// -*- mode: C++; c-file-style: "cc-mode" -*- //************************************************************************* // // Copyright 2010-2011 by Wilson Snyder. This program is free software; you can // redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License. // Version 2.0. // // Verilator is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // //************************************************************************* #ifdef IS_VPI #include "vpi_user.h" #else #include "Vt_vpi_var.h" #include "verilated.h" #include "svdpi.h" #include "Vt_vpi_var__Dpi.h" #include "verilated_vpi.h" #include "verilated_vcd_c.h" #endif #include #include #include #include using namespace std; #include "TestSimulator.h" #include "TestVpi.h" // __FILE__ is too long #define FILENM "t_vpi_var.cpp" #define TEST_MSG if (0) printf unsigned int main_time = false; unsigned int callback_count = false; unsigned int callback_count_half = false; unsigned int callback_count_quad = false; unsigned int callback_count_strs = false; unsigned int callback_count_strs_max = 500; //====================================================================== #define CHECK_RESULT_VH(got, exp) \ if ((got) != (exp)) { \ printf("%%Error: %s:%d: GOT = %p EXP = %p\n", \ FILENM,__LINE__, (got), (exp)); \ return __LINE__; \ } #define CHECK_RESULT_NZ(got) \ if (!(got)) { \ printf("%%Error: %s:%d: GOT = NULL EXP = !NULL\n", FILENM,__LINE__); \ return __LINE__; \ } // Use cout to avoid issues with %d/%lx etc #define CHECK_RESULT(got, exp) \ if ((got) != (exp)) { \ cout<", (exp)?(exp):""); \ return __LINE__; \ } #define CHECK_RESULT_CSTR_STRIP(got, exp) \ CHECK_RESULT_CSTR(got+strspn(got, " "), exp) int _mon_check_mcd() { PLI_INT32 status; PLI_UINT32 mcd; PLI_BYTE8* filename = (PLI_BYTE8*)"obj_dir/t_vpi_var/mcd_open.tmp"; mcd = vpi_mcd_open(filename); CHECK_RESULT_NZ(mcd); { // Check it got written FILE* fp = fopen(filename,"r"); CHECK_RESULT_NZ(fp); fclose(fp); } status = vpi_mcd_printf(mcd, (PLI_BYTE8*)"hello %s", "vpi_mcd_printf"); CHECK_RESULT(status, strlen("hello vpi_mcd_printf")); status = vpi_mcd_flush(mcd); CHECK_RESULT(status, 0); status = vpi_mcd_close(mcd); // Icarus says 'error' on ones we're not using, so check only used ones return 0. CHECK_RESULT(status & mcd, 0); status = vpi_flush(); CHECK_RESULT(status, 0); return 0; } int _mon_check_callbacks_error(p_cb_data cb_data) { vpi_printf((PLI_BYTE8*)"%%Error: callback should not be executed\n"); return 1; } int _mon_check_callbacks() { t_cb_data cb_data; cb_data.reason = cbEndOfSimulation; cb_data.cb_rtn = _mon_check_callbacks_error; cb_data.user_data = 0; cb_data.value = NULL; cb_data.time = NULL; vpiHandle vh = vpi_register_cb(&cb_data); CHECK_RESULT_NZ(vh); PLI_INT32 status = vpi_remove_cb(vh); CHECK_RESULT_NZ(status); return 0; } int _value_callback(p_cb_data cb_data) { if (TestSimulator::is_verilator()) { // this check only makes sense in Verilator CHECK_RESULT(cb_data->value->value.integer+10, main_time); } callback_count++; return 0; } int _value_callback_half(p_cb_data cb_data) { if (TestSimulator::is_verilator()) { // this check only makes sense in Verilator CHECK_RESULT(cb_data->value->value.integer*2+10, main_time); } callback_count_half++; return 0; } int _value_callback_quad(p_cb_data cb_data) { for (int index=0;index<2;index++) { CHECK_RESULT_HEX(cb_data->value->value.vector[1].aval, (unsigned long)((index==2)?0x1c77bb9bUL:0x12819213UL)); CHECK_RESULT_HEX(cb_data->value->value.vector[0].aval, (unsigned long)((index==2)?0x3784ea09UL:0xabd31a1cUL)); } callback_count_quad++; return 0; } int _mon_check_value_callbacks() { vpiHandle vh1 = VPI_HANDLE("count"); CHECK_RESULT_NZ(vh1); s_vpi_value v; v.format = vpiIntVal; vpi_get_value(vh1, &v); t_cb_data cb_data; cb_data.reason = cbValueChange; cb_data.cb_rtn = _value_callback; cb_data.obj = vh1; cb_data.value = &v; cb_data.time = NULL; vpiHandle vh = vpi_register_cb(&cb_data); CHECK_RESULT_NZ(vh); vh1 = VPI_HANDLE("half_count"); CHECK_RESULT_NZ(vh1); cb_data.obj = vh1; cb_data.cb_rtn = _value_callback_half; vh = vpi_register_cb(&cb_data); CHECK_RESULT_NZ(vh); vh1 = VPI_HANDLE("quads"); CHECK_RESULT_NZ(vh1); v.format = vpiVectorVal; cb_data.obj = vh1; cb_data.cb_rtn = _value_callback_quad; vh = vpi_register_cb(&cb_data); CHECK_RESULT_NZ(vh); vh1 = vpi_handle_by_index(vh1, 2); CHECK_RESULT_NZ(vh1); cb_data.obj = vh1; cb_data.cb_rtn = _value_callback_quad; vh = vpi_register_cb(&cb_data); CHECK_RESULT_NZ(vh); return 0; } int _mon_check_var() { TestVpiHandle vh1 = VPI_HANDLE("onebit"); CHECK_RESULT_NZ(vh1); TestVpiHandle vh2 = vpi_handle_by_name((PLI_BYTE8*)TestSimulator::top(), NULL); CHECK_RESULT_NZ(vh2); // scope attributes const char* p; p = vpi_get_str(vpiName, vh2); CHECK_RESULT_CSTR(p, "t"); p = vpi_get_str(vpiFullName, vh2); CHECK_RESULT_CSTR(p, TestSimulator::top()); TestVpiHandle vh3 = vpi_handle_by_name((PLI_BYTE8*)"onebit", vh2); CHECK_RESULT_NZ(vh3); // onebit attributes PLI_INT32 d; d = vpi_get(vpiType, vh3); CHECK_RESULT(d, vpiReg); if (TestSimulator::has_get_scalar()) { d = vpi_get(vpiVector, vh3); CHECK_RESULT(d, 0); } p = vpi_get_str(vpiName, vh3); CHECK_RESULT_CSTR(p, "onebit"); p = vpi_get_str(vpiFullName, vh3); CHECK_RESULT_CSTR(p, TestSimulator::rooted("onebit")); // array attributes TestVpiHandle vh4 = VPI_HANDLE("fourthreetwoone"); CHECK_RESULT_NZ(vh4); if (TestSimulator::has_get_scalar()) { d = vpi_get(vpiVector, vh4); CHECK_RESULT(d, 1); } t_vpi_value tmpValue; tmpValue.format = vpiIntVal; { TestVpiHandle vh10 = vpi_handle(vpiLeftRange, vh4); CHECK_RESULT_NZ(vh10); vpi_get_value(vh10, &tmpValue); CHECK_RESULT(tmpValue.value.integer,4); } { TestVpiHandle vh10 = vpi_handle(vpiRightRange, vh4); CHECK_RESULT_NZ(vh10); vpi_get_value(vh10, &tmpValue); CHECK_RESULT(tmpValue.value.integer,3); } { TestVpiHandle vh10 = vpi_iterate(vpiMemoryWord, vh4); CHECK_RESULT_NZ(vh10); TestVpiHandle vh11 = vpi_scan(vh10); CHECK_RESULT_NZ(vh11); TestVpiHandle vh12 = vpi_handle(vpiLeftRange, vh11); CHECK_RESULT_NZ(vh12); vpi_get_value(vh12, &tmpValue); CHECK_RESULT(tmpValue.value.integer,2); TestVpiHandle vh13 = vpi_handle(vpiRightRange, vh11); CHECK_RESULT_NZ(vh13); vpi_get_value(vh13, &tmpValue); CHECK_RESULT(tmpValue.value.integer,1); } return 0; } int _mon_check_varlist() { const char* p; TestVpiHandle vh2 = VPI_HANDLE("sub"); CHECK_RESULT_NZ(vh2); TestVpiHandle vh10 = vpi_iterate(vpiReg, vh2); CHECK_RESULT_NZ(vh10.nofree()); TestVpiHandle vh11 = vpi_scan(vh10); CHECK_RESULT_NZ(vh11); p = vpi_get_str(vpiFullName, vh11); CHECK_RESULT_CSTR(p, TestSimulator::rooted("sub.subsig1")); TestVpiHandle vh12 = vpi_scan(vh10); CHECK_RESULT_NZ(vh12); p = vpi_get_str(vpiFullName, vh12); CHECK_RESULT_CSTR(p, TestSimulator::rooted("sub.subsig2")); TestVpiHandle vh13 = vpi_scan(vh10); CHECK_RESULT(vh13,0); return 0; } int _mon_check_getput() { TestVpiHandle vh2 = VPI_HANDLE("onebit"); CHECK_RESULT_NZ(vh2); s_vpi_value v; v.format = vpiIntVal; vpi_get_value(vh2, &v); CHECK_RESULT(v.value.integer, 0); s_vpi_time t; t.type = vpiSimTime; t.high = 0; t.low = 0; v.value.integer = 1; vpi_put_value(vh2, &v, &t, vpiNoDelay); vpi_get_value(vh2, &v); CHECK_RESULT(v.value.integer, 1); return 0; } int _mon_check_quad() { TestVpiHandle vh2 = VPI_HANDLE("quads"); CHECK_RESULT_NZ(vh2); s_vpi_value v; t_vpi_vecval vv[2]; bzero(&vv,sizeof(vv)); s_vpi_time t; t.type = vpiSimTime; t.high = 0; t.low = 0; TestVpiHandle vhidx2 = vpi_handle_by_index(vh2, 2); CHECK_RESULT_NZ(vhidx2); TestVpiHandle vhidx3 = vpi_handle_by_index(vh2, 3); CHECK_RESULT_NZ(vhidx2); v.format = vpiVectorVal; v.value.vector = vv; v.value.vector[1].aval = 0x12819213UL; v.value.vector[0].aval = 0xabd31a1cUL; vpi_put_value(vhidx2, &v, &t, vpiNoDelay); v.format = vpiVectorVal; v.value.vector = vv; v.value.vector[1].aval = 0x1c77bb9bUL; v.value.vector[0].aval = 0x3784ea09UL; vpi_put_value(vhidx3, &v, &t, vpiNoDelay); vpi_get_value(vhidx2, &v); CHECK_RESULT(v.value.vector[1].aval, 0x12819213UL); CHECK_RESULT(v.value.vector[1].bval, 0); vpi_get_value(vhidx3, &v); CHECK_RESULT(v.value.vector[1].aval, 0x1c77bb9bUL); CHECK_RESULT(v.value.vector[1].bval, 0); return 0; } int _mon_check_string() { static struct { const char *name; const char *initial; const char *value; } text_test_obs[] = { {"text_byte", "B", "xxA"}, // x's dropped {"text_half", "Hf", "xxT2"}, // x's dropped {"text_word", "Word", "Tree"}, {"text_long", "Long64b", "44Four44"}, {"text" , "Verilog Test module", "lorem ipsum"}, }; for (int i=0; i<5; i++) { TestVpiHandle vh1 = VPI_HANDLE(text_test_obs[i].name); CHECK_RESULT_NZ(vh1); s_vpi_value v; s_vpi_time t = { vpiSimTime, 0, 0, 0.0}; s_vpi_error_info e; v.format = vpiStringVal; vpi_get_value(vh1, &v); if (vpi_chk_error(&e)) { printf("%%vpi_chk_error : %s\n", e.message); } CHECK_RESULT_CSTR_STRIP(v.value.str, text_test_obs[i].initial); v.value.str = (PLI_BYTE8*)text_test_obs[i].value; vpi_put_value(vh1, &v, &t, vpiNoDelay); } return 0; } int _mon_check_putget_str(p_cb_data cb_data) { static TestVpiHandle cb; static struct { TestVpiHandle scope, sig, rfr, check, verbose; char str[128+1]; // char per bit plus null terminator int type; // value type in .str union { PLI_INT32 integer; s_vpi_vecval vector[4]; } value; // reference } data[129]; if (cb_data) { // this is the callback static unsigned int seed = 1; s_vpi_time t; t.type = vpiSimTime; t.high = 0; t.low = 0; for (int i=2; i<=128; i++) { static s_vpi_value v; int words = (i+31)>>5; TEST_MSG("========== %d ==========\n", i); if (callback_count_strs) { // check persistance if (data[i].type) { v.format = data[i].type; } else { static PLI_INT32 vals[] = {vpiBinStrVal, vpiOctStrVal, vpiHexStrVal, vpiDecStrVal}; v.format = vals[rand_r(&seed) % ((words>2)?3:4)]; TEST_MSG("new format %d\n", v.format); } vpi_get_value(data[i].sig, &v); TEST_MSG("%s\n", v.value.str); if (data[i].type) { CHECK_RESULT_CSTR(v.value.str, data[i].str); } else { data[i].type = v.format; strcpy(data[i].str, v.value.str); } } // check for corruption v.format = (words==1)?vpiIntVal:vpiVectorVal; vpi_get_value(data[i].sig, &v); if (v.format == vpiIntVal) { TEST_MSG("%08x %08x\n", v.value.integer, data[i].value.integer); CHECK_RESULT(v.value.integer, data[i].value.integer); } else { for (int k=0; k < words; k++) { TEST_MSG("%d %08x %08x\n", k, v.value.vector[k].aval, data[i].value.vector[k].aval); CHECK_RESULT_HEX(v.value.vector[k].aval, data[i].value.vector[k].aval); } } if (callback_count_strs & 7) { // put same value back - checking encoding/decoding equivalent v.format = data[i].type; v.value.str = data[i].str; vpi_put_value(data[i].sig, &v, &t, vpiNoDelay); v.format = vpiIntVal; v.value.integer = 1; //vpi_put_value(data[i].verbose, &v, &t, vpiNoDelay); vpi_put_value(data[i].check, &v, &t, vpiNoDelay); } else { // stick a new random value in unsigned int mask = ((i&31)?(1<<(i&31)):0)-1; if (words == 1) { v.value.integer = rand_r(&seed); data[i].value.integer = v.value.integer &= mask; v.format = vpiIntVal; TEST_MSG("new value %08x\n", data[i].value.integer); } else { TEST_MSG("new value\n"); for (int j=0; j<4; j++) { data[i].value.vector[j].aval = rand_r(&seed); if (j==(words-1)) { data[i].value.vector[j].aval &= mask; } TEST_MSG(" %08x\n", data[i].value.vector[j].aval); } v.value.vector = data[i].value.vector; v.format = vpiVectorVal; } vpi_put_value(data[i].sig, &v, &t, vpiNoDelay); vpi_put_value(data[i].rfr, &v, &t, vpiNoDelay); } if ((callback_count_strs & 1) == 0) data[i].type = 0; } if (++callback_count_strs == callback_count_strs_max) { int success = vpi_remove_cb(cb); CHECK_RESULT_NZ(success); }; } else { // setup and install for (int i=1; i<=128; i++) { char buf[32]; snprintf(buf, sizeof(buf), TestSimulator::rooted("arr[%d].arr"), i); CHECK_RESULT_NZ(data[i].scope = vpi_handle_by_name((PLI_BYTE8*)buf, NULL)); CHECK_RESULT_NZ(data[i].sig = vpi_handle_by_name((PLI_BYTE8*)"sig", data[i].scope)); CHECK_RESULT_NZ(data[i].rfr = vpi_handle_by_name((PLI_BYTE8*)"rfr", data[i].scope)); CHECK_RESULT_NZ(data[i].check = vpi_handle_by_name((PLI_BYTE8*)"check", data[i].scope)); CHECK_RESULT_NZ(data[i].verbose = vpi_handle_by_name((PLI_BYTE8*)"verbose", data[i].scope)); } static t_cb_data cb_data; static s_vpi_value v; static TestVpiHandle count_h = VPI_HANDLE("count"); cb_data.reason = cbValueChange; cb_data.cb_rtn = _mon_check_putget_str; // this function cb_data.obj = count_h; cb_data.value = &v; cb_data.time = NULL; v.format = vpiIntVal; cb = vpi_register_cb(&cb_data); CHECK_RESULT_NZ(cb); } return 0; } int _mon_check_vlog_info() { s_vpi_vlog_info vlog_info; PLI_INT32 rtn = vpi_get_vlog_info(&vlog_info); CHECK_RESULT(rtn, 1); CHECK_RESULT(vlog_info.argc, 4); CHECK_RESULT_CSTR(vlog_info.argv[1], "+PLUS"); CHECK_RESULT_CSTR(vlog_info.argv[2], "+INT=1234"); CHECK_RESULT_CSTR(vlog_info.argv[3], "+STRSTR"); if (TestSimulator::is_verilator()) { CHECK_RESULT_CSTR(vlog_info.product, "Verilator"); CHECK_RESULT(strlen(vlog_info.version) > 0, 1); } return 0; } int mon_check() { // Callback from initial block in monitor if (int status = _mon_check_mcd()) return status; if (int status = _mon_check_callbacks()) return status; if (int status = _mon_check_value_callbacks()) return status; if (int status = _mon_check_var()) return status; if (int status = _mon_check_varlist()) return status; if (int status = _mon_check_getput()) return status; if (int status = _mon_check_quad()) return status; if (int status = _mon_check_string()) return status; if (int status = _mon_check_putget_str(NULL)) return status; if (int status = _mon_check_vlog_info()) return status; #ifndef IS_VPI VerilatedVpi::selfTest(); #endif return 0; // Ok } //====================================================================== #ifdef IS_VPI static int mon_check_vpi() { vpiHandle href = vpi_handle(vpiSysTfCall, 0); s_vpi_value vpi_value; vpi_value.format = vpiIntVal; vpi_value.value.integer = mon_check(); vpi_put_value(href, &vpi_value, NULL, vpiNoDelay); return 0; } static s_vpi_systf_data vpi_systf_data[] = { {vpiSysFunc, vpiIntFunc, (PLI_BYTE8*)"$mon_check", (PLI_INT32(*)(PLI_BYTE8*))mon_check_vpi, 0, 0, 0}, 0 }; // cver entry void vpi_compat_bootstrap(void) { p_vpi_systf_data systf_data_p; systf_data_p = &(vpi_systf_data[0]); while (systf_data_p->type != 0) vpi_register_systf(systf_data_p++); } // icarus entry void (*vlog_startup_routines[])() = { vpi_compat_bootstrap, 0 }; #else double sc_time_stamp () { return main_time; } int main(int argc, char **argv, char **env) { double sim_time = 1100; Verilated::commandArgs(argc, argv); Verilated::debug(0); VM_PREFIX* topp = new VM_PREFIX (""); // Note null name - we're flattening it out #ifdef VERILATOR # ifdef TEST_VERBOSE Verilated::scopesDump(); # endif #endif #if VM_TRACE Verilated::traceEverOn(true); VL_PRINTF("Enabling waves...\n"); VerilatedVcdC* tfp = new VerilatedVcdC; topp->trace (tfp, 99); tfp->open ("obj_dir/t_vpi_var/simx.vcd"); #endif topp->eval(); topp->clk = 0; main_time += 10; while (sc_time_stamp() < sim_time && !Verilated::gotFinish()) { main_time += 1; topp->eval(); VerilatedVpi::callValueCbs(); topp->clk = !topp->clk; //mon_do(); #if VM_TRACE if (tfp) tfp->dump (main_time); #endif } CHECK_RESULT(callback_count, 501); CHECK_RESULT(callback_count_half, 250); CHECK_RESULT(callback_count_quad, 2); CHECK_RESULT(callback_count_strs, callback_count_strs_max); if (!Verilated::gotFinish()) { vl_fatal(FILENM,__LINE__,"main", "%Error: Timeout; never got a $finish"); } topp->final(); #if VM_TRACE if (tfp) tfp->close(); #endif delete topp; topp=NULL; exit(0L); } #endif