on nodep's children in backp() order
void iterateChildrenBackwards(AstNode* nodep);
/// Call visit()s on const nodep's children
void iterateChildrenConst(AstNode* nodep);
/// Call visit()s on nodep (maybe nullptr) and nodep's nextp() list
void iterateAndNextNull(AstNode* nodep);
/// Call visit()s on const nodep (maybe nullptr) and nodep's nextp() list
void iterateAndNextConstNull(AstNode* nodep);
/// Call visit()s on const nodep (maybe nullptr) and nodep's nextp() list, in reverse order
void iterateAndNextConstNullBackwards(AstNode* nodep);
/// Return edited nodep; see comments in V3Ast.cpp
AstNode* iterateSubtreeReturnEdits(AstNode* nodep);
virtual void visit(AstNode* nodep) = 0;
#include "V3Ast__gen_visitor_decls.h" // From ./astgen
};
//######################################################################
// VNRelinker -- Holds the state of a unlink so a new node can be
// added at the same point.
class VNRelinker final {
protected:
friend class AstNode;
enum RelinkWhatEn : uint8_t {
RELINK_BAD,
RELINK_NEXT,
RELINK_OP1,
RELINK_OP2,
RELINK_OP3,
RELINK_OP4
};
AstNode* m_oldp = nullptr; // The old node that was linked to this point in the tree
AstNode* m_backp = nullptr;
RelinkWhatEn m_chg = RELINK_BAD;
AstNode** m_iterpp = nullptr;
public:
VNRelinker() = default;
void relink(AstNode* newp);
AstNode* oldp() const { return m_oldp; }
void dump(std::ostream& str = std::cout) const;
};
inline std::ostream& operator<<(std::ostream& os, const VNRelinker& rhs) {
rhs.dump(os);
return os;
}
// ######################################################################
// Callback base class to determine if node matches some formula
class VNodeMatcher VL_NOT_FINAL {
public:
virtual bool nodeMatch(const AstNode* nodep) const { return true; }
};
// ######################################################################
// AstNode -- Base type of all Ast types
// Prefetch a node.
#define ASTNODE_PREFETCH_NON_NULL(nodep) \
do { \
VL_PREFETCH_RD(&((nodep)->m_nextp)); \
VL_PREFETCH_RD(&((nodep)->m_type)); \
} while (false)
// The if() makes it faster, even though prefetch won't fault on null pointers
#define ASTNODE_PREFETCH(nodep) \
do { \
if (nodep) ASTNODE_PREFETCH_NON_NULL(nodep); \
} while (false)
class AstNode VL_NOT_FINAL {
// v ASTNODE_PREFETCH depends on below ordering of members
AstNode* m_nextp = nullptr; // Next peer in the parent's list
AstNode* m_backp = nullptr; // Node that points to this one (via next/op1/op2/...)
AstNode* m_op1p = nullptr; // Generic pointer 1
AstNode* m_op2p = nullptr; // Generic pointer 2
AstNode* m_op3p = nullptr; // Generic pointer 3
AstNode* m_op4p = nullptr; // Generic pointer 4
AstNode** m_iterpp
= nullptr; // Pointer to node iterating on, change it if we replace this node.
const VNType m_type; // Node sub-type identifier
// ^ ASTNODE_PREFETCH depends on above ordering of members
// VNType is 2 bytes, so we can stick another 6 bytes after it to utilize what would
// otherwise be padding (on a 64-bit system). We stick the attribute flags, broken state,
// and the clone count here.
struct {
bool didWidth : 1; // Did V3Width computation
bool doingWidth : 1; // Inside V3Width
bool protect : 1; // Protect name if protection is on
// Space for more flags here (there must be 8 bits in total)
uint8_t unused : 5;
} m_flags; // Attribute flags
// State variable used by V3Broken for consistency checking. The top bit of this is byte is a
// flag, representing V3Broken is currently proceeding under this node. The bottom 7 bits are
// a generation number. This is hot when --debug-checks so we access as a whole to avoid bit
// field masking resulting in unnecessary read-modify-write ops.
uint8_t m_brokenState = 0;
int m_cloneCnt = 0; // Sequence number for when last clone was made
#if defined(__x86_64__) && defined(__gnu_linux__)
// Only assert this on known platforms, as it only affects performance, not correctness
static_assert(sizeof(m_type) + sizeof(m_flags) + sizeof(m_brokenState) + sizeof(m_cloneCnt)
<= sizeof(void*),
"packing requires padding");
#endif
AstNodeDType* m_dtypep = nullptr; // Data type of output or assignment (etc)
AstNode* m_headtailp; // When at begin/end of list, the opposite end of the list
FileLine* m_fileline; // Where it was declared
uint64_t m_editCount; // When it was last edited
static uint64_t s_editCntGbl; // Global edit counter
// Global edit counter, last value for printing * near node #s
static uint64_t s_editCntLast;
AstNode* m_clonep
= nullptr; // Pointer to clone of/ source of this module (for *LAST* cloneTree() ONLY)
static int s_cloneCntGbl; // Count of which userp is set
// This member ordering both allows 64 bit alignment and puts associated data together
VNUser m_user1u = VNUser{0}; // Contains any information the user iteration routine wants
uint32_t m_user1Cnt = 0; // Mark of when userp was set
uint32_t m_user2Cnt = 0; // Mark of when userp was set
VNUser m_user2u = VNUser{0}; // Contains any information the user iteration routine wants
VNUser m_user3u = VNUser{0}; // Contains any information the user iteration routine wants
uint32_t m_user3Cnt = 0; // Mark of when userp was set
uint32_t m_user4Cnt = 0; // Mark of when userp was set
VNUser m_user4u = VNUser{0}; // Contains any information the user iteration routine wants
VNUser m_user5u = VNUser{0}; // Contains any information the user iteration routine wants
uint32_t m_user5Cnt = 0; // Mark of when userp was set
// METHODS
void op1p(AstNode* nodep) {
m_op1p = nodep;
if (nodep) nodep->m_backp = this;
}
void op2p(AstNode* nodep) {
m_op2p = nodep;
if (nodep) nodep->m_backp = this;
}
void op3p(AstNode* nodep) {
m_op3p = nodep;
if (nodep) nodep->m_backp = this;
}
void op4p(AstNode* nodep) {
m_op4p = nodep;
if (nodep) nodep->m_backp = this;
}
private:
AstNode* cloneTreeIter();
AstNode* cloneTreeIterList();
void checkTreeIter(AstNode* backp);
void checkTreeIterList(AstNode* backp);
bool gateTreeIter() const;
static bool sameTreeIter(const AstNode* node1p, const AstNode* node2p, bool ignNext,
bool gateOnly);
void deleteTreeIter();
void deleteNode();
string instanceStr() const;
public:
static void relinkOneLink(AstNode*& pointpr, AstNode* newp);
// cppcheck-suppress functionConst
static void debugTreeChange(const AstNode* nodep, const char* prefix, int lineno, bool next);
protected:
// CONSTRUCTORS
AstNode(VNType t, FileLine* fl);
virtual AstNode* clone() = 0; // Generally, cloneTree is what you want instead
virtual void cloneRelink() {}
void cloneRelinkTree();
// METHODS
void setOp1p(AstNode* newp); // Set non-list-type op1 to non-list element
void setOp2p(AstNode* newp); // Set non-list-type op2 to non-list element
void setOp3p(AstNode* newp); // Set non-list-type op3 to non-list element
void setOp4p(AstNode* newp); // Set non-list-type op4 to non-list element
void addOp1p(AstNode* newp); // Append newp to end of op1
void addOp2p(AstNode* newp); // Append newp to end of op2
void addOp3p(AstNode* newp); // Append newp to end of op3
void addOp4p(AstNode* newp); // Append newp to end of op4
// clang-format off
void setNOp1p(AstNode* newp) { if (newp) setOp1p(newp); }
void setNOp2p(AstNode* newp) { if (newp) setOp2p(newp); }
void setNOp3p(AstNode* newp) { if (newp) setOp3p(newp); }
void setNOp4p(AstNode* newp) { if (newp) setOp4p(newp); }
void addNOp1p(AstNode* newp) { if (newp) addOp1p(newp); }
void addNOp2p(AstNode* newp) { if (newp) addOp2p(newp); }
void addNOp3p(AstNode* newp) { if (newp) addOp3p(newp); }
void addNOp4p(AstNode* newp) { if (newp) addOp4p(newp); }
// clang-format on
void clonep(AstNode* nodep) {
m_clonep = nodep;
m_cloneCnt = s_cloneCntGbl;
}
static void cloneClearTree() {
s_cloneCntGbl++;
UASSERT_STATIC(s_cloneCntGbl, "Rollover");
}
public:
// ACCESSORS
inline VNType type() const { return m_type; }
const char* typeName() const { return type().ascii(); } // See also prettyTypeName
AstNode* nextp() const { return m_nextp; }
AstNode* backp() const { return m_backp; }
AstNode* abovep() const; // Parent node above, only when no nextp() as otherwise slow
AstNode* op1p() const { return m_op1p; }
AstNode* op2p() const { return m_op2p; }
AstNode* op3p() const { return m_op3p; }
AstNode* op4p() const { return m_op4p; }
AstNodeDType* dtypep() const { return m_dtypep; }
AstNode* clonep() const { return ((m_cloneCnt == s_cloneCntGbl) ? m_clonep : nullptr); }
AstNode* firstAbovep() const { // Returns nullptr when second or later in list
return ((backp() && backp()->nextp() != this) ? backp() : nullptr);
}
// isFirstInMyListOfStatements(n) -- implemented by child classes:
// AstNodeBlock, AstCaseItem, AstNodeIf, AstNodeFTask, and possibly others.
virtual bool isFirstInMyListOfStatements(AstNode* n) const { return false; }
// isStandaloneBodyStmt == Do we need a ; on generated cpp for this node?
bool isStandaloneBodyStmt() {
return (!firstAbovep() // we're 2nd or later in the list, so yes need ;
// If we're first in the list, check what backp() thinks of us:
|| (backp() && backp()->isFirstInMyListOfStatements(this)));
}
uint8_t brokenState() const { return m_brokenState; }
void brokenState(uint8_t value) { m_brokenState = value; }
// Used by AstNode::broken()
bool brokeExists() const { return V3Broken::isLinkable(this); }
bool brokeExistsAbove() const { return brokeExists() && (m_brokenState >> 7); }
bool brokeExistsBelow() const { return brokeExists() && !(m_brokenState >> 7); }
// Note: brokeExistsBelow is not quite precise, as it is true for sibling nodes as well
// CONSTRUCTORS
virtual ~AstNode() = default;
#ifdef VL_LEAK_CHECKS
static void* operator new(size_t size);
static void operator delete(void* obj, size_t size);
#endif
// CONSTANTS
// The following are relative dynamic costs (~ execution cycle count) of various operations.
// They are used by V3InstCount to estimate the relative execution time of code fragments.
static constexpr int INSTR_COUNT_BRANCH = 4; // Branch
static constexpr int INSTR_COUNT_CALL = INSTR_COUNT_BRANCH + 10; // Subroutine call
static constexpr int INSTR_COUNT_LD = 2; // Load memory
static constexpr int INSTR_COUNT_INT_MUL = 3; // Integer multiply
static constexpr int INSTR_COUNT_INT_DIV = 10; // Integer divide
static constexpr int INSTR_COUNT_DBL = 8; // Convert or do float ops
static constexpr int INSTR_COUNT_DBL_DIV = 40; // Double divide
static constexpr int INSTR_COUNT_DBL_TRIG = 200; // Double trigonometric ops
static constexpr int INSTR_COUNT_STR = 100; // String ops
static constexpr int INSTR_COUNT_TIME = INSTR_COUNT_CALL + 5; // Determine simulation time
static constexpr int INSTR_COUNT_PLI = 20; // PLI routines
// ACCESSORS
virtual string name() const { return ""; }
virtual string origName() const { return ""; }
virtual void name(const string& name) {
this->v3fatalSrc("name() called on object without name() method");
}
virtual void tag(const string& text) {}
virtual string tag() const { return ""; }
virtual string verilogKwd() const { return ""; }
string nameProtect() const; // Name with --protect-id applied
string origNameProtect() const; // origName with --protect-id applied
string shortName() const; // Name with __PVT__ removed for concatenating scopes
static string dedotName(const string& namein); // Name with dots removed
static string prettyName(const string& namein); // Name for printing out to the user
static string prettyNameQ(const string& namein) { // Quoted pretty name (for errors)
return string("'") + prettyName(namein) + "'";
}
static string
encodeName(const string& namein); // Encode user name into internal C representation
static string encodeNumber(int64_t num); // Encode number into internal C representation
static string vcdName(const string& namein); // Name for printing out to vcd files
string prettyName() const { return prettyName(name()); }
string prettyNameQ() const { return prettyNameQ(name()); }
string prettyTypeName() const; // "VARREF" for error messages (NOT dtype's pretty name)
virtual string prettyOperatorName() const { return "operator " + prettyTypeName(); }
FileLine* fileline() const { return m_fileline; }
void fileline(FileLine* fl) { m_fileline = fl; }
bool width1() const;
int widthInstrs() const;
void didWidth(bool flag) { m_flags.didWidth = flag; }
bool didWidth() const { return m_flags.didWidth; }
bool didWidthAndSet() {
if (didWidth()) return true;
didWidth(true);
return false;
}
bool doingWidth() const { return m_flags.doingWidth; }
void doingWidth(bool flag) { m_flags.doingWidth = flag; }
bool protect() const { return m_flags.protect; }
void protect(bool flag) { m_flags.protect = flag; }
// TODO stomp these width functions out, and call via dtypep() instead
int width() const;
int widthMin() const;
int widthMinV() const {
return v3Global.widthMinUsage() == VWidthMinUsage::VERILOG_WIDTH ? widthMin() : width();
}
int widthWords() const { return VL_WORDS_I(width()); }
bool isQuad() const { return (width() > VL_IDATASIZE && width() <= VL_QUADSIZE); }
bool isWide() const { return (width() > VL_QUADSIZE); }
bool isDouble() const;
bool isSigned() const;
bool isString() const;
// clang-format off
VNUser user1u() const {
// Slows things down measurably, so disabled by default
//UASSERT_STATIC(VNUser1InUse::s_userBusy, "userp set w/o busy");
return ((m_user1Cnt==VNUser1InUse::s_userCntGbl) ? m_user1u : VNUser(0));
}
AstNode* user1p() const { return user1u().toNodep(); }
void user1u(const VNUser& user) { m_user1u=user; m_user1Cnt=VNUser1InUse::s_userCntGbl; }
void user1p(void* userp) { user1u(VNUser(userp)); }
int user1() const { return user1u().toInt(); }
void user1(int val) { user1u(VNUser(val)); }
int user1Inc(int val=1) { int v=user1(); user1(v+val); return v; }
int user1SetOnce() { int v=user1(); if (!v) user1(1); return v; } // Better for cache than user1Inc()
static void user1ClearTree() { VNUser1InUse::clear(); } // Clear userp()'s across the entire tree
VNUser user2u() const {
// Slows things down measurably, so disabled by default
//UASSERT_STATIC(VNUser2InUse::s_userBusy, "userp set w/o busy");
return ((m_user2Cnt==VNUser2InUse::s_userCntGbl) ? m_user2u : VNUser(0));
}
AstNode* user2p() const { return user2u().toNodep(); }
void user2u(const VNUser& user) { m_user2u=user; m_user2Cnt=VNUser2InUse::s_userCntGbl; }
void user2p(void* userp) { user2u(VNUser(userp)); }
int user2() const { return user2u().toInt(); }
void user2(int val) { user2u(VNUser(val)); }
int user2Inc(int val=1) { int v=user2(); user2(v+val); return v; }
int user2SetOnce() { int v=user2(); if (!v) user2(1); return v; } // Better for cache than user2Inc()
static void user2ClearTree() { VNUser2InUse::clear(); } // Clear userp()'s across the entire tree
VNUser user3u() const {
// Slows things down measurably, so disabled by default
//UASSERT_STATIC(VNUser3InUse::s_userBusy, "userp set w/o busy");
return ((m_user3Cnt==VNUser3InUse::s_userCntGbl) ? m_user3u : VNUser(0));
}
AstNode* user3p() const { return user3u().toNodep(); }
void user3u(const VNUser& user) { m_user3u=user; m_user3Cnt=VNUser3InUse::s_userCntGbl; }
void user3p(void* userp) { user3u(VNUser(userp)); }
int user3() const { return user3u().toInt(); }
void user3(int val) { user3u(VNUser(val)); }
int user3Inc(int val=1) { int v=user3(); user3(v+val); return v; }
int user3SetOnce() { int v=user3(); if (!v) user3(1); return v; } // Better for cache than user3Inc()
static void user3ClearTree() { VNUser3InUse::clear(); } // Clear userp()'s across the entire tree
VNUser user4u() const {
// Slows things down measurably, so disabled by default
//UASSERT_STATIC(VNUser4InUse::s_userBusy, "userp set w/o busy");
return ((m_user4Cnt==VNUser4InUse::s_userCntGbl) ? m_user4u : VNUser(0));
}
AstNode* user4p() const { return user4u().toNodep(); }
void user4u(const VNUser& user) { m_user4u=user; m_user4Cnt=VNUser4InUse::s_userCntGbl; }
void user4p(void* userp) { user4u(VNUser(userp)); }
int user4() const { return user4u().toInt(); }
void user4(int val) { user4u(VNUser(val)); }
int user4Inc(int val=1) { int v=user4(); user4(v+val); return v; }
int user4SetOnce() { int v=user4(); if (!v) user4(1); return v; } // Better for cache than user4Inc()
static void user4ClearTree() { VNUser4InUse::clear(); } // Clear userp()'s across the entire tree
VNUser user5u() const {
// Slows things down measurably, so disabled by default
//UASSERT_STATIC(VNUser5InUse::s_userBusy, "userp set w/o busy");
return ((m_user5Cnt==VNUser5InUse::s_userCntGbl) ? m_user5u : VNUser(0));
}
AstNode* user5p() const { return user5u().toNodep(); }
void user5u(const VNUser& user) { m_user5u=user; m_user5Cnt=VNUser5InUse::s_userCntGbl; }
void user5p(void* userp) { user5u(VNUser(userp)); }
int user5() const { return user5u().toInt(); }
void user5(int val) { user5u(VNUser(val)); }
int user5Inc(int val=1) { int v=user5(); user5(v+val); return v; }
int user5SetOnce() { int v=user5(); if (!v) user5(1); return v; } // Better for cache than user5Inc()
static void user5ClearTree() { VNUser5InUse::clear(); } // Clear userp()'s across the entire tree
// clang-format on
uint64_t editCount() const { return m_editCount; }
void editCountInc() {
m_editCount = ++s_editCntGbl; // Preincrement, so can "watch AstNode::s_editCntGbl=##"
}
static uint64_t editCountLast() { return s_editCntLast; }
static uint64_t editCountGbl() { return s_editCntGbl; }
static void editCountSetLast() { s_editCntLast = editCountGbl(); }
// ACCESSORS for specific types
// Alas these can't be virtual or they break when passed a nullptr
bool isZero() const;
bool isOne() const;
bool isNeqZero() const;
bool isAllOnes() const;
bool isAllOnesV() const; // Verilog width rules apply
// METHODS - data type changes especially for initial creation
void dtypep(AstNodeDType* nodep) {
if (m_dtypep != nodep) {
m_dtypep = nodep;
editCountInc();
}
}
void dtypeFrom(const AstNode* fromp) {
if (fromp) dtypep(fromp->dtypep());
}
void dtypeChgSigned(bool flag = true);
void dtypeChgWidth(int width, int widthMin);
void dtypeChgWidthSigned(int width, int widthMin, VSigning numeric);
void dtypeSetBitUnsized(int width, int widthMin, VSigning numeric) {
dtypep(findBitDType(width, widthMin, numeric));
}
void dtypeSetBitSized(int width, VSigning numeric) {
dtypep(findBitDType(width, width, numeric)); // Since sized, widthMin is width
}
void dtypeSetLogicUnsized(int width, int widthMin, VSigning numeric) {
dtypep(findLogicDType(width, widthMin, numeric));
}
void dtypeSetLogicSized(int width, VSigning numeric) {
dtypep(findLogicDType(width, width, numeric)); // Since sized, widthMin is width
}
void dtypeSetBit() { dtypep(findBitDType()); }
void dtypeSetDouble() { dtypep(findDoubleDType()); }
void dtypeSetString() { dtypep(findStringDType()); }
void dtypeSetSigned32() { dtypep(findSigned32DType()); }
void dtypeSetUInt32() { dtypep(findUInt32DType()); } // Twostate
void dtypeSetUInt64() { dtypep(findUInt64DType()); } // Twostate
void dtypeSetEmptyQueue() { dtypep(findEmptyQueueDType()); }
void dtypeSetVoid() { dtypep(findVoidDType()); }
// Data type locators
AstNodeDType* findBitDType() const { return findBasicDType(VBasicDTypeKwd::LOGIC); }
AstNodeDType* findDoubleDType() const { return findBasicDType(VBasicDTypeKwd::DOUBLE); }
AstNodeDType* findStringDType() const { return findBasicDType(VBasicDTypeKwd::STRING); }
AstNodeDType* findSigned32DType() const { return findBasicDType(VBasicDTypeKwd::INTEGER); }
AstNodeDType* findUInt32DType() const { return findBasicDType(VBasicDTypeKwd::UINT32); }
AstNodeDType* findUInt64DType() const { return findBasicDType(VBasicDTypeKwd::UINT64); }
AstNodeDType* findCHandleDType() const { return findBasicDType(VBasicDTypeKwd::CHANDLE); }
AstNodeDType* findEmptyQueueDType() const;
AstNodeDType* findVoidDType() const;
AstNodeDType* findQueueIndexDType() const;
AstNodeDType* findBitDType(int width, int widthMin, VSigning numeric) const;
AstNodeDType* findLogicDType(int width, int widthMin, VSigning numeric) const;
AstNodeDType* findLogicRangeDType(const VNumRange& range, int widthMin,
VSigning numeric) const;
AstNodeDType* findBitRangeDType(const VNumRange& range, int widthMin, VSigning numeric) const;
AstNodeDType* findBasicDType(VBasicDTypeKwd kwd) const;
static AstBasicDType* findInsertSameDType(AstBasicDType* nodep);
// METHODS - dump and error
void v3errorEnd(std::ostringstream& str) const;
void v3errorEndFatal(std::ostringstream& str) const VL_ATTR_NORETURN;
string warnContextPrimary() const { return fileline()->warnContextPrimary(); }
string warnContextSecondary() const { return fileline()->warnContextSecondary(); }
string warnMore() const { return fileline()->warnMore(); }
string warnOther() const { return fileline()->warnOther(); }
virtual void dump(std::ostream& str = std::cout) const;
static void dumpGdb(const AstNode* nodep); // For GDB only
void dumpGdbHeader() const;
// METHODS - Tree modifications
// Returns nodep, adds newp to end of nodep's list
static AstNode* addNext(AstNode* nodep, AstNode* newp);
// Returns nodep, adds newp (maybe nullptr) to end of nodep's list
static AstNode* addNextNull(AstNode* nodep, AstNode* newp);
inline AstNode* addNext(AstNode* newp) { return addNext(this, newp); }
inline AstNode* addNextNull(AstNode* newp) { return addNextNull(this, newp); }
void addNextHere(AstNode* newp); // Insert newp at this->nextp
void addPrev(AstNode* newp) {
replaceWith(newp);
newp->addNext(this);
}
void addHereThisAsNext(AstNode* newp); // Adds at old place of this, this becomes next
void replaceWith(AstNode* newp); // Replace current node in tree with new node
AstNode* unlinkFrBack(VNRelinker* linkerp
= nullptr); // Unlink this from whoever points to it.
// Unlink this from whoever points to it, keep entire next list with unlinked node
AstNode* unlinkFrBackWithNext(VNRelinker* linkerp = nullptr);
void swapWith(AstNode* bp);
void relink(VNRelinker* linkerp); // Generally use linker->relink() instead
void cloneRelinkNode() { cloneRelink(); }
// Iterate and insert - assumes tree format
virtual void addNextStmt(AstNode* newp,
AstNode* belowp); // When calling, "this" is second argument
virtual void addBeforeStmt(AstNode* newp,
AstNode* belowp); // When calling, "this" is second argument
// METHODS - Iterate on a tree
// Clone or return nullptr if nullptr
static AstNode* cloneTreeNull(AstNode* nodep, bool cloneNextLink) {
return nodep ? nodep->cloneTree(cloneNextLink) : nullptr;
}
AstNode* cloneTree(bool cloneNextLink); // Not const, as sets clonep() on original nodep
bool gateTree() { return gateTreeIter(); } // Is tree isGateOptimizable?
bool sameTree(const AstNode* node2p) const; // Does tree of this == node2p?
// Does tree of this == node2p?, not allowing non-isGateOptimizable
bool sameGateTree(const AstNode* node2p) const;
void deleteTree(); // Always deletes the next link
void checkTree(); // User Interface version
void checkIter() const;
void dumpPtrs(std::ostream& os = std::cout) const;
void dumpTree(std::ostream& os = std::cout, const string& indent = " ",
int maxDepth = 0) const;
void dumpTree(const string& indent, int maxDepth = 0) const {
dumpTree(cout, indent, maxDepth);
}
static void dumpTreeGdb(const AstNode* nodep); // For GDB only
void dumpTreeAndNext(std::ostream& os = std::cout, const string& indent = " ",
int maxDepth = 0) const;
void dumpTreeFile(const string& filename, bool append = false, bool doDump = true,
bool doCheck = true);
static void dumpTreeFileGdb(const AstNode* nodep, const char* filenamep = nullptr);
// METHODS - queries
// Changes control flow, disable some optimizations
virtual bool isBrancher() const { return false; }
// Else a AstTime etc that can't be pushed out
virtual bool isGateOptimizable() const { return true; }
// GateDedupable is a slightly larger superset of GateOptimzable (eg, AstNodeIf)
virtual bool isGateDedupable() const { return isGateOptimizable(); }
// Else creates output or exits, etc, not unconsumed
virtual bool isOutputter() const { return false; }
// Else a AstTime etc which output can't be predicted from input
virtual bool isPredictOptimizable() const { return true; }
// Else a $display, etc, that must be ordered with other displays
virtual bool isPure() const { return true; }
// Else a AstTime etc that can't be substituted out
virtual bool isSubstOptimizable() const { return true; }
// isUnlikely handles $stop or similar statement which means an above IF
// statement is unlikely to be taken
virtual bool isUnlikely() const { return false; }
virtual int instrCount() const { return 0; }
virtual bool same(const AstNode*) const { return true; }
// Iff has a data type; dtype() must be non null
virtual bool hasDType() const { return false; }
// Iff has a non-null childDTypep(), as generic node function
virtual AstNodeDType* getChildDTypep() const { return nullptr; }
// Iff has a non-null child2DTypep(), as generic node function
virtual AstNodeDType* getChild2DTypep() const { return nullptr; }
// Another AstNode* may have a pointer into this node, other then normal front/back/etc.
virtual bool maybePointedTo() const { return false; }
// Don't reclaim this node in V3Dead
virtual bool undead() const { return false; }
// Check if node is consistent, return nullptr if ok, else reason string
virtual const char* broken() const { return nullptr; }
// INVOKERS
virtual void accept(VNVisitor& v) = 0;
protected:
// All VNVisitor related functions are called as methods off the visitor
friend class VNVisitor;
// Use instead VNVisitor::iterateChildren
void iterateChildren(VNVisitor& v);
// Use instead VNVisitor::iterateChildrenBackwards
void iterateChildrenBackwards(VNVisitor& v);
// Use instead VNVisitor::iterateChildrenConst
void iterateChildrenConst(VNVisitor& v);
// Use instead VNVisitor::iterateAndNextNull
void iterateAndNext(VNVisitor& v);
// Use instead VNVisitor::iterateAndNextConstNull
void iterateAndNextConst(VNVisitor& v);
// Use instead VNVisitor::iterateSubtreeReturnEdits
AstNode* iterateSubtreeReturnEdits(VNVisitor& v);
private:
void iterateListBackwards(VNVisitor& v);
// For internal use only.
// Note: specializations for particular node types are provided by 'astgen'
template <typename T>
inline static bool privateTypeTest(const AstNode* nodep);
// For internal use only.
template <typename TargetType, typename DeclType>
constexpr static bool uselessCast() {
using NonRef = typename std::remove_reference<DeclType>::type;
using NonPtr = typename std::remove_pointer<NonRef>::type;
using NonCV = typename std::remove_cv<NonPtr>::type;
return std::is_base_of<TargetType, NonCV>::value;
}
// For internal use only.
template <typename TargetType, typename DeclType>
constexpr static bool impossibleCast() {
using NonRef = typename std::remove_reference<DeclType>::type;
using NonPtr = typename std::remove_pointer<NonRef>::type;
using NonCV = typename std::remove_cv<NonPtr>::type;
return !std::is_base_of<NonCV, TargetType>::value;
}
public:
// For use via the VN_IS macro only
template <typename T, typename E>
inline static bool privateIs(const AstNode* nodep) {
static_assert(!uselessCast<T, E>(), "Unnecessary VN_IS, node known to have target type.");
static_assert(!impossibleCast<T, E>(), "Unnecessary VN_IS, node cannot be this type.");
return nodep && privateTypeTest<T>(nodep);
}
// For use via the VN_CAST macro only
template <typename T, typename E>
inline static T* privateCast(AstNode* nodep) {
static_assert(!uselessCast<T, E>(),
"Unnecessary VN_CAST, node known to have target type.");
static_assert(!impossibleCast<T, E>(), "Unnecessary VN_CAST, node cannot be this type.");
return nodep && privateTypeTest<T>(nodep) ? reinterpret_cast<T*>(nodep) : nullptr;
}
template <typename T, typename E>
inline static const T* privateCast(const AstNode* nodep) {
static_assert(!uselessCast<T, E>(),
"Unnecessary VN_CAST, node known to have target type.");
static_assert(!impossibleCast<T, E>(), "Unnecessary VN_CAST, node cannot be this type.");
return nodep && privateTypeTest<T>(nodep) ? reinterpret_cast<const T*>(nodep) : nullptr;
}
// For use via the VN_AS macro only
template <typename T, typename E>
inline static T* privateAs(AstNode* nodep) {
static_assert(!uselessCast<T, E>(), "Unnecessary VN_AS, node known to have target type.");
static_assert(!impossibleCast<T, E>(), "Unnecessary VN_AS, node cannot be this type.");
UASSERT_OBJ(!nodep || privateTypeTest<T>(nodep), nodep,
"AstNode is not of expected type, but instead has type '" << nodep->typeName()
<< "'");
return reinterpret_cast<T*>(nodep);
}
template <typename T, typename E>
inline static const T* privateAs(const AstNode* nodep) {
static_assert(!uselessCast<T, E>(), "Unnecessary VN_AS, node known to have target type.");
static_assert(!impossibleCast<T, E>(), "Unnecessary VN_AS, node cannot be this type.");
UASSERT_OBJ(!nodep || privateTypeTest<T>(nodep), nodep,
"AstNode is not of expected type, but instead has type '" << nodep->typeName()
<< "'");
return reinterpret_cast<const T*>(nodep);
}
// Predicate that returns true if the given 'nodep' might have a descendant of type 'T_Node'.
// This is conservative and is used to speed up traversals.
// Note: specializations for particular node types are provided below
template <typename T_Node>
static bool mayBeUnder(const AstNode* nodep) {
static_assert(!std::is_const<T_Node>::value,
"Type parameter 'T_Node' should not be const qualified");
static_assert(std::is_base_of<AstNode, T_Node>::value,
"Type parameter 'T_Node' must be a subtype of AstNode");
return true;
}
// Predicate that is true for node subtypes 'T_Node' that do not have any children
// This is conservative and is used to speed up traversals.
// Note: specializations for particular node types are provided below
template <typename T_Node>
static constexpr bool isLeaf() {
static_assert(!std::is_const<T_Node>::value,
"Type parameter 'T_Node' should not be const qualified");
static_assert(std::is_base_of<AstNode, T_Node>::value,
"Type parameter 'T_Node' must be a subtype of AstNode");
return false;
}
private:
// Using std::conditional for const correctness in the public 'foreach' functions
template <typename T_Arg>
using ConstCorrectAstNode =
typename std::conditional<std::is_const<T_Arg>::value, const AstNode, AstNode>::type;
template <typename T_Arg>
inline static void foreachImpl(ConstCorrectAstNode<T_Arg>* nodep,
const std::function<void(T_Arg*)>& f, bool visitNext);
template <typename T_Arg, bool Default>
inline static bool predicateImpl(ConstCorrectAstNode<T_Arg>* nodep,
const std::function<bool(T_Arg*)>& p);
template <typename T_Node>
constexpr static bool checkTypeParameter() {
static_assert(!std::is_const<T_Node>::value,
"Type parameter 'T_Node' should not be const qualified");
static_assert(std::is_base_of<AstNode, T_Node>::value,
"Type parameter 'T_Node' must be a subtype of AstNode");
return true;
}
public:
// Traverse subtree and call given function 'f' in pre-order on each node that has type
// 'T_Node'. The node passd to the function 'f' can be removed or replaced, but other editing
// of the iterated tree is not safe. Prefer 'foreach' over simple VNVisitor that only needs to
// handle a single (or a few) node types, as it's easier to write, but more importantly, the
// dispatch to the operation function in 'foreach' should be completely predictable by branch
// target caches in modern CPUs, while it is basically unpredictable for VNVisitor.
template <typename T_Node>
void foreach (std::function<void(T_Node*)> f) {
static_assert(checkTypeParameter<T_Node>(), "Invalid type parameter 'T_Node'");
foreachImpl<T_Node>(this, f, /* visitNext: */ false);
}
// Same as above, but for 'const' nodes
template <typename T_Node>
void foreach (std::function<void(const T_Node*)> f) const {
static_assert(checkTypeParameter<T_Node>(), "Invalid type parameter 'T_Node'");
foreachImpl<const T_Node>(this, f, /* visitNext: */ false);
}
// Same as 'foreach' but also follows 'this->nextp()'
template <typename T_Node>
void foreachAndNext(std::function<void(T_Node*)> f) {
static_assert(checkTypeParameter<T_Node>(), "Invalid type parameter 'T_Node'");
foreachImpl<T_Node>(this, f, /* visitNext: */ true);
}
// Same as 'foreach' but also follows 'this->nextp()'
template <typename T_Node>
void foreachAndNext(std::function<void(const T_Node*)> f) const {
static_assert(checkTypeParameter<T_Node>(), "Invalid type parameter 'T_Node'");
foreachImpl<const T_Node>(this, f, /* visitNext: */ true);
}
// Given a predicate function 'p' return true if and only if there exists a node of type
// 'T_Node' that satisfies the predicate 'p'. Returns false if no node of type 'T_Node' is
// present. Traversal is performed in some arbitrary order and is terminated as soon as the
// result can be determined.
template <typename T_Node>
bool exists(std::function<bool(T_Node*)> p) {
static_assert(checkTypeParameter<T_Node>(), "Invalid type parameter 'T_Node'");
return predicateImpl<T_Node, /* Default: */ false>(this, p);
}
// Same as above, but for 'const' nodes
template <typename T_Node>
bool exists(std::function<bool(const T_Node*)> p) const {
static_assert(checkTypeParameter<T_Node>(), "Invalid type parameter 'T_Node'");
return predicateImpl<const T_Node, /* Default: */ false>(this, p);
}
// Given a predicate function 'p' return true if and only if all nodes of type
// 'T_Node' satisfy the predicate 'p'. Returns true if no node of type 'T_Node' is
// present. Traversal is performed in some arbitrary order and is terminated as soon as the
// result can be determined.
template <typename T_Node>
bool forall(std::function<bool(T_Node*)> p) {
static_assert(checkTypeParameter<T_Node>(), "Invalid type parameter 'T_Node'");
return predicateImpl<T_Node, /* Default: */ true>(this, p);
}
// Same as above, but for 'const' nodes
template <typename T_Node>
bool forall(std::function<bool(const T_Node*)> p) const {
static_assert(checkTypeParameter<T_Node>(), "Invalid type parameter 'T_Node'");
return predicateImpl<const T_Node, /* Default: */ true>(this, p);
}
int nodeCount() const {
// TODO: this should really return size_t, but need to fix use sites
int count = 0;
this->foreach<AstNode>([&count](const AstNode*) { ++count; });
return count;
}
};
// Specialisations of privateTypeTest
#include "V3Ast__gen_impl.h" // From ./astgen
// Specializations of AstNode::mayBeUnder
template <>
inline bool AstNode::mayBeUnder<AstCell>(const AstNode* nodep) {
return !VN_IS(nodep, NodeStmt) && !VN_IS(nodep, NodeMath);
}
template <>
inline bool AstNode::mayBeUnder<AstNodeAssign>(const AstNode* nodep) {
return !VN_IS(nodep, NodeMath);
}
template <>
inline bool AstNode::mayBeUnder<AstVarScope>(const AstNode* nodep) {
if (VN_IS(nodep, VarScope)) return false; // Should not nest
if (VN_IS(nodep, Var)) return false;
if (VN_IS(nodep, Active)) return false;
if (VN_IS(nodep, NodeStmt)) return false;
if (VN_IS(nodep, NodeMath)) return false;
return true;
}
template <>
inline bool AstNode::mayBeUnder<AstExecGraph>(const AstNode* nodep) {
if (VN_IS(nodep, ExecGraph)) return false; // Should not nest
if (VN_IS(nodep, NodeStmt)) return false; // Should be directly under CFunc
return true;
}
template <>
inline bool AstNode::mayBeUnder<AstActive>(const AstNode* nodep) {
return !VN_IS(nodep, Active); // AstActives do not nest
}
template <>
inline bool AstNode::mayBeUnder<AstScope>(const AstNode* nodep) {
return !VN_IS(nodep, Scope); // AstScopes do not nest
}
template <>
inline bool AstNode::mayBeUnder<AstSenTree>(const AstNode* nodep) {
return !VN_IS(nodep, SenTree); // AstSenTree do not nest
}
// Specializations of AstNode::isLeaf
template <>
constexpr bool AstNode::isLeaf<AstNodeVarRef>() {
return true;
}
template <>
constexpr bool AstNode::isLeaf<AstVarRef>() {
return true;
}
template <>
constexpr bool AstNode::isLeaf<AstVarXRef>() {
return true;
}
// foreach implementation
template <typename T_Arg>
void AstNode::foreachImpl(ConstCorrectAstNode<T_Arg>* nodep, const std::function<void(T_Arg*)>& f,
bool visitNext) {
// Checking the function is bound up front eliminates this check from the loop at invocation
if (!f) {
nodep->v3fatal("AstNode::foreach called with unbound function"); // LCOV_EXCL_LINE
} else {
// Pre-order traversal implemented directly (without recursion) for speed reasons. The very
// first iteration (the one that operates on the input nodep) is special, as we might or
// might not need to enqueue nodep->nextp() depending on VisitNext, while in all other
// iterations, we do want to enqueue nodep->nextp(). Duplicating code (via
// 'foreachImplVisit') for the initial iteration here to avoid an extra branch in the loop
using T_Arg_NonConst = typename std::remove_const<T_Arg>::type;
using Node = ConstCorrectAstNode<T_Arg>;
// Traversal stack
std::vector<Node*> stack; // Kept as a vector for easy resizing
Node** basep = nullptr; // Pointer to base of stack
Node** topp = nullptr; // Pointer to top of stack
Node** limp = nullptr; // Pointer to stack limit (when need growing)
// We prefetch this far into the stack
constexpr int prefetchDistance = 2;
// Grow stack to given size
const auto grow = [&](size_t size) VL_ATTR_ALWINLINE {
const ptrdiff_t occupancy = topp - basep;
stack.resize(size);
basep = stack.data() + prefetchDistance;
topp = basep + occupancy;
limp = basep + size - 5; // We push max 5 items per iteration
};
// Initial stack size
grow(32);
// We want some non-null pointers at the beginning. These will be prefetched, but not
// visited, so the root node will suffice. This eliminates needing branches in the loop.
for (int i = -prefetchDistance; i; ++i) basep[i] = nodep;
// Visit given node, enqueue children for traversal
const auto visit = [&](Node* currp) VL_ATTR_ALWINLINE {
// Type test this node
if (AstNode::privateTypeTest<T_Arg_NonConst>(currp)) {
// Call the client function
f(static_cast<T_Arg*>(currp));
// Short circuit if iterating leaf nodes
if VL_CONSTEXPR_CXX17 (isLeaf<T_Arg_NonConst>()) return;
}
// Enqueue children for traversal, unless futile
if (mayBeUnder<T_Arg_NonConst>(currp)) {
if (AstNode* const op4p = currp->op4p()) *topp++ = op4p;
if (AstNode* const op3p = currp->op3p()) *topp++ = op3p;
if (AstNode* const op2p = currp->op2p()) *topp++ = op2p;
if (AstNode* const op1p = currp->op1p()) *topp++ = op1p;
}
};
// Enqueue the next of the root node, if required
if (visitNext && nodep->nextp()) *topp++ = nodep->nextp();
// Visit the root node
visit(nodep);
// Visit the rest of the tree
while (VL_LIKELY(topp > basep)) {
// Pop next node in the traversal
Node* const headp = *--topp;
// Prefetch in case we are ascending the tree
ASTNODE_PREFETCH_NON_NULL(topp[-prefetchDistance]);
// Ensure we have stack space for nextp and the 4 children
if (VL_UNLIKELY(topp >= limp)) grow(stack.size() * 2);
// Enqueue the next node
if (headp->nextp()) *topp++ = headp->nextp();
// Visit the head node
visit(headp);
}
}
}
// predicate implementation
template <typename T_Arg, bool Default>
bool AstNode::predicateImpl(ConstCorrectAstNode<T_Arg>* nodep,
const std::function<bool(T_Arg*)>& p) {
// Implementation similar to foreach, but abort traversal as soon as result is determined.
if (!p) {
nodep->v3fatal("AstNode::foreach called with unbound function"); // LCOV_EXCL_LINE
} else {
using T_Arg_NonConst = typename std::remove_const<T_Arg>::type;
using Node = ConstCorrectAstNode<T_Arg>;
// Traversal stack
std::vector<Node*> stack; // Kept as a vector for easy resizing
Node** basep = nullptr; // Pointer to base of stack
Node** topp = nullptr; // Pointer to top of stack
Node** limp = nullptr; // Pointer to stack limit (when need growing)
// We prefetch this far into the stack
constexpr int prefetchDistance = 2;
// Grow stack to given size
const auto grow = [&](size_t size) VL_ATTR_ALWINLINE {
const ptrdiff_t occupancy = topp - basep;
stack.resize(size);
basep = stack.data() + prefetchDistance;
topp = basep + occupancy;
limp = basep + size - 5; // We push max 5 items per iteration
};
// Initial stack size
grow(32);
// We want some non-null pointers at the beginning. These will be prefetched, but not
// visited, so the root node will suffice. This eliminates needing branches in the loop.
for (int i = -prefetchDistance; i; ++i) basep[i] = nodep;
// Visit given node, enqueue children for traversal, return true if result determined.
const auto visit = [&](Node* currp) VL_ATTR_ALWINLINE {
// Type test this node
if (AstNode::privateTypeTest<T_Arg_NonConst>(currp)) {
// Call the client function
if (p(static_cast<T_Arg*>(currp)) != Default) return true;
// Short circuit if iterating leaf nodes
if VL_CONSTEXPR_CXX17 (isLeaf<T_Arg_NonConst>()) return false;
}
// Enqueue children for traversal, unless futile
if (mayBeUnder<T_Arg_NonConst>(currp)) {
if (AstNode* const op4p = currp->op4p()) *topp++ = op4p;
if (AstNode* const op3p = currp->op3p()) *topp++ = op3p;
if (AstNode* const op2p = currp->op2p()) *topp++ = op2p;
if (AstNode* const op1p = currp->op1p()) *topp++ = op1p;
}
return false;
};
// Visit the root node
if (visit(nodep)) return !Default;
// Visit the rest of the tree
while (VL_LIKELY(topp > basep)) {
// Pop next node in the traversal
Node* const headp = *--topp;
// Prefetch in case we are ascending the tree
ASTNODE_PREFETCH_NON_NULL(topp[-prefetchDistance]);
// Ensure we have stack space for nextp and the 4 children
if (VL_UNLIKELY(topp >= limp)) grow(stack.size() * 2);
// Enqueue the next node
if (headp->nextp()) *topp++ = headp->nextp();
// Visit the head node
if (visit(headp)) return !Default;
}
return Default;
}
}
inline std::ostream& operator<<(std::ostream& os, const AstNode* rhs) {
if (!rhs) {
os << "nullptr";
} else {
rhs->dump(os);
}
return os;
}
inline void VNRelinker::relink(AstNode* newp) { newp->AstNode::relink(this); }
//######################################################################
// VNRef is std::reference_wrapper that can only hold AstNode subtypes
template <typename T_Node>
class VNRef final : public std::reference_wrapper<T_Node> {
static_assert(std::is_base_of<AstNode, T_Node>::value,
"Type parameter 'T_Node' must be a subtype of AstNode");
public:
template <typename U>
VNRef(U&& x)
: std::reference_wrapper<T_Node>{x} {}
VNRef(const std::reference_wrapper<T_Node>& other)
: std::reference_wrapper<T_Node>{other} {}
};
static_assert(sizeof(VNRef<AstNode>) == sizeof(std::reference_wrapper<AstNode>),
"VNRef should not contain extra members");
// Specializations of std::hash and std::equal_to for VNRef. This in turn
// enables us to use for example std::unordered_set<VNRef<AstNode>> for
// sets using equality (AstNode::sameTree) rather than identity comparisons,
// without having to copy nodes into the collections.
// Forward declaration to avoid including V3Hasher.h which needs V3Ast.h (this file).
size_t V3HasherUncachedHash(const AstNode&);
// Specialization of std::hash for VNRef
template <typename T_Node>
struct std::hash<VNRef<T_Node>> final {
size_t operator()(VNRef<T_Node> r) const { return V3HasherUncachedHash(r); }
};
// Specialization of std::equal_to for VNRef
template <typename T_Node>
struct std::equal_to<VNRef<T_Node>> final {
size_t operator()(VNRef<T_Node> ra, VNRef<T_Node> rb) const {
return ra.get().sameTree(&(rb.get()));
}
};
//######################################################################
//=== AstNode* : Derived generic node types
#define ASTNODE_BASE_FUNCS(name) \
virtual ~Ast##name() override = default; \
static Ast##name* cloneTreeNull(Ast##name* nodep, bool cloneNextLink) { \
return nodep ? nodep->cloneTree(cloneNextLink) : nullptr; \
} \
Ast##name* cloneTree(bool cloneNext) { \
return static_cast<Ast##name*>(AstNode::cloneTree(cloneNext)); \
} \
Ast##name* clonep() const { return static_cast<Ast##name*>(AstNode::clonep()); }
class AstNodeMath VL_NOT_FINAL : public AstNode {
// Math -- anything that's part of an expression tree
protected:
AstNodeMath(VNType t, FileLine* fl)
: AstNode{t, fl} {}
public:
ASTNODE_BASE_FUNCS(NodeMath)
// METHODS
virtual void dump(std::ostream& str) const override;
virtual bool hasDType() const override { return true; }
virtual string emitVerilog() = 0; /// Format string for verilog writing; see V3EmitV
// For documentation on emitC format see EmitCFunc::emitOpName
virtual string emitC() = 0;
virtual string emitSimpleOperator() { return ""; } // "" means not ok to use
virtual bool emitCheckMaxWords() { return false; } // Check VL_MULS_MAX_WORDS
virtual bool cleanOut() const = 0; // True if output has extra upper bits zero
// Someday we will generically support data types on every math node
// Until then isOpaque indicates we shouldn't constant optimize this node type
bool isOpaque() const { return VN_IS(this, CvtPackString); }
};
class AstNodeTermop VL_NOT_FINAL : public AstNodeMath {
// Terminal operator -- a operator with no "inputs"
protected:
AstNodeTermop(VNType t, FileLine* fl)
: AstNodeMath{t, fl} {}
public:
ASTNODE_BASE_FUNCS(NodeTermop)
// Know no children, and hot function, so skip iterator for speed
// See checkTreeIter also that asserts no children
// cppcheck-suppress functionConst
void iterateChildren(VNVisitor& v) {}
virtual void dump(std::ostream& str) const override;
};
class AstNodeUniop VL_NOT_FINAL : public AstNodeMath {
// Unary math
protected:
AstNodeUniop(VNType t, FileLine* fl, AstNode* lhsp)
: AstNodeMath{t, fl} {
dtypeFrom(lhsp);
setOp1p(lhsp);
}
public:
ASTNODE_BASE_FUNCS(NodeUniop)
AstNode* lhsp() const { return op1p(); }
void lhsp(AstNode* nodep) { return setOp1p(nodep); }
// METHODS
virtual void dump(std::ostream& str) const override;
// Set out to evaluation of a AstConst'ed lhs
virtual void numberOperate(V3Number& out, const V3Number& lhs) = 0;
virtual bool cleanLhs() const = 0;
virtual bool sizeMattersLhs() const = 0; // True if output result depends on lhs size
virtual bool doubleFlavor() const { return false; } // D flavor of nodes with both flavors?
// Signed flavor of nodes with both flavors?
virtual bool signedFlavor() const { return false; }
virtual bool stringFlavor() const { return false; } // N flavor of nodes with both flavors?
virtual int instrCount() const override { return widthInstrs(); }
virtual bool same(const AstNode*) const override { return true; }
};
class AstNodeBiop VL_NOT_FINAL : public AstNodeMath {
// Binary math
protected:
AstNodeBiop(VNType t, FileLine* fl, AstNode* lhs, AstNode* rhs)
: AstNodeMath{t, fl} {
setOp1p(lhs);
setOp2p(rhs);
}
public:
ASTNODE_BASE_FUNCS(NodeBiop)
// Clone single node, just get same type back.
virtual AstNode* cloneType(AstNode* lhsp, AstNode* rhsp) = 0;
// ACCESSORS
AstNode* lhsp() const { return op1p(); }
AstNode* rhsp() const { return op2p(); }
void lhsp(AstNode* nodep) { return setOp1p(nodep); }
void rhsp(AstNode* nodep) { return setOp2p(nodep); }
// METHODS
// Set out to evaluation of a AstConst'ed
virtual void numberOperate(V3Number& out, const V3Number& lhs, const V3Number& rhs) = 0;
virtual bool cleanLhs() const = 0; // True if LHS must have extra upper bits zero
virtual bool cleanRhs() const = 0; // True if RHS must have extra upper bits zero
virtual bool sizeMattersLhs() const = 0; // True if output result depends on lhs size
virtual bool sizeMattersRhs() const = 0; // True if output result depends on rhs size
virtual bool doubleFlavor() const { return false; } // D flavor of nodes with both flavors?
// Signed flavor of nodes with both flavors?
virtual bool signedFlavor() const { return false; }
virtual bool stringFlavor() const { return false; } // N flavor of nodes with both flavors?
virtual int instrCount() const override { return widthInstrs(); }
virtual bool same(const AstNode*) const override { return true; }
};
class AstNodeTriop VL_NOT_FINAL : public AstNodeMath {
// Trinary math
protected:
AstNodeTriop(VNType t, FileLine* fl, AstNode* lhs, AstNode* rhs, AstNode* ths)
: AstNodeMath{t, fl} {
setOp1p(lhs);
setOp2p(rhs);
setOp3p(ths);
}
public:
ASTNODE_BASE_FUNCS(NodeTriop)
AstNode* lhsp() const { return op1p(); }
AstNode* rhsp() const { return op2p(); }
AstNode* thsp() const { return op3p(); }
void lhsp(AstNode* nodep) { return setOp1p(nodep); }
void rhsp(AstNode* nodep) { return setOp2p(nodep); }
void thsp(AstNode* nodep) { return setOp3p(nodep); }
// METHODS
virtual void dump(std::ostream& str) const override;
// Set out to evaluation of a AstConst'ed
virtual void numberOperate(V3Number& out, const V3Number& lhs, const V3Number& rhs,
const V3Number& ths)
= 0;
virtual bool cleanLhs() const = 0; // True if LHS must have extra upper bits zero
virtual bool cleanRhs() const = 0; // True if RHS must have extra upper bits zero
virtual bool cleanThs() const = 0; // True if THS must have extra upper bits zero
virtual bool sizeMattersLhs() const = 0; // True if output result depends on lhs size
virtual bool sizeMattersRhs() const = 0; // True if output result depends on rhs size
virtual bool sizeMattersThs() const = 0; // True if output result depends on ths size
virtual int instrCount() const override { return widthInstrs(); }
virtual bool same(const AstNode*) const override { return true; }
};
class AstNodeQuadop VL_NOT_FINAL : public AstNodeMath {
// Quaternary math
protected:
AstNodeQuadop(VNType t, FileLine* fl, AstNode* lhs, AstNode* rhs, AstNode* ths, AstNode* fhs)
: AstNodeMath{t, fl} {
setOp1p(lhs);
setOp2p(rhs);
setOp3p(ths);
setOp4p(fhs);
}
public:
ASTNODE_BASE_FUNCS(NodeQuadop)
AstNode* lhsp() const { return op1p(); }
AstNode* rhsp() const { return op2p(); }
AstNode* thsp() const { return op3p(); }
AstNode* fhsp() const { return op4p(); }
void lhsp(AstNode* nodep) { return setOp1p(nodep); }
void rhsp(AstNode* nodep) { return setOp2p(nodep); }
void thsp(AstNode* nodep) { return setOp3p(nodep); }
void fhsp(AstNode* nodep) { return setOp4p(nodep); }
// METHODS
// Set out to evaluation of a AstConst'ed
virtual void numberOperate(V3Number& out, const V3Number& lhs, const V3Number& rhs,
const V3Number& ths, const V3Number& fhs)
= 0;
virtual bool cleanLhs() const = 0; // True if LHS must have extra upper bits zero
virtual bool cleanRhs() const = 0; // True if RHS must have extra upper bits zero
virtual bool cleanThs() const = 0; // True if THS must have extra upper bits zero
virtual bool cleanFhs() const = 0; // True if THS must have extra upper bits zero
virtual bool sizeMattersLhs() const = 0; // True if output result depends on lhs size
virtual bool sizeMattersRhs() const = 0; // True if output result depends on rhs size
virtual bool sizeMattersThs() const = 0; // True if output result depends on ths size
virtual bool sizeMattersFhs() const = 0; // True if output result depends on ths size
virtual int instrCount() const override { return widthInstrs(); }
virtual bool same(const AstNode*) const override { return true; }
};
class AstNodeBiCom VL_NOT_FINAL : public AstNodeBiop {
// Binary math with commutative properties
protected:
AstNodeBiCom(VNType t, FileLine* fl, AstNode* lhs, AstNode* rhs)
: AstNodeBiop{t, fl, lhs, rhs} {}
public:
ASTNODE_BASE_FUNCS(NodeBiCom)
};
class AstNodeBiComAsv VL_NOT_FINAL : public AstNodeBiCom {
// Binary math with commutative & associative properties
protected:
AstNodeBiComAsv(VNType t, FileLine* fl, AstNode* lhs, AstNode* rhs)
: AstNodeBiCom{t, fl, lhs, rhs} {}
public:
ASTNODE_BASE_FUNCS(NodeBiComAsv)
};
class AstNodeCond VL_NOT_FINAL : public AstNodeTriop {
protected:
AstNodeCond(VNType t, FileLine* fl, AstNode* condp, AstNode* expr1p, AstNode* expr2p)
: AstNodeTriop{t, fl, condp, expr1p, expr2p} {
if (expr1p) {
dtypeFrom(expr1p);
} else if (expr2p) {
dtypeFrom(expr2p);
}
}
public:
ASTNODE_BASE_FUNCS(NodeCond)
virtual void numberOperate(V3Number& out, const V3Number& lhs, const V3Number& rhs,
const V3Number& ths) override;
AstNode* condp() const { return op1p(); } // op1 = Condition
AstNode* expr1p() const { return op2p(); } // op2 = If true...
AstNode* expr2p() const { return op3p(); } // op3 = If false...
virtual string emitVerilog() override { return "%k(%l %f? %r %k: %t)"; }
virtual string emitC() override { return "VL_COND_%nq%lq%rq%tq(%nw, %P, %li, %ri, %ti)"; }
virtual bool cleanOut() const override { return false; } // clean if e1 & e2 clean
virtual bool cleanLhs() const override { return true; }
virtual bool cleanRhs() const override { return false; }
virtual bool cleanThs() const override { return false; } // Propagates up
virtual bool sizeMattersLhs() const override { return false; }
virtual bool sizeMattersRhs() const override { return false; }
virtual bool sizeMattersThs() const override { return false; }
virtual int instrCount() const override { return INSTR_COUNT_BRANCH; }
virtual AstNode* cloneType(AstNode* condp, AstNode* expr1p, AstNode* expr2p) = 0;
};
class AstNodeBlock VL_NOT_FINAL : public AstNode {
// A Begin/fork block
// Parents: statement
// Children: statements
private:
string m_name; // Name of block
bool m_unnamed; // Originally unnamed (name change does not affect this)
protected:
AstNodeBlock(VNType t, FileLine* fl, const string& name, AstNode* stmtsp)
: AstNode{t, fl}
, m_name{name} {
addNOp1p(stmtsp);
m_unnamed = (name == "");
}
public:
ASTNODE_BASE_FUNCS(NodeBlock)
virtual void dump(std::ostream& str) const override;
virtual string name() const override { return m_name; } // * = Block name
virtual void name(const string& name) override { m_name = name; }
// op1 = Statements
AstNode* stmtsp() const { return op1p(); } // op1 = List of statements
void addStmtsp(AstNode* nodep) { addNOp1p(nodep); }
bool unnamed() const { return m_unnamed; }
bool isFirstInMyListOfStatements(AstNode* nodep) const override { return nodep == stmtsp(); }
};
class AstNodePreSel VL_NOT_FINAL : public AstNode {
// Something that becomes an AstSel
protected:
AstNodePreSel(VNType t, FileLine* fl, AstNode* fromp, AstNode* rhs, AstNode* ths)
: AstNode{t, fl} {
setOp1p(fromp);
setOp2p(rhs);
setNOp3p(ths);
}
public:
ASTNODE_BASE_FUNCS(NodePreSel)
AstNode* fromp() const { return op1p(); }
AstNode* rhsp() const { return op2p(); }
AstNode* thsp() const { return op3p(); }
AstAttrOf* attrp() const { return VN_AS(op4p(), AttrOf); }
void fromp(AstNode* nodep) { return setOp1p(nodep); }
void rhsp(AstNode* nodep) { return setOp2p(nodep); }
void thsp(AstNode* nodep) { return setOp3p(nodep); }
void attrp(AstAttrOf* nodep) { return setOp4p(reinterpret_cast<AstNode*>(nodep)); }
// METHODS
virtual bool same(const AstNode*) const override { return true; }
};
class AstNodeProcedure VL_NOT_FINAL : public AstNode {
// IEEE procedure: initial, final, always
protected:
AstNodeProcedure(VNType t, FileLine* fl, AstNode* bodysp)
: AstNode{t, fl} {
addNOp2p(bodysp);
}
public:
ASTNODE_BASE_FUNCS(NodeProcedure)
// METHODS
virtual void dump(std::ostream& str) const override;
AstNode* bodysp() const { return op2p(); } // op2 = Statements to evaluate
void addStmtp(AstNode* nodep) { addOp2p(nodep); }
bool isJustOneBodyStmt() const { return bodysp() && !bodysp()->nextp(); }
};
class AstNodeStmt VL_NOT_FINAL : public AstNode {
// Statement -- anything that's directly under a function
bool m_statement; // Really a statement (e.g. not a function with return)
protected:
AstNodeStmt(VNType t, FileLine* fl, bool statement = true)
: AstNode{t, fl}
, m_statement{statement} {}
public:
ASTNODE_BASE_FUNCS(NodeStmt)
// METHODS
bool isStatement() const { return m_statement; } // Really a statement
void statement(bool flag) { m_statement = flag; }
virtual void addNextStmt(AstNode* newp,
AstNode* belowp) override; // Stop statement searchback here
virtual void addBeforeStmt(AstNode* newp,
AstNode* belowp) override; // Stop statement searchback here
virtual void dump(std::ostream& str = std::cout) const override;
};
class AstNodeAssign VL_NOT_FINAL : public AstNodeStmt {
protected:
AstNodeAssign(VNType t, FileLine* fl, AstNode* lhsp, AstNode* rhsp,
AstNode* timingControlp = nullptr)
: AstNodeStmt{t, fl} {
setOp1p(rhsp);
setOp2p(lhsp);
addNOp3p(timingControlp);
dtypeFrom(lhsp);
}
public:
ASTNODE_BASE_FUNCS(NodeAssign)
// Clone single node, just get same type back.
virtual AstNode* cloneType(AstNode* lhsp, AstNode* rhsp) = 0;
// So iteration hits the RHS which is "earlier" in execution order, it's op1, not op2
AstNode* rhsp() const { return op1p(); } // op1 = Assign from
AstNode* lhsp() const { return op2p(); } // op2 = Assign to
// op3 = Timing controls (delays, event controls)
AstNode* timingControlp() const { return op3p(); }
void addTimingControlp(AstNode* const np) { addNOp3p(np); }
void rhsp(AstNode* np) { setOp1p(np); }
void lhsp(AstNode* np) { setOp2p(np); }
virtual bool hasDType() const override { return true; }
virtual bool cleanRhs() const { return true; }
virtual int instrCount() const override { return widthInstrs(); }
virtual bool same(const AstNode*) const override { return true; }
virtual string verilogKwd() const override { return "="; }
virtual bool brokeLhsMustBeLvalue() const = 0;
};
class AstNodeFor VL_NOT_FINAL : public AstNodeStmt {
protected:
AstNodeFor(VNType t, FileLine* fl, AstNode* initsp, AstNode* condp, AstNode* incsp,
AstNode* bodysp)
: AstNodeStmt{t, fl} {
addNOp1p(initsp);
setOp2p(condp);
addNOp3p(incsp);
addNOp4p(bodysp);
}
public:
ASTNODE_BASE_FUNCS(NodeFor)
AstNode* initsp() const { return op1p(); } // op1 = initial statements
AstNode* condp() const { return op2p(); } // op2 = condition to continue
AstNode* incsp() const { return op3p(); } // op3 = increment statements
AstNode* bodysp() const { return op4p(); } // op4 = body of loop
virtual bool isGateOptimizable() const override { return false; }
virtual int instrCount() const override { return INSTR_COUNT_BRANCH; }
virtual bool same(const AstNode* /*samep*/) const override { return true; }
};
class AstNodeIf VL_NOT_FINAL : public AstNodeStmt {
private:
VBranchPred m_branchPred; // Branch prediction as taken/untaken?
bool m_isBoundsCheck; // True if this if node was inserted for array bounds checking
protected:
AstNodeIf(VNType t, FileLine* fl, AstNode* condp, AstNode* ifsp, AstNode* elsesp)
: AstNodeStmt{t, fl} {
setOp1p(condp);
addNOp2p(ifsp);
addNOp3p(elsesp);
isBoundsCheck(false);
}
public:
ASTNODE_BASE_FUNCS(NodeIf)
AstNode* condp() const { return op1p(); } // op1 = condition
AstNode* ifsp() const { return op2p(); } // op2 = list of true statements
AstNode* elsesp() const { return op3p(); } // op3 = list of false statements
void condp(AstNode* newp) { setOp1p(newp); }
void addIfsp(AstNode* newp) { addOp2p(newp); }
void addElsesp(AstNode* newp) { addOp3p(newp); }
virtual bool isGateOptimizable() const override { return false; }
virtual bool isGateDedupable() const override { return true; }
virtual int instrCount() const override { return INSTR_COUNT_BRANCH; }
virtual bool same(const AstNode* /*samep*/) const override { return true; }
void branchPred(VBranchPred flag) { m_branchPred = flag; }
VBranchPred branchPred() const { return m_branchPred; }
void isBoundsCheck(bool flag) { m_isBoundsCheck = flag; }
bool isBoundsCheck() const { return m_isBoundsCheck; }
bool isFirstInMyListOfStatements(AstNode* n) const override {
return n == ifsp() || n == elsesp();
}
};
class AstNodeCase VL_NOT_FINAL : public AstNodeStmt {
protected:
AstNodeCase(VNType t, FileLine* fl, AstNode* exprp, AstNode* casesp)
: AstNodeStmt{t, fl} {
setOp1p(exprp);
addNOp2p(casesp);
}
public:
ASTNODE_BASE_FUNCS(NodeCase)
virtual int instrCount() const override { return INSTR_COUNT_BRANCH; }
AstNode* exprp() const { return op1p(); } // op1 = case condition <expression>
AstCaseItem* itemsp() const {
return VN_AS(op2p(), CaseItem);
} // op2 = list of case expressions
AstNode* notParallelp() const { return op3p(); } // op3 = assertion code for non-full case's
void addItemsp(AstNode* nodep) { addOp2p(nodep); }
void addNotParallelp(AstNode* nodep) { setOp3p(nodep); }
};
class AstNodeVarRef VL_NOT_FINAL : public AstNodeMath {
// An AstVarRef or AstVarXRef
private:
VAccess m_access; // Left hand side assignment
AstVar* m_varp; // [AfterLink] Pointer to variable itself
AstVarScope* m_varScopep = nullptr; // Varscope for hierarchy
AstNodeModule* m_classOrPackagep = nullptr; // Package hierarchy
string m_name; // Name of variable
string m_selfPointer; // Output code object pointer (e.g.: 'this')
protected:
AstNodeVarRef(VNType t, FileLine* fl, const string& name, const VAccess& access)
: AstNodeMath{t, fl}
, m_access{access}
, m_name{name} {
varp(nullptr);
}
AstNodeVarRef(VNType t, FileLine* fl, const string& name, AstVar* varp, const VAccess& access)
: AstNodeMath{t, fl}
, m_access{access}
, m_name{name} {
// May have varp==nullptr
this->varp(varp);
}
public:
ASTNODE_BASE_FUNCS(NodeVarRef)
virtual void dump(std::ostream& str) const override;
virtual bool hasDType() const override { return true; }
virtual const char* broken() const override;
virtual int instrCount() const override { return widthInstrs(); }
virtual void cloneRelink() override;
virtual string name() const override { return m_name; } // * = Var name
virtual void name(const string& name) override { m_name = name; }
VAccess access() const { return m_access; }
void access(const VAccess& flag) { m_access = flag; } // Avoid using this; Set in constructor
AstVar* varp() const { return m_varp; } // [After Link] Pointer to variable
void varp(AstVar* varp);
AstVarScope* varScopep() const { return m_varScopep; }
void varScopep(AstVarScope* varscp) { m_varScopep = varscp; }
string selfPointer() const { return m_selfPointer; }
void selfPointer(const string& value) { m_selfPointer = value; }
string selfPointerProtect(bool useSelfForThis) const;
AstNodeModule* classOrPackagep() const { return m_classOrPackagep; }
void classOrPackagep(AstNodeModule* nodep) { m_classOrPackagep = nodep; }
// Know no children, and hot function, so skip iterator for speed
// See checkTreeIter also that asserts no children
// cppcheck-suppress functionConst
void iterateChildren(VNVisitor& v) {}
};
class AstNodeText VL_NOT_FINAL : public AstNode {
private:
string m_text;
protected:
// Node that puts text into the output stream
AstNodeText(VNType t, FileLine* fl, const string& textp)
: AstNode{t, fl} {
m_text = textp; // Copy it
}
public:
ASTNODE_BASE_FUNCS(NodeText)
virtual void dump(std::ostream& str = std::cout) const override;
virtual bool same(const AstNode* samep) const override {
const AstNodeText* asamep = static_cast<const AstNodeText*>(samep);
return text() == asamep->text();
}
const string& text() const { return m_text; }
void text(const string& value) { m_text = value; }
};
class AstNodeDType VL_NOT_FINAL : public AstNode {
// Ideally width() would migrate to BasicDType as that's where it makes sense,
// but it's currently so prevalent in the code we leave it here.
// Note the below members are included in AstTypeTable::Key lookups
private:
int m_width; // (also in AstTypeTable::Key) Bit width of operation
int m_widthMin; // (also in AstTypeTable::Key) If unsized, bitwidth of minimum implementation
VSigning m_numeric; // (also in AstTypeTable::Key) Node is signed
// Other members
bool m_generic; // Simple globally referenced type, don't garbage collect
// Unique number assigned to each dtype during creation for IEEE matching
static int s_uniqueNum;
protected:
// CONSTRUCTORS
AstNodeDType(VNType t, FileLine* fl)
: AstNode{t, fl} {
m_width = 0;
m_widthMin = 0;
m_generic = false;
}
public:
ASTNODE_BASE_FUNCS(NodeDType)
// ACCESSORS
virtual void dump(std::ostream& str) const override;
virtual void dumpSmall(std::ostream& str) const;
virtual bool hasDType() const override { return true; }
/// Require VlUnpacked, instead of [] for POD elements.
/// A non-POD object is always compound, but some POD elements
/// are compound when methods calls operate on object, or when
/// under another compound-requiring object e.g. class
virtual bool isCompound() const = 0;
// (Slow) recurse down to find basic data type
virtual AstBasicDType* basicp() const = 0;
// recurses over typedefs/const/enum to next non-typeref type
virtual AstNodeDType* skipRefp() const = 0;
// recurses over typedefs to next non-typeref-or-const type
virtual AstNodeDType* skipRefToConstp() const = 0;
// recurses over typedefs/const to next non-typeref-or-enum/struct type
virtual AstNodeDType* skipRefToEnump() const = 0;
// (Slow) recurses - Structure alignment 1,2,4 or 8 bytes (arrays affect this)
virtual int widthAlignBytes() const = 0;
// (Slow) recurses - Width in bytes rounding up 1,2,4,8,12,...
virtual int widthTotalBytes() const = 0;
virtual bool maybePointedTo() const override { return true; }
// Iff has a non-null refDTypep(), as generic node function
virtual AstNodeDType* virtRefDTypep() const { return nullptr; }
// Iff has refDTypep(), set as generic node function
virtual void virtRefDTypep(AstNodeDType* nodep) {}
// Iff has a non-null second dtypep, as generic node function
virtual AstNodeDType* virtRefDType2p() const { return nullptr; }
// Iff has second dtype, set as generic node function
virtual void virtRefDType2p(AstNodeDType* nodep) {}
// Assignable equivalence. Call skipRefp() on this and samep before calling
virtual bool similarDType(AstNodeDType* samep) const = 0;
// Iff has a non-null subDTypep(), as generic node function
virtual AstNodeDType* subDTypep() const { return nullptr; }
virtual bool isFourstate() const;
// Ideally an IEEE $typename
virtual string prettyDTypeName() const { return prettyTypeName(); }
string prettyDTypeNameQ() const { return "'" + prettyDTypeName() + "'"; }
//
// Changing the width may confuse the data type resolution, so must clear
// TypeTable cache after use.
void widthForce(int width, int widthMin) {
m_width = width;
m_widthMin = widthMin;
}
// For backward compatibility inherit width and signing from the subDType/base type
void widthFromSub(AstNodeDType* nodep) {
m_width = nodep->m_width;
m_widthMin = nodep->m_widthMin;
m_numeric = nodep->m_numeric;
}
//
int width() const { return m_width; }
void numeric(VSigning flag) { m_numeric = flag; }
bool isSigned() const { return m_numeric.isSigned(); }
bool isNosign() const { return m_numeric.isNosign(); }
VSigning numeric() const { return m_numeric; }
int widthWords() const { return VL_WORDS_I(width()); }
int widthMin() const { // If sized, the size, if unsized the min digits to represent it
return m_widthMin ? m_widthMin : m_width;
}
int widthPow2() const;
void widthMinFromWidth() { m_widthMin = m_width; }
bool widthSized() const { return !m_widthMin || m_widthMin == m_width; }
bool generic() const { return m_generic; }
void generic(bool flag) { m_generic = flag; }
std::pair<uint32_t, uint32_t> dimensions(bool includeBasic);
uint32_t arrayUnpackedElements(); // 1, or total multiplication of all dimensions
static int uniqueNumInc() { return ++s_uniqueNum; }
const char* charIQWN() const {
return (isString() ? "N" : isWide() ? "W" : isQuad() ? "Q" : "I");
}
string cType(const string& name, bool forFunc, bool isRef) const;
bool isLiteralType() const; // Does this represent a C++ LiteralType? (can be constexpr)
private:
class CTypeRecursed;
CTypeRecursed cTypeRecurse(bool compound) const;
};
class AstNodeUOrStructDType VL_NOT_FINAL : public AstNodeDType {
// A struct or union; common handling
private:
// TYPES
using MemberNameMap = std::map<const std::string, AstMemberDType*>;
// MEMBERS
string m_name; // Name from upper typedef, if any
bool m_packed;
bool m_isFourstate;
MemberNameMap m_members;
const int m_uniqueNum;
protected:
AstNodeUOrStructDType(VNType t, FileLine* fl, VSigning numericUnpack)
: AstNodeDType{t, fl}
, m_uniqueNum{uniqueNumInc()} {
// VSigning::NOSIGN overloaded to indicate not packed
m_packed = (numericUnpack != VSigning::NOSIGN);
m_isFourstate = false; // V3Width computes
numeric(VSigning::fromBool(numericUnpack.isSigned()));
}
public:
ASTNODE_BASE_FUNCS(NodeUOrStructDType)
int uniqueNum() const { return m_uniqueNum; }
virtual const char* broken() const override;
virtual void dump(std::ostream& str) const override;
virtual bool isCompound() const override { return false; } // Because don't support unpacked
// For basicp() we reuse the size to indicate a "fake" basic type of same size
virtual AstBasicDType* basicp() const override {
return (isFourstate()
? VN_AS(findLogicRangeDType(VNumRange{width() - 1, 0}, width(), numeric()),
BasicDType)
: VN_AS(findBitRangeDType(VNumRange{width() - 1, 0}, width(), numeric()),
BasicDType));
}
virtual AstNodeDType* skipRefp() const override { return (AstNodeDType*)this; }
virtual AstNodeDType* skipRefToConstp() const override { return (AstNodeDType*)this; }
virtual AstNodeDType* skipRefToEnump() const override { return (AstNodeDType*)this; }
// (Slow) recurses - Structure alignment 1,2,4 or 8 bytes (arrays affect this)
virtual int widthAlignBytes() const override;
// (Slow) recurses - Width in bytes rounding up 1,2,4,8,12,...
virtual int widthTotalBytes() const override;
// op1 = members
virtual bool similarDType(AstNodeDType* samep) const override {
return this == samep; // We don't compare members, require exact equivalence
}
virtual string name() const override { return m_name; }
virtual void name(const string& flag) override { m_name = flag; }
AstMemberDType* membersp() const {
return VN_AS(op1p(), MemberDType);
} // op1 = AstMember list
void addMembersp(AstNode* nodep) { addNOp1p(nodep); }
bool packed() const { return m_packed; }
// packed() but as don't support unpacked, presently all structs
static bool packedUnsup() { return true; }
void isFourstate(bool flag) { m_isFourstate = flag; }
virtual bool isFourstate() const override { return m_isFourstate; }
void clearCache() { m_members.clear(); }
void repairMemberCache();
AstMemberDType* findMember(const string& name) const {
const auto it = m_members.find(name);
return (it == m_members.end()) ? nullptr : it->second;
}
static int lo() { return 0; }
int hi() const { return dtypep()->width() - 1; } // Packed classes look like arrays
VNumRange declRange() const { return VNumRange{hi(), lo()}; }
};
class AstNodeArrayDType VL_NOT_FINAL : public AstNodeDType {
// Array data type, ie "some_dtype var_name [2:0]"
// Children: DTYPE (moved to refDTypep() in V3Width)
// Children: RANGE (array bounds)
private:
AstNodeDType* m_refDTypep = nullptr; // Elements of this type (after widthing)
AstNode* rangenp() const { return op2p(); } // op2 = Array(s) of variable
protected:
AstNodeArrayDType(VNType t, FileLine* fl)
: AstNodeDType{t, fl} {}
public:
ASTNODE_BASE_FUNCS(NodeArrayDType)
virtual void dump(std::ostream& str) const override;
virtual void dumpSmall(std::ostream& str) const override;
virtual const char* broken() const override {
BROKEN_RTN(!((m_refDTypep && !childDTypep() && m_refDTypep->brokeExists())
|| (!m_refDTypep && childDTypep())));
return nullptr;
}
virtual void cloneRelink() override {
if (m_refDTypep && m_refDTypep->clonep()) m_refDTypep = m_refDTypep->clonep();
}
virtual bool same(const AstNode* samep) const override {
const AstNodeArrayDType* const asamep = static_cast<const AstNodeArrayDType*>(samep);
return (hi() == asamep->hi() && subDTypep() == asamep->subDTypep()
&& rangenp()->sameTree(asamep->rangenp()));
} // HashedDT doesn't recurse, so need to check children
virtual bool similarDType(AstNodeDType* samep) const override {
const AstNodeArrayDType* const asamep = static_cast<const AstNodeArrayDType*>(samep);
return (asamep && type() == samep->type() && hi() == asamep->hi()
&& rangenp()->sameTree(asamep->rangenp())
&& subDTypep()->skipRefp()->similarDType(asamep->subDTypep()->skipRefp()));
}
virtual AstNodeDType* getChildDTypep() const override { return childDTypep(); }
AstNodeDType* childDTypep() const { return VN_AS(op1p(), NodeDType); }
void childDTypep(AstNodeDType* nodep) { setOp1p(nodep); }
virtual AstNodeDType* subDTypep() const override {
return m_refDTypep ? m_refDTypep : childDTypep();
}
void refDTypep(AstNodeDType* nodep) { m_refDTypep = nodep; }
virtual AstNodeDType* virtRefDTypep() const override { return m_refDTypep; }
virtual void virtRefDTypep(AstNodeDType* nodep) override { refDTypep(nodep); }
AstRange* rangep() const { return VN_AS(op2p(), Range); } // op2 = Array(s) of variable
void rangep(AstRange* nodep);
// METHODS
virtual AstBasicDType* basicp() const override {
return subDTypep()->basicp();
} // (Slow) recurse down to find basic data type
virtual AstNodeDType* skipRefp() const override { return (AstNodeDType*)this; }
virtual AstNodeDType* skipRefToConstp() const override { return (AstNodeDType*)this; }
virtual AstNodeDType* skipRefToEnump() const override { return (AstNodeDType*)this; }
virtual int widthAlignBytes() const override { return subDTypep()->widthAlignBytes(); }
virtual int widthTotalBytes() const override {
return elementsConst() * subDTypep()->widthTotalBytes();
}
int left() const;
int right() const;
int hi() const;
int lo() const;
int elementsConst() const;
VNumRange declRange() const;
};
class AstNodeSel VL_NOT_FINAL : public AstNodeBiop {
// Single bit range extraction, perhaps with non-constant selection or array selection
protected:
AstNodeSel(VNType t, FileLine* fl, AstNode* fromp, AstNode* bitp)
: AstNodeBiop{t, fl, fromp, bitp} {}
public:
ASTNODE_BASE_FUNCS(NodeSel)
AstNode* fromp() const {
return op1p();
} // op1 = Extracting what (nullptr=TBD during parsing)
void fromp(AstNode* nodep) { setOp1p(nodep); }
AstNode* bitp() const { return op2p(); } // op2 = Msb selection expression
void bitp(AstNode* nodep) { setOp2p(nodep); }
int bitConst() const;
virtual bool hasDType() const override { return true; }
};
class AstNodeStream VL_NOT_FINAL : public AstNodeBiop {
// Verilog {rhs{lhs}} - Note rhsp() is the slice size, not the lhsp()
protected:
AstNodeStream(VNType t, FileLine* fl, AstNode* lhsp, AstNode* rhsp)
: AstNodeBiop{t, fl, lhsp, rhsp} {
if (lhsp->dtypep()) dtypeSetLogicSized(lhsp->dtypep()->width(), VSigning::UNSIGNED);
}
public:
ASTNODE_BASE_FUNCS(NodeStream)
};
//######################################################################
// Tasks/functions common handling
class AstNodeCCall VL_NOT_FINAL : public AstNodeStmt {
// A call of a C++ function, perhaps a AstCFunc or perhaps globally named
// Functions are not statements, while tasks are. AstNodeStmt needs isStatement() to deal.
AstCFunc* m_funcp;
string m_argTypes;
protected:
AstNodeCCall(VNType t, FileLine* fl, AstCFunc* funcp, AstNode* argsp = nullptr)
: AstNodeStmt{t, fl, true}
, m_funcp{funcp} {
addNOp2p(argsp);
}
public:
ASTNODE_BASE_FUNCS(NodeCCall)
virtual void dump(std::ostream& str = std::cout) const override;
virtual void cloneRelink() override;
virtual const char* broken() const override;
virtual int instrCount() const override { return INSTR_COUNT_CALL; }
virtual bool same(const AstNode* samep) const override {
const AstNodeCCall* const asamep = static_cast<const AstNodeCCall*>(samep);
return (funcp() == asamep->funcp() && argTypes() == asamep->argTypes());
}
AstNode* exprsp() const { return op2p(); } // op2 = expressions to print
virtual bool isGateOptimizable() const override { return false; }
virtual bool isPredictOptimizable() const override { return false; }
virtual bool isPure() const override;
virtual bool isOutputter() const override { return !isPure(); }
AstCFunc* funcp() const { return m_funcp; }
void funcp(AstCFunc* funcp) { m_funcp = funcp; }
void argTypes(const string& str) { m_argTypes = str; }
string argTypes() const { return m_argTypes; }
// op1p reserved for AstCMethodCall
AstNode* argsp() const { return op2p(); }
void addArgsp(AstNode* nodep) { addOp2p(nodep); }
};
class AstNodeFTask VL_NOT_FINAL : public AstNode {
private:
string m_name; // Name of task
string m_cname; // Name of task if DPI import
uint64_t m_dpiOpenParent = 0; // DPI import open array, if !=0, how many callees
bool m_taskPublic : 1; // Public task
bool m_attrIsolateAssign : 1; // User isolate_assignments attribute
bool m_classMethod : 1; // Class method
bool m_externProto : 1; // Extern prototype
bool m_externDef : 1; // Extern definition
bool m_prototype : 1; // Just a prototype
bool m_dpiExport : 1; // DPI exported
bool m_dpiImport : 1; // DPI imported
bool m_dpiContext : 1; // DPI import context
bool m_dpiOpenChild : 1; // DPI import open array child wrapper
bool m_dpiTask : 1; // DPI import task (vs. void function)
bool m_dpiTraceInit : 1; // DPI trace_init
bool m_isConstructor : 1; // Class constructor
bool m_isHideLocal : 1; // Verilog local
bool m_isHideProtected : 1; // Verilog protected
bool m_pure : 1; // DPI import pure (vs. virtual pure)
bool m_pureVirtual : 1; // Pure virtual
bool m_recursive : 1; // Recusive or part of recursion
bool m_underGenerate : 1; // Under generate (for warning)
bool m_virtual : 1; // Virtual method in class
VLifetime m_lifetime; // Lifetime
protected:
AstNodeFTask(VNType t, FileLine* fl, const string& name, AstNode* stmtsp)
: AstNode{t, fl}
, m_name{name}
, m_taskPublic{false}
, m_attrIsolateAssign{false}
, m_classMethod{false}
, m_externProto{false}
, m_externDef{false}
, m_prototype{false}
, m_dpiExport{false}
, m_dpiImport{false}
, m_dpiContext{false}
, m_dpiOpenChild{false}
, m_dpiTask{false}
, m_dpiTraceInit{false}
, m_isConstructor{false}
, m_isHideLocal{false}
, m_isHideProtected{false}
, m_pure{false}
, m_pureVirtual{false}
, m_recursive{false}
, m_underGenerate{false}
, m_virtual{false} {
addNOp3p(stmtsp);
cname(name); // Might be overridden by dpi import/export
}
public:
ASTNODE_BASE_FUNCS(NodeFTask)
virtual void dump(std::ostream& str = std::cout) const override;
virtual string name() const override { return m_name; } // * = Var name
virtual bool maybePointedTo() const override { return true; }
virtual bool isGateOptimizable() const override {
return !((m_dpiExport || m_dpiImport) && !m_pure);
}
// {AstFunc only} op1 = Range output variable
virtual void name(const string& name) override { m_name = name; }
string cname() const { return m_cname; }
void cname(const string& cname) { m_cname = cname; }
// op1 = Output variable (functions only, nullptr for tasks)
AstNode* fvarp() const { return op1p(); }
void addFvarp(AstNode* nodep) { addNOp1p(nodep); }
bool isFunction() const { return fvarp() != nullptr; }
// op2 = Class/package scope
AstNode* classOrPackagep() const { return op2p(); }
void classOrPackagep(AstNode* nodep) { setNOp2p(nodep); }
// op3 = Statements/Ports/Vars
AstNode* stmtsp() const { return op3p(); } // op3 = List of statements
void addStmtsp(AstNode* nodep) { addNOp3p(nodep); }
// op4 = scope name
AstScopeName* scopeNamep() const { return VN_AS(op4p(), ScopeName); }
// MORE ACCESSORS
void dpiOpenParentInc() { ++m_dpiOpenParent; }
void dpiOpenParentClear() { m_dpiOpenParent = 0; }
uint64_t dpiOpenParent() const { return m_dpiOpenParent; }
void scopeNamep(AstNode* nodep) { setNOp4p(nodep); }
void taskPublic(bool flag) { m_taskPublic = flag; }
bool taskPublic() const { return m_taskPublic; }
void attrIsolateAssign(bool flag) { m_attrIsolateAssign = flag; }
bool attrIsolateAssign() const { return m_attrIsolateAssign; }
void classMethod(bool flag) { m_classMethod = flag; }
bool classMethod() const { return m_classMethod; }
void isExternProto(bool flag) { m_externProto = flag; }
bool isExternProto() const { return m_externProto; }
void isExternDef(bool flag) { m_externDef = flag; }
bool isExternDef() const { return m_externDef; }
void prototype(bool flag) { m_prototype = flag; }
bool prototype() const { return m_prototype; }
void dpiExport(bool flag) { m_dpiExport = flag; }
bool dpiExport() const { return m_dpiExport; }
void dpiImport(bool flag) { m_dpiImport = flag; }
bool dpiImport() const { return m_dpiImport; }
void dpiContext(bool flag) { m_dpiContext = flag; }
bool dpiContext() const { return m_dpiContext; }
void dpiOpenChild(bool flag) { m_dpiOpenChild = flag; }
bool dpiOpenChild() const { return m_dpiOpenChild; }
void dpiTask(bool flag) { m_dpiTask = flag; }
bool dpiTask() const { return m_dpiTask; }
void dpiTraceInit(bool flag) { m_dpiTraceInit = flag; }
bool dpiTraceInit() const { return m_dpiTraceInit; }
void isConstructor(bool flag) { m_isConstructor = flag; }
bool isConstructor() const { return m_isConstructor; }
bool isHideLocal() const { return m_isHideLocal; }
void isHideLocal(bool flag) { m_isHideLocal = flag; }
bool isHideProtected() const { return m_isHideProtected; }
void isHideProtected(bool flag) { m_isHideProtected = flag; }
void pure(bool flag) { m_pure = flag; }
bool pure() const { return m_pure; }
void pureVirtual(bool flag) { m_pureVirtual = flag; }
bool pureVirtual() const { return m_pureVirtual; }
void recursive(bool flag) { m_recursive = flag; }
bool recursive() const { return m_recursive; }
void underGenerate(bool flag) { m_underGenerate = flag; }
bool underGenerate() const { return m_underGenerate; }
void isVirtual(bool flag) { m_virtual = flag; }
bool isVirtual() const { return m_virtual; }
void lifetime(const VLifetime& flag) { m_lifetime = flag; }
VLifetime lifetime() const { return m_lifetime; }
bool isFirstInMyListOfStatements(AstNode* n) const override { return n == stmtsp(); }
};
class AstNodeFTaskRef VL_NOT_FINAL : public AstNodeStmt {
// A reference to a task (or function)
// Functions are not statements, while tasks are. AstNodeStmt needs isStatement() to deal.
private:
AstNodeFTask* m_taskp = nullptr; // [AfterLink] Pointer to task referenced
AstNodeModule* m_classOrPackagep = nullptr; // Package hierarchy
string m_name; // Name of variable
string m_dotted; // Dotted part of scope the name()ed task/func is under or ""
string m_inlinedDots; // Dotted hierarchy flattened out
bool m_pli = false; // Pli system call ($name)
protected:
AstNodeFTaskRef(VNType t, FileLine* fl, bool statement, AstNode* namep, AstNode* pinsp)
: AstNodeStmt{t, fl, statement} {
setOp1p(namep);
addNOp3p(pinsp);
}
AstNodeFTaskRef(VNType t, FileLine* fl, bool statement, const string& name, AstNode* pinsp)
: AstNodeStmt{t, fl, statement}
, m_name{name} {
addNOp3p(pinsp);
}
public:
ASTNODE_BASE_FUNCS(NodeFTaskRef)
virtual const char* broken() const override;
virtual void cloneRelink() override;
virtual void dump(std::ostream& str = std::cout) const override;
virtual string name() const override { return m_name; } // * = Var name
virtual bool isGateOptimizable() const override {
return m_taskp && m_taskp->isGateOptimizable();
}
string dotted() const { return m_dotted; } // * = Scope name or ""
string inlinedDots() const { return m_inlinedDots; }
void inlinedDots(const string& flag) { m_inlinedDots = flag; }
AstNodeFTask* taskp() const { return m_taskp; } // [After Link] Pointer to variable
void taskp(AstNodeFTask* taskp) { m_taskp = taskp; }
virtual void name(const string& name) override { m_name = name; }
void dotted(const string& name) { m_dotted = name; }
AstNodeModule* classOrPackagep() const { return m_classOrPackagep; }
void classOrPackagep(AstNodeModule* nodep) { m_classOrPackagep = nodep; }
bool pli() const { return m_pli; }
void pli(bool flag) { m_pli = flag; }
// op1 = namep
AstNode* namep() const { return op1p(); }
// op2 = reserved for AstMethodCall
// op3 = Pin interconnection list
AstNode* pinsp() const { return op3p(); }
void addPinsp(AstNode* nodep) { addOp3p(nodep); }
// op4 = scope tracking
AstScopeName* scopeNamep() const { return VN_AS(op4p(), ScopeName); }
void scopeNamep(AstNode* nodep) { setNOp4p(nodep); }
};
class AstNodeModule VL_NOT_FINAL : public AstNode {
// A module, package, program or interface declaration;
// something that can live directly under the TOP,
// excluding $unit package stuff
private:
string m_name; // Name of the module
const string m_origName; // Name of the module, ignoring name() changes, for dot lookup
string m_someInstanceName; // Hierarchical name of some arbitrary instance of this module.
// Used for user messages only.
bool m_modPublic : 1; // Module has public references
bool m_modTrace : 1; // Tracing this module
bool m_inLibrary : 1; // From a library, no error if not used, never top level
bool m_dead : 1; // LinkDot believes is dead; will remove in Dead visitors
bool m_hierBlock : 1; // Hiearchical Block marked by HIER_BLOCK pragma
bool m_internal : 1; // Internally created
bool m_recursive : 1; // Recursive module
bool m_recursiveClone : 1; // If recursive, what module it clones, otherwise nullptr
int m_level = 0; // 1=top module, 2=cell off top module, ...
VLifetime m_lifetime; // Lifetime
VTimescale m_timeunit; // Global time unit
VOptionBool m_unconnectedDrive; // State of `unconnected_drive
protected:
AstNodeModule(VNType t, FileLine* fl, const string& name)
: AstNode{t, fl}
, m_name{name}
, m_origName{name}
, m_modPublic{false}
, m_modTrace{false}
, m_inLibrary{false}
, m_dead{false}
, m_hierBlock{false}
, m_internal{false}
, m_recursive{false}
, m_recursiveClone{false} {}
public:
ASTNODE_BASE_FUNCS(NodeModule)
virtual void dump(std::ostream& str) const override;
virtual bool maybePointedTo() const override { return true; }
virtual string name() const override { return m_name; }
virtual bool timescaleMatters() const = 0;
AstNode* stmtsp() const { return op2p(); } // op2 = List of statements
AstActive* activesp() const { return VN_AS(op3p(), Active); } // op3 = List of i/sblocks
// METHODS
void addInlinesp(AstNode* nodep) { addOp1p(nodep); }
void addStmtp(AstNode* nodep) { addNOp2p(nodep); }
void addActivep(AstNode* nodep) { addOp3p(nodep); }
// ACCESSORS
virtual void name(const string& name) override { m_name = name; }
virtual string origName() const override { return m_origName; }
string someInstanceName() const { return m_someInstanceName; }
void someInstanceName(const string& name) { m_someInstanceName = name; }
bool inLibrary() const { return m_inLibrary; }
void inLibrary(bool flag) { m_inLibrary = flag; }
void level(int level) { m_level = level; }
int level() const { return m_level; }
bool isTop() const { return level() == 1; }
void modPublic(bool flag) { m_modPublic = flag; }
bool modPublic() const { return m_modPublic; }
void modTrace(bool flag) { m_modTrace = flag; }
bool modTrace() const { return m_modTrace; }
void dead(bool flag) { m_dead = flag; }
bool dead() const { return m_dead; }
void hierBlock(bool flag) { m_hierBlock = flag; }
bool hierBlock() const { return m_hierBlock; }
void internal(bool flag) { m_internal = flag; }
bool internal() const { return m_internal; }
void recursive(bool flag) { m_recursive = flag; }
bool recursive() const { return m_recursive; }
void recursiveClone(bool flag) { m_recursiveClone = flag; }
bool recursiveClone() const { return m_recursiveClone; }
void lifetime(const VLifetime& flag) { m_lifetime = flag; }
VLifetime lifetime() const { return m_lifetime; }
void timeunit(const VTimescale& flag) { m_timeunit = flag; }
VTimescale timeunit() const { return m_timeunit; }
void unconnectedDrive(const VOptionBool flag) { m_unconnectedDrive = flag; }
VOptionBool unconnectedDrive() const { return m_unconnectedDrive; }
};
class AstNodeRange VL_NOT_FINAL : public AstNode {
// A range, sized or unsized
protected:
AstNodeRange(VNType t, FileLine* fl)
: AstNode{t, fl} {}
public:
ASTNODE_BASE_FUNCS(NodeRange)
virtual void dump(std::ostream& str) const override;
};
//######################################################################
// Inline VNVisitor METHODS
inline void VNVisitor::iterate(AstNode* nodep) { nodep->accept(*this); }
inline void VNVisitor::iterateNull(AstNode* nodep) {
if (VL_LIKELY(nodep)) nodep->accept(*this);
}
inline void VNVisitor::iterateChildren(AstNode* nodep) { nodep->iterateChildren(*this); }
inline void VNVisitor::iterateChildrenBackwards(AstNode* nodep) {
nodep->iterateChildrenBackwards(*this);
}
inline void VNVisitor::iterateChildrenConst(AstNode* nodep) { nodep->iterateChildrenConst(*this); }
inline void VNVisitor::iterateAndNextNull(AstNode* nodep) {
if (VL_LIKELY(nodep)) nodep->iterateAndNext(*this);
}
inline void VNVisitor::iterateAndNextConstNullBackwards(AstNode* nodep) {
if (VL_LIKELY(nodep)) nodep->iterateListBackwards(*this);
}
inline void VNVisitor::iterateAndNextConstNull(AstNode* nodep) {
if (VL_LIKELY(nodep)) nodep->iterateAndNextConst(*this);
}
inline AstNode* VNVisitor::iterateSubtreeReturnEdits(AstNode* nodep) {
return nodep->iterateSubtreeReturnEdits(*this);
}
//######################################################################
#include "V3AstNodes.h"
#endif // Guard