// -*- mode: C++; c-file-style: "cc-mode" -*- //************************************************************************* // DESCRIPTION: Verilator: Waves tracing // // Code available from: https://verilator.org // //************************************************************************* // // Copyright 2003-2021 by Wilson Snyder. This program is free software; you // can redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License // Version 2.0. // SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0 // //************************************************************************* // V3Trace's Transformations: // // Examine whole design and build a graph describing which function call // may result in a write to a traced variable. This is done in 2 passes: // // Pass 1: // Add vertices for TraceDecl, CFunc, CCall and VarRef nodes, add // edges from CCall -> CFunc, VarRef -> TraceDecl, also add edges // for public entry points to CFuncs (these are like a spontaneous // call) // // Pass 2: // Add edges from CFunc -> VarRef being written // // Finally: // Process graph to determine when traced variables can change, allocate // activity flags, insert nodes to set activity flags, allocate signal // numbers (codes), and construct the full and incremental trace // functions, together with all other trace support functions. // //************************************************************************* #include "config_build.h" #include "verilatedos.h" #include "V3Global.h" #include "V3Trace.h" #include "V3EmitCBase.h" #include "V3Graph.h" #include "V3Hashed.h" #include "V3Stats.h" #include #include #include //###################################################################### // Graph vertexes class TraceActivityVertex final : public V3GraphVertex { AstNode* const m_insertp; vlsint32_t m_activityCode; bool m_slow; // If always slow, we can use the same code public: enum { ACTIVITY_NEVER = ((1UL << 31) - 1) }; enum { ACTIVITY_ALWAYS = ((1UL << 31) - 2) }; enum { ACTIVITY_SLOW = 0 }; TraceActivityVertex(V3Graph* graphp, AstNode* nodep, bool slow) : V3GraphVertex{graphp} , m_insertp{nodep} { m_activityCode = 0; m_slow = slow; } TraceActivityVertex(V3Graph* graphp, vlsint32_t code) : V3GraphVertex{graphp} , m_insertp{nullptr} { m_activityCode = code; m_slow = false; } virtual ~TraceActivityVertex() override = default; // ACCESSORS AstNode* insertp() const { if (!m_insertp) v3fatalSrc("Null insertp; probably called on a special always/slow."); return m_insertp; } virtual string name() const override { if (activityAlways()) { return "*ALWAYS*"; } else { return (string(slow() ? "*SLOW* " : "")) + insertp()->name(); } } virtual string dotColor() const override { return slow() ? "yellowGreen" : "green"; } vlsint32_t activityCode() const { return m_activityCode; } bool activityAlways() const { return activityCode() == ACTIVITY_ALWAYS; } bool activitySlow() const { return activityCode() == ACTIVITY_SLOW; } void activityCode(vlsint32_t code) { m_activityCode = code; } bool slow() const { return m_slow; } void slow(bool flag) { if (!flag) m_slow = false; } }; class TraceCFuncVertex final : public V3GraphVertex { AstCFunc* m_nodep; public: TraceCFuncVertex(V3Graph* graphp, AstCFunc* nodep) : V3GraphVertex{graphp} , m_nodep{nodep} {} virtual ~TraceCFuncVertex() override = default; // ACCESSORS AstCFunc* nodep() const { return m_nodep; } virtual string name() const override { return nodep()->name(); } virtual string dotColor() const override { return "yellow"; } virtual FileLine* fileline() const override { return nodep()->fileline(); } }; class TraceTraceVertex final : public V3GraphVertex { AstTraceDecl* const m_nodep; // TRACEINC this represents // nullptr, or other vertex with the real code() that duplicates this one TraceTraceVertex* m_duplicatep = nullptr; public: TraceTraceVertex(V3Graph* graphp, AstTraceDecl* nodep) : V3GraphVertex{graphp} , m_nodep{nodep} {} virtual ~TraceTraceVertex() override = default; // ACCESSORS AstTraceDecl* nodep() const { return m_nodep; } virtual string name() const override { return nodep()->name(); } virtual string dotColor() const override { return "red"; } virtual FileLine* fileline() const override { return nodep()->fileline(); } TraceTraceVertex* duplicatep() const { return m_duplicatep; } void duplicatep(TraceTraceVertex* dupp) { UASSERT_OBJ(!duplicatep(), nodep(), "Assigning duplicatep() to already duplicated node"); m_duplicatep = dupp; } }; class TraceVarVertex final : public V3GraphVertex { AstVarScope* m_nodep; public: TraceVarVertex(V3Graph* graphp, AstVarScope* nodep) : V3GraphVertex{graphp} , m_nodep{nodep} {} virtual ~TraceVarVertex() override = default; // ACCESSORS AstVarScope* nodep() const { return m_nodep; } virtual string name() const override { return nodep()->name(); } virtual string dotColor() const override { return "skyblue"; } virtual FileLine* fileline() const override { return nodep()->fileline(); } }; //###################################################################### // Trace state, as a visitor of each AstNode class TraceVisitor final : public EmitCBaseVisitor { private: // NODE STATE // V3Hashed // Ast*::user4() // V3Hashed calculation // Cleared entire netlist // AstCFunc::user1() // V3GraphVertex* for this node // AstTraceDecl::user1() // V3GraphVertex* for this node // AstVarScope::user1() // V3GraphVertex* for this node // AstCCall::user2() // bool; walked next list for other ccalls // Ast*::user3() // TraceActivityVertex* for this node AstUser1InUse m_inuser1; AstUser2InUse m_inuser2; AstUser3InUse m_inuser3; // AstUser4InUse In V3Hashed // STATE AstNodeModule* m_topModp = nullptr; // Module to add variables to AstScope* m_topScopep = nullptr; // Scope to add variables to AstCFunc* m_cfuncp = nullptr; // C function adding to graph AstTraceDecl* m_tracep = nullptr; // Trace function adding to graph AstVarScope* m_activityVscp = nullptr; // Activity variable uint32_t m_activityNumber = 0; // Count of fields in activity variable uint32_t m_code = 0; // Trace ident code# being assigned V3Graph m_graph; // Var/CFunc tracking TraceActivityVertex* const m_alwaysVtxp; // "Always trace" vertex bool m_finding = false; // Pass one of algorithm? VDouble0 m_statChgSigs; // Statistic tracking VDouble0 m_statUniqSigs; // Statistic tracking VDouble0 m_statUniqCodes; // Statistic tracking // All activity numbers applying to a given trace using ActCodeSet = std::set; // For activity set, what traces apply using TraceVec = std::multimap; // METHODS VL_DEBUG_FUNC; // Declare debug() void detectDuplicates() { UINFO(9, "Finding duplicates\n"); // Note uses user4 V3Hashed hashed; // Duplicate code detection // Hash all of the values the traceIncs need for (const V3GraphVertex* itp = m_graph.verticesBeginp(); itp; itp = itp->verticesNextp()) { if (const TraceTraceVertex* const vvertexp = dynamic_cast(itp)) { const AstTraceDecl* const nodep = vvertexp->nodep(); if (nodep->valuep()) { UASSERT_OBJ(nodep->valuep()->backp() == nodep, nodep, "Trace duplicate back needs consistency," " so we can map duplicates back to TRACEINCs"); hashed.hash(nodep->valuep()); UINFO(8, " Hashed " << std::hex << hashed.nodeHash(nodep->valuep()) << " " << nodep << endl); // Just keep one node in the map and point all duplicates to this node if (hashed.findDuplicate(nodep->valuep()) == hashed.end()) { hashed.hashAndInsert(nodep->valuep()); } } } } // Find if there are any duplicates for (V3GraphVertex* itp = m_graph.verticesBeginp(); itp; itp = itp->verticesNextp()) { if (TraceTraceVertex* const vvertexp = dynamic_cast(itp)) { AstTraceDecl* const nodep = vvertexp->nodep(); if (nodep->valuep() && !vvertexp->duplicatep()) { const auto dupit = hashed.findDuplicate(nodep->valuep()); if (dupit != hashed.end()) { const AstTraceDecl* const dupDeclp = VN_CAST_CONST(hashed.iteratorNodep(dupit)->backp(), TraceDecl); UASSERT_OBJ(dupDeclp, nodep, "Trace duplicate of wrong type"); TraceTraceVertex* const dupvertexp = dynamic_cast(dupDeclp->user1u().toGraphVertex()); UINFO(8, " Orig " << nodep << endl); UINFO(8, " dup " << dupDeclp << endl); // Mark the hashed node as the original and our // iterating node as duplicated vvertexp->duplicatep(dupvertexp); } } } } hashed.clear(); } void graphSimplify(bool initial) { if (initial) { // Remove all variable nodes for (V3GraphVertex *nextp, *itp = m_graph.verticesBeginp(); itp; itp = nextp) { nextp = itp->verticesNextp(); if (TraceVarVertex* const vvertexp = dynamic_cast(itp)) { vvertexp->rerouteEdges(&m_graph); vvertexp->unlinkDelete(&m_graph); } } // Remove multiple variables connecting funcs to traces // We do this twice, as then we have fewer edges to multiply out in the below // expansion. m_graph.removeRedundantEdges(&V3GraphEdge::followAlwaysTrue); // Remove all Cfunc nodes for (V3GraphVertex *nextp, *itp = m_graph.verticesBeginp(); itp; itp = nextp) { nextp = itp->verticesNextp(); if (TraceCFuncVertex* const vvertexp = dynamic_cast(itp)) { vvertexp->rerouteEdges(&m_graph); vvertexp->unlinkDelete(&m_graph); } } } // Remove multiple variables connecting funcs to traces m_graph.removeRedundantEdges(&V3GraphEdge::followAlwaysTrue); // If there are any edges from a always, keep only the always for (const V3GraphVertex* itp = m_graph.verticesBeginp(); itp; itp = itp->verticesNextp()) { if (const TraceTraceVertex* const vvertexp = dynamic_cast(itp)) { // Search for the incoming always edge const V3GraphEdge* alwaysEdgep = nullptr; for (const V3GraphEdge* edgep = vvertexp->inBeginp(); edgep; edgep = edgep->inNextp()) { const TraceActivityVertex* const actVtxp = dynamic_cast(edgep->fromp()); UASSERT_OBJ(actVtxp, vvertexp->nodep(), "Tracing a node with FROM non activity"); if (actVtxp->activityAlways()) { alwaysEdgep = edgep; break; } } // If always edge exists, remove all other edges if (alwaysEdgep) { for (V3GraphEdge *nextp, *edgep = vvertexp->inBeginp(); edgep; edgep = nextp) { nextp = edgep->inNextp(); if (edgep != alwaysEdgep) edgep->unlinkDelete(); } } } } // Activity points with no outputs can be removed for (V3GraphVertex *nextp, *itp = m_graph.verticesBeginp(); itp; itp = nextp) { nextp = itp->verticesNextp(); if (TraceActivityVertex* const vtxp = dynamic_cast(itp)) { // Leave in the always vertex for later use. if (vtxp != m_alwaysVtxp && !vtxp->outBeginp()) vtxp->unlinkDelete(&m_graph); } } } uint32_t assignactivityNumbers() { uint32_t activityNumber = 1; // Note 0 indicates "slow" only for (V3GraphVertex* itp = m_graph.verticesBeginp(); itp; itp = itp->verticesNextp()) { if (TraceActivityVertex* const vvertexp = dynamic_cast(itp)) { if (vvertexp != m_alwaysVtxp) { if (vvertexp->slow()) { vvertexp->activityCode(TraceActivityVertex::ACTIVITY_SLOW); } else { vvertexp->activityCode(activityNumber++); } } } } return activityNumber; } void sortTraces(TraceVec& traces, uint32_t& nFullCodes, uint32_t& nChgCodes) { // Populate sort structure traces.clear(); nFullCodes = 0; nChgCodes = 0; for (V3GraphVertex* itp = m_graph.verticesBeginp(); itp; itp = itp->verticesNextp()) { if (TraceTraceVertex* const vtxp = dynamic_cast(itp)) { ActCodeSet actSet; UINFO(9, " Add to sort: " << vtxp << endl); if (debug() >= 9) vtxp->nodep()->dumpTree(cout, "- trnode: "); for (const V3GraphEdge* edgep = vtxp->inBeginp(); edgep; edgep = edgep->inNextp()) { const TraceActivityVertex* const cfvertexp = dynamic_cast(edgep->fromp()); UASSERT_OBJ(cfvertexp, vtxp->nodep(), "Should have been function pointing to this trace"); UINFO(9, " Activity: " << cfvertexp << endl); if (cfvertexp->activityAlways()) { // If code 0, we always trace; ignore other codes actSet.insert(TraceActivityVertex::ACTIVITY_ALWAYS); } else { actSet.insert(cfvertexp->activityCode()); } } UASSERT_OBJ(actSet.count(TraceActivityVertex::ACTIVITY_ALWAYS) == 0 || actSet.size() == 1, vtxp->nodep(), "Always active trace has further triggers"); // Count nodes if (!vtxp->duplicatep()) { const uint32_t inc = vtxp->nodep()->codeInc(); nFullCodes += inc; if (!actSet.empty()) nChgCodes += inc; } if (actSet.empty()) { // If a trace doesn't have activity, it's constant, and we // don't need to track changes on it. actSet.insert(TraceActivityVertex::ACTIVITY_NEVER); } else if (actSet.count(TraceActivityVertex::ACTIVITY_SLOW) && actSet.size() > 1) { // If a trace depends on the slow flag as well as other // flags, remove the dependency on the slow flag. We will // make slow routines set all activity flags. actSet.erase(TraceActivityVertex::ACTIVITY_SLOW); } traces.emplace(actSet, vtxp); } } } void graphOptimize() { // Assign initial activity numbers to activity vertices assignactivityNumbers(); // Sort the traces by activity sets TraceVec traces; uint32_t unused1; uint32_t unused2; sortTraces(traces, unused1, unused2); // For each activity set with only a small number of signals, make those // signals always traced, as it's cheaper to check a few value changes // than to test a lot of activity flags auto it = traces.begin(); const auto end = traces.end(); while (it != end) { auto head = it; // Approximate the complexity of the value change check uint32_t complexity = 0; const ActCodeSet& actSet = it->first; for (; it != end && it->first == actSet; ++it) { if (!it->second->duplicatep()) { uint32_t cost = 0; AstTraceDecl* const declp = it->second->nodep(); // The number of comparisons required by tracep->chg* cost += declp->isWide() ? declp->codeInc() : 1; // Arrays are traced by element cost *= declp->arrayRange().ranged() ? declp->arrayRange().elements() : 1; // Note: Experiments factoring in the size of declp->valuep() // showed no benefit in tracing speed, even for large trees, // so we will leve those out for now. complexity += cost; } } // Leave alone always changing, never changing and signals only set in slow code if (actSet.count(TraceActivityVertex::ACTIVITY_ALWAYS)) continue; if (actSet.count(TraceActivityVertex::ACTIVITY_NEVER)) continue; if (actSet.count(TraceActivityVertex::ACTIVITY_SLOW)) continue; // If the value comparisons are cheaper to perform than checking the // activity flags make the signals always traced. Note this cost // equation is heuristic. if (complexity <= actSet.size() * 2) { for (; head != it; ++head) { new V3GraphEdge(&m_graph, m_alwaysVtxp, head->second, 1); } } } graphSimplify(false); } AstNode* selectActivity(FileLine* flp, uint32_t acode, const VAccess& access) { return new AstArraySel(flp, new AstVarRef(flp, m_activityVscp, access), acode); } void addActivitySetter(AstNode* insertp, uint32_t code) { FileLine* const fl = insertp->fileline(); AstAssign* const setterp = new AstAssign(fl, selectActivity(fl, code, VAccess::WRITE), new AstConst(fl, AstConst::BitTrue())); if (AstCCall* const callp = VN_CAST(insertp, CCall)) { callp->addNextHere(setterp); } else if (AstCFunc* const funcp = VN_CAST(insertp, CFunc)) { funcp->addStmtsp(setterp); } else { insertp->v3fatalSrc("Bad trace activity vertex"); } } void createActivityFlags() { // Assign final activity numbers m_activityNumber = assignactivityNumbers(); // Create an array of bytes, not a bit vector, as they can be set // atomically by mtasks, and are cheaper to set (no need for // read-modify-write on the C type), and the speed of the tracing code // is the same on largish designs. FileLine* const flp = m_topScopep->fileline(); AstNodeDType* const newScalarDtp = new AstBasicDType(flp, VFlagLogicPacked(), 1); v3Global.rootp()->typeTablep()->addTypesp(newScalarDtp); AstRange* const newArange = new AstRange{flp, VNumRange{static_cast(m_activityNumber) - 1, 0}}; AstNodeDType* const newArrDtp = new AstUnpackArrayDType(flp, newScalarDtp, newArange); v3Global.rootp()->typeTablep()->addTypesp(newArrDtp); AstVar* const newvarp = new AstVar(flp, AstVarType::MODULETEMP, "__Vm_traceActivity", newArrDtp); m_topModp->addStmtp(newvarp); AstVarScope* const newvscp = new AstVarScope(flp, m_topScopep, newvarp); m_topScopep->addVarp(newvscp); m_activityVscp = newvscp; // Insert activity setters for (const V3GraphVertex* itp = m_graph.verticesBeginp(); itp; itp = itp->verticesNextp()) { if (const TraceActivityVertex* const vtxp = dynamic_cast(itp)) { if (vtxp->activitySlow()) { // Just set all flags in slow code as it should be rare. // This will be rolled up into a loop by V3Reloop. for (uint32_t code = 0; code < m_activityNumber; ++code) { addActivitySetter(vtxp->insertp(), code); } } else if (!vtxp->activityAlways()) { addActivitySetter(vtxp->insertp(), vtxp->activityCode()); } } } } AstCFunc* newCFunc(AstCFuncType type, AstCFunc* callfromp, AstCFunc* regp, int& funcNump) { // Create new function string name; switch (type) { case AstCFuncType::TRACE_FULL: name = "traceFullTop"; break; case AstCFuncType::TRACE_FULL_SUB: name = "traceFullSub"; break; case AstCFuncType::TRACE_CHANGE: name = "traceChgTop"; break; case AstCFuncType::TRACE_CHANGE_SUB: name = "traceChgSub"; break; default: m_topScopep->v3fatalSrc("Bad trace function type"); } name += cvtToStr(funcNump++); FileLine* const flp = m_topScopep->fileline(); AstCFunc* const funcp = new AstCFunc(flp, name, m_topScopep); const string argTypes("void* userp, " + v3Global.opt.traceClassBase() + "* tracep"); funcp->argTypes(argTypes); funcp->funcType(type); funcp->slow(type == AstCFuncType::TRACE_FULL || type == AstCFuncType::TRACE_FULL_SUB); funcp->symProlog(true); funcp->declPrivate(true); // Add it to top scope m_topScopep->addActivep(funcp); // Add call to new function if (callfromp) { AstCCall* callp = new AstCCall(funcp->fileline(), funcp); callp->argTypes("userp, tracep"); callfromp->addStmtsp(callp); } // Register function if (regp) { string registration = "tracep->add"; if (type == AstCFuncType::TRACE_FULL) { registration += "Full"; } else if (type == AstCFuncType::TRACE_CHANGE) { registration += "Chg"; } else { funcp->v3fatalSrc("Don't know how to register this type of function"); } registration += "Cb(&" + protect(name) + ", __VlSymsp);\n"; AstCStmt* const stmtp = new AstCStmt(flp, registration); regp->addStmtsp(stmtp); } // Add global activity check to TRACE_CHANGE functions if (type == AstCFuncType::TRACE_CHANGE) { funcp->addInitsp( new AstCStmt(flp, string("if (VL_UNLIKELY(!vlSymsp->__Vm_activity)) return;\n"))); } // Done UINFO(5, " newCFunc " << funcp << endl); return funcp; } void createFullTraceFunction(const TraceVec& traces, uint32_t nAllCodes, uint32_t parallelism, AstCFunc* regFuncp) { const int splitLimit = v3Global.opt.outputSplitCTrace() ? v3Global.opt.outputSplitCTrace() : std::numeric_limits::max(); int topFuncNum = 0; int subFuncNum = 0; auto it = traces.cbegin(); while (it != traces.cend()) { AstCFunc* topFuncp = nullptr; AstCFunc* subFuncp = nullptr; int subStmts = 0; const uint32_t maxCodes = (nAllCodes + parallelism - 1) / parallelism; uint32_t nCodes = 0; for (; nCodes < maxCodes && it != traces.end(); ++it) { const TraceTraceVertex* const vtxp = it->second; AstTraceDecl* const declp = vtxp->nodep(); if (const TraceTraceVertex* const canonVtxp = vtxp->duplicatep()) { // This is a duplicate trace node. We will assign the signal // number to the canonical node, and emit this as an alias, so // no need to create a TraceInc node. AstTraceDecl* const canonDeclp = canonVtxp->nodep(); UASSERT_OBJ(!canonVtxp->duplicatep(), canonDeclp, "Canonical node is a duplicate"); UASSERT_OBJ(canonDeclp->code() != 0, canonDeclp, "Canonical node should have code assigned already"); declp->code(canonDeclp->code()); } else { // This is a canonical trace node. Assign signal number and // add a TraceInc node to the full dump function. UASSERT_OBJ(declp->code() == 0, declp, "Canonical node should not have code assigned yet"); declp->code(m_code); m_code += declp->codeInc(); m_statUniqCodes += declp->codeInc(); ++m_statUniqSigs; // Create top function if not yet created if (!topFuncp) { topFuncp = newCFunc(AstCFuncType::TRACE_FULL, nullptr, regFuncp, topFuncNum); } // Crate new sub function if required if (!subFuncp || subStmts > splitLimit) { subStmts = 0; subFuncp = newCFunc(AstCFuncType::TRACE_FULL_SUB, topFuncp, nullptr, subFuncNum); } // Add TraceInc node AstTraceInc* const incp = new AstTraceInc(declp->fileline(), declp, true); subFuncp->addStmtsp(incp); subStmts += EmitCBaseCounterVisitor(incp).count(); // Track partitioning nCodes += declp->codeInc(); } } if (topFuncp) { // might be nullptr if all trailing entries were duplicates UINFO(5, "traceFullTop" << topFuncNum - 1 << " codes: " << nCodes << "/" << maxCodes << endl); } } } void createChgTraceFunctions(const TraceVec& traces, uint32_t nAllCodes, uint32_t parallelism, AstCFunc* regFuncp) { const int splitLimit = v3Global.opt.outputSplitCTrace() ? v3Global.opt.outputSplitCTrace() : std::numeric_limits::max(); int topFuncNum = 0; int subFuncNum = 0; TraceVec::const_iterator it = traces.begin(); while (it != traces.end()) { AstCFunc* topFuncp = nullptr; AstCFunc* subFuncp = nullptr; int subStmts = 0; uint32_t maxCodes = (nAllCodes + parallelism - 1) / parallelism; if (maxCodes < 1) maxCodes = 1; uint32_t nCodes = 0; const ActCodeSet* prevActSet = nullptr; AstIf* ifp = nullptr; for (; nCodes < maxCodes && it != traces.end(); ++it) { const TraceTraceVertex* const vtxp = it->second; // This is a duplicate decl, no need to add it to incremental dump if (vtxp->duplicatep()) continue; const ActCodeSet& actSet = it->first; // Traced value never changes, no need to add it to incremental dump if (actSet.count(TraceActivityVertex::ACTIVITY_NEVER)) continue; // Create top function if not yet created if (!topFuncp) { topFuncp = newCFunc(AstCFuncType::TRACE_CHANGE, nullptr, regFuncp, topFuncNum); } // Crate new sub function if required if (!subFuncp || subStmts > splitLimit) { subStmts = 0; subFuncp = newCFunc(AstCFuncType::TRACE_CHANGE_SUB, topFuncp, nullptr, subFuncNum); prevActSet = nullptr; ifp = nullptr; } // If required, create the conditional node checking the activity flags if (!prevActSet || actSet != *prevActSet) { FileLine* const flp = m_topScopep->fileline(); bool always = actSet.count(TraceActivityVertex::ACTIVITY_ALWAYS) != 0; AstNode* condp = nullptr; if (always) { condp = new AstConst(flp, 1); // Always true, will be folded later } else { for (const uint32_t actCode : actSet) { AstNode* const selp = selectActivity(flp, actCode, VAccess::READ); condp = condp ? new AstOr(flp, condp, selp) : selp; } } ifp = new AstIf(flp, condp, nullptr, nullptr); if (!always) ifp->branchPred(VBranchPred::BP_UNLIKELY); subFuncp->addStmtsp(ifp); subStmts += EmitCBaseCounterVisitor(ifp).count(); prevActSet = &actSet; } // Add TraceInc node AstTraceDecl* const declp = vtxp->nodep(); AstTraceInc* const incp = new AstTraceInc(declp->fileline(), declp, VAccess::READ); ifp->addIfsp(incp); subStmts += EmitCBaseCounterVisitor(incp).count(); // Track partitioning nCodes += declp->codeInc(); } if (topFuncp) { // might be nullptr if all trailing entries were duplicates/constants UINFO(5, "traceChgTop" << topFuncNum - 1 << " codes: " << nCodes << "/" << maxCodes << endl); } } } void createCleanupFunction(AstCFunc* regFuncp) { FileLine* const fl = m_topScopep->fileline(); AstCFunc* const cleanupFuncp = new AstCFunc(fl, "traceCleanup", m_topScopep); const string argTypes("void* userp, " + v3Global.opt.traceClassBase() + "* /*unused*/"); cleanupFuncp->argTypes(argTypes); cleanupFuncp->funcType(AstCFuncType::TRACE_CLEANUP); cleanupFuncp->slow(false); cleanupFuncp->symProlog(true); cleanupFuncp->declPrivate(true); m_topScopep->addActivep(cleanupFuncp); // Register it regFuncp->addStmtsp(new AstCStmt( fl, string("tracep->addCleanupCb(&" + protect("traceCleanup") + ", __VlSymsp);\n"))); // Clear global activity flag cleanupFuncp->addStmtsp( new AstCStmt(m_topScopep->fileline(), string("vlSymsp->__Vm_activity = false;\n"))); // Clear fine grained activity flags for (uint32_t i = 0; i < m_activityNumber; ++i) { AstNode* const clrp = new AstAssign(fl, selectActivity(fl, i, VAccess::WRITE), new AstConst(fl, AstConst::BitFalse())); cleanupFuncp->addStmtsp(clrp); } } void createTraceFunctions() { // Detect and remove duplicate values detectDuplicates(); // Simplify & optimize the graph if (debug() >= 6) m_graph.dumpDotFilePrefixed("trace_pre"); graphSimplify(true); if (debug() >= 6) m_graph.dumpDotFilePrefixed("trace_simplified"); graphOptimize(); if (debug() >= 6) m_graph.dumpDotFilePrefixed("trace_optimized"); // Create the fine grained activity flags createActivityFlags(); // Form a sorted list of the traces we are interested in TraceVec traces; // The sorted traces // We will split functions such that each have to dump roughly the same amount of data // for this we need to keep tack of the number of codes used by the trace functions. uint32_t nFullCodes = 0; // Number of non-duplicate codes (need to go into full* dump) uint32_t nChgCodes = 0; // Number of non-consant codes (need to go in to chg* dump) sortTraces(traces, nFullCodes, nChgCodes); UINFO(5, "nFullCodes: " << nFullCodes << " nChgCodes: " << nChgCodes << endl); // Our keys are now sorted to have same activity number adjacent, then // by trace order. (Better would be execution order for cache // efficiency....) Last are constants and non-changers, as then the // last value vector is more compact // Create the trace registration function AstCFunc* const regFuncp = new AstCFunc(m_topScopep->fileline(), "traceRegister", m_topScopep); regFuncp->argTypes(v3Global.opt.traceClassBase() + "* tracep"); regFuncp->funcType(AstCFuncType::TRACE_REGISTER); regFuncp->slow(true); regFuncp->isStatic(false); regFuncp->declPrivate(true); m_topScopep->addActivep(regFuncp); const int parallelism = 1; // Note: will bump this later, code below works for any value // Create the full dump functions, also allocates signal numbers createFullTraceFunction(traces, nFullCodes, parallelism, regFuncp); // Create the incremental dump functions createChgTraceFunctions(traces, nChgCodes, parallelism, regFuncp); // Remove refs to traced values from TraceDecl nodes, these have now moved under // TraceInc for (const auto& i : traces) { AstNode* const valuep = i.second->nodep()->valuep(); valuep->unlinkFrBack(); valuep->deleteTree(); } // Create the trace cleanup function clearing the activity flags createCleanupFunction(regFuncp); } TraceCFuncVertex* getCFuncVertexp(AstCFunc* nodep) { TraceCFuncVertex* vertexp = dynamic_cast(nodep->user1u().toGraphVertex()); if (!vertexp) { vertexp = new TraceCFuncVertex(&m_graph, nodep); nodep->user1p(vertexp); } return vertexp; } TraceActivityVertex* getActivityVertexp(AstNode* nodep, bool slow) { TraceActivityVertex* vertexp = dynamic_cast(nodep->user3u().toGraphVertex()); if (!vertexp) { vertexp = new TraceActivityVertex(&m_graph, nodep, slow); nodep->user3p(vertexp); } vertexp->slow(slow); return vertexp; } // VISITORS virtual void visit(AstNetlist* nodep) override { m_code = 1; // Multiple TopScopes will require fixing how code#s // are assigned as duplicate varscopes must result in the same tracing code#. // Add vertexes for all TraceDecl, and edges from VARs each trace looks at m_finding = false; iterateChildren(nodep); // Add vertexes for all CFUNCs, and edges to VARs the func sets m_finding = true; iterateChildren(nodep); // Create the trace functions and insert them into the tree createTraceFunctions(); } virtual void visit(AstNodeModule* nodep) override { if (nodep->isTop()) m_topModp = nodep; iterateChildren(nodep); } virtual void visit(AstTopScope* nodep) override { AstScope* const scopep = nodep->scopep(); UASSERT_OBJ(scopep, nodep, "No scope found on top level"); m_topScopep = scopep; iterateChildren(nodep); } virtual void visit(AstCCall* nodep) override { UINFO(8, " CCALL " << nodep << endl); if (!m_finding && !nodep->user2()) { // See if there are other calls in same statement list; // If so, all funcs might share the same activity code TraceActivityVertex* const activityVtxp = getActivityVertexp(nodep, nodep->funcp()->slow()); for (AstNode* nextp = nodep; nextp; nextp = nextp->nextp()) { if (AstCCall* const ccallp = VN_CAST(nextp, CCall)) { ccallp->user2(true); // Processed UINFO(8, " SubCCALL " << ccallp << endl); V3GraphVertex* const ccallFuncVtxp = getCFuncVertexp(ccallp->funcp()); activityVtxp->slow(ccallp->funcp()->slow()); new V3GraphEdge(&m_graph, activityVtxp, ccallFuncVtxp, 1); } } } iterateChildren(nodep); } virtual void visit(AstCFunc* nodep) override { UINFO(8, " CFUNC " << nodep << endl); V3GraphVertex* const funcVtxp = getCFuncVertexp(nodep); if (!m_finding) { // If public, we need a unique activity code to allow for sets // directly in this func if (nodep->funcPublic() || nodep->dpiExport() || nodep == v3Global.rootp()->evalp()) { V3GraphVertex* const activityVtxp = getActivityVertexp(nodep, nodep->slow()); new V3GraphEdge(&m_graph, activityVtxp, funcVtxp, 1); } } VL_RESTORER(m_cfuncp); { m_cfuncp = nodep; iterateChildren(nodep); } } virtual void visit(AstTraceDecl* nodep) override { UINFO(8, " TRACE " << nodep << endl); if (!m_finding) { V3GraphVertex* const vertexp = new TraceTraceVertex(&m_graph, nodep); nodep->user1p(vertexp); UASSERT_OBJ(m_cfuncp, nodep, "Trace not under func"); m_tracep = nodep; iterateChildren(nodep); m_tracep = nullptr; } } virtual void visit(AstVarRef* nodep) override { if (m_tracep) { UASSERT_OBJ(nodep->varScopep(), nodep, "No var scope?"); UASSERT_OBJ(nodep->access().isReadOnly(), nodep, "Lvalue in trace? Should be const."); V3GraphVertex* varVtxp = nodep->varScopep()->user1u().toGraphVertex(); if (!varVtxp) { varVtxp = new TraceVarVertex(&m_graph, nodep->varScopep()); nodep->varScopep()->user1p(varVtxp); } V3GraphVertex* const traceVtxp = m_tracep->user1u().toGraphVertex(); new V3GraphEdge(&m_graph, varVtxp, traceVtxp, 1); if (nodep->varp()->isPrimaryInish() // Always need to trace primary inputs || nodep->varp()->isSigPublic()) { // Or ones user can change new V3GraphEdge(&m_graph, m_alwaysVtxp, traceVtxp, 1); } } else if (m_cfuncp && m_finding && nodep->access().isWriteOrRW()) { UASSERT_OBJ(nodep->varScopep(), nodep, "No var scope?"); V3GraphVertex* const funcVtxp = getCFuncVertexp(m_cfuncp); V3GraphVertex* const varVtxp = nodep->varScopep()->user1u().toGraphVertex(); if (varVtxp) { // else we're not tracing this signal new V3GraphEdge(&m_graph, funcVtxp, varVtxp, 1); } } } //-------------------- virtual void visit(AstNode* nodep) override { iterateChildren(nodep); } public: // CONSTRUCTORS explicit TraceVisitor(AstNetlist* nodep) : m_alwaysVtxp{new TraceActivityVertex{&m_graph, TraceActivityVertex::ACTIVITY_ALWAYS}} { iterate(nodep); } virtual ~TraceVisitor() override { V3Stats::addStat("Tracing, Unique changing signals", m_statChgSigs); V3Stats::addStat("Tracing, Unique traced signals", m_statUniqSigs); V3Stats::addStat("Tracing, Unique trace codes", m_statUniqCodes); } }; //###################################################################### // Trace class functions void V3Trace::traceAll(AstNetlist* nodep) { UINFO(2, __FUNCTION__ << ": " << endl); { TraceVisitor visitor(nodep); } // Destruct before checking V3Global::dumpCheckGlobalTree("trace", 0, v3Global.opt.dumpTreeLevel(__FILE__) >= 3); }