// -*- mode: C++; c-file-style: "cc-mode" -*- //============================================================================= // // THIS MODULE IS PUBLICLY LICENSED // // Copyright 2001-2020 by Wilson Snyder. This program is free software; // you can redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License Version 2.0. // // This is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // //============================================================================= /// /// \file /// \brief C++ Tracing in VCD Format /// //============================================================================= // SPDIFF_OFF #include "verilatedos.h" #include "verilated.h" #include "verilated_vcd_c.h" #include #include #include #include #include #if defined(_WIN32) && !defined(__MINGW32__) && !defined(__CYGWIN__) # include #else # include #endif // SPDIFF_ON #ifndef O_LARGEFILE // For example on WIN32 # define O_LARGEFILE 0 #endif #ifndef O_NONBLOCK # define O_NONBLOCK 0 #endif #ifndef O_CLOEXEC # define O_CLOEXEC 0 #endif //============================================================================= // VerilatedVcdImp /// Base class to hold some static state /// This is an internally used class class VerilatedVcdSingleton { private: typedef std::vector VcdVec; struct Singleton { VerilatedMutex s_vcdMutex; ///< Protect the singleton VcdVec s_vcdVecp VL_GUARDED_BY(s_vcdMutex); ///< List of all created traces }; static Singleton& singleton() { static Singleton s; return s; } public: static void pushVcd(VerilatedVcd* vcdp) VL_EXCLUDES(singleton().s_vcdMutex) { VerilatedLockGuard lock(singleton().s_vcdMutex); singleton().s_vcdVecp.push_back(vcdp); } static void removeVcd(const VerilatedVcd* vcdp) VL_EXCLUDES(singleton().s_vcdMutex) { VerilatedLockGuard lock(singleton().s_vcdMutex); VcdVec::iterator pos = find(singleton().s_vcdVecp.begin(), singleton().s_vcdVecp.end(), vcdp); if (pos != singleton().s_vcdVecp.end()) { singleton().s_vcdVecp.erase(pos); } } static void flush_all() VL_EXCLUDES(singleton().s_vcdMutex) VL_MT_UNSAFE_ONE { // Thread safety: Although this function is protected by a mutex so // perhaps in the future we can allow tracing in separate threads, // vcdp->flush() assumes call from single thread VerilatedLockGuard lock(singleton().s_vcdMutex); for (VcdVec::const_iterator it = singleton().s_vcdVecp.begin(); it != singleton().s_vcdVecp.end(); ++it) { VerilatedVcd* vcdp = *it; vcdp->flush(); } } }; //============================================================================= // VerilatedVcdCallInfo /// Internal callback routines for each module being traced. //// /// Each module that wishes to be traced registers a set of /// callbacks stored in this class. When the trace file is being /// constructed, this class provides the callback routines to be executed. class VerilatedVcdCallInfo { protected: friend class VerilatedVcd; VerilatedVcdCallback_t m_initcb; ///< Initialization Callback function VerilatedVcdCallback_t m_fullcb; ///< Full Dumping Callback function VerilatedVcdCallback_t m_changecb; ///< Incremental Dumping Callback function void* m_userthis; ///< Fake "this" for caller vluint32_t m_code; ///< Starting code number // CONSTRUCTORS VerilatedVcdCallInfo(VerilatedVcdCallback_t icb, VerilatedVcdCallback_t fcb, VerilatedVcdCallback_t changecb, void* ut, vluint32_t code) : m_initcb(icb), m_fullcb(fcb), m_changecb(changecb), m_userthis(ut), m_code(code) {} ~VerilatedVcdCallInfo() {} }; //============================================================================= //============================================================================= //============================================================================= // VerilatedVcdFile bool VerilatedVcdFile::open(const std::string& name) VL_MT_UNSAFE { m_fd = ::open(name.c_str(), O_CREAT|O_WRONLY|O_TRUNC|O_LARGEFILE|O_NONBLOCK|O_CLOEXEC, 0666); return (m_fd>=0); } void VerilatedVcdFile::close() VL_MT_UNSAFE { ::close(m_fd); } ssize_t VerilatedVcdFile::write(const char* bufp, ssize_t len) VL_MT_UNSAFE { return ::write(m_fd, bufp, len); } //============================================================================= //============================================================================= //============================================================================= // Opening/Closing VerilatedVcd::VerilatedVcd(VerilatedVcdFile* filep) : m_isOpen(false), m_rolloverMB(0), m_modDepth(0), m_nextCode(1) { // Not in header to avoid link issue if header is included without this .cpp file m_fileNewed = (filep == NULL); m_filep = m_fileNewed ? new VerilatedVcdFile : filep; m_namemapp = NULL; m_timeRes = m_timeUnit = 1e-9; m_timeLastDump = 0; m_sigs_oldvalp = NULL; m_evcd = false; m_scopeEscape = '.'; // Backward compatibility m_fullDump = true; m_wrChunkSize = 8*1024; m_wrBufp = new char [m_wrChunkSize*8]; m_wrFlushp = m_wrBufp + m_wrChunkSize * 6; m_writep = m_wrBufp; m_wroteBytes = 0; } void VerilatedVcd::open(const char* filename) { m_assertOne.check(); if (isOpen()) return; // Set member variables m_filename = filename; VerilatedVcdSingleton::pushVcd(this); // SPDIFF_OFF // Set callback so an early exit will flush us Verilated::flushCb(&flush_all); // SPDIFF_ON openNext(m_rolloverMB!=0); if (!isOpen()) return; dumpHeader(); // Allocate space now we know the number of codes if (!m_sigs_oldvalp) { m_sigs_oldvalp = new vluint32_t [m_nextCode+10]; } if (m_rolloverMB) { openNext(true); if (!isOpen()) return; } } void VerilatedVcd::openNext(bool incFilename) { // Open next filename in concat sequence, mangle filename if // incFilename is true. m_assertOne.check(); closePrev(); // Close existing if (incFilename) { // Find _0000.{ext} in filename std::string name = m_filename; size_t pos = name.rfind('.'); if (pos>8 && 0==strncmp("_cat",name.c_str()+pos-8,4) && isdigit(name.c_str()[pos-4]) && isdigit(name.c_str()[pos-3]) && isdigit(name.c_str()[pos-2]) && isdigit(name.c_str()[pos-1])) { // Increment code. if ((++(name[pos-1])) > '9') { name[pos-1] = '0'; if ((++(name[pos-2])) > '9') { name[pos-2] = '0'; if ((++(name[pos-3])) > '9') { name[pos-3] = '0'; if ((++(name[pos-4])) > '9') { name[pos-4] = '0'; }}}} } else { // Append _cat0000 name.insert(pos,"_cat0000"); } m_filename = name; } if (m_filename[0]=='|') { assert(0); // Not supported yet. } else { // cppcheck-suppress duplicateExpression if (!m_filep->open(m_filename)) { // User code can check isOpen() m_isOpen = false; return; } } m_isOpen = true; m_fullDump = true; // First dump must be full m_wroteBytes = 0; } void VerilatedVcd::makeNameMap() { // Take signal information from each module and build m_namemapp deleteNameMap(); m_nextCode = 1; m_namemapp = new NameMap; for (vluint32_t ent = 0; ent< m_callbacks.size(); ent++) { VerilatedVcdCallInfo* cip = m_callbacks[ent]; cip->m_code = m_nextCode; (cip->m_initcb)(this, cip->m_userthis, cip->m_code); } // Though not speced, it's illegal to generate a vcd with signals // not under any module - it crashes at least two viewers. // If no scope was specified, prefix everything with a "top" // This comes from user instantiations with no name - IE Vtop(""). bool nullScope = false; for (NameMap::const_iterator it=m_namemapp->begin(); it!=m_namemapp->end(); ++it) { const std::string& hiername = it->first; if (!hiername.empty() && hiername[0] == '\t') nullScope=true; } if (nullScope) { NameMap* newmapp = new NameMap; for (NameMap::const_iterator it=m_namemapp->begin(); it!=m_namemapp->end(); ++it) { const std::string& hiername = it->first; const std::string& decl = it->second; std::string newname = std::string("top"); if (hiername[0] != '\t') newname += ' '; newname += hiername; newmapp->insert(std::make_pair(newname,decl)); } deleteNameMap(); m_namemapp = newmapp; } } void VerilatedVcd::deleteNameMap() { if (m_namemapp) { delete m_namemapp; m_namemapp=NULL; } } VerilatedVcd::~VerilatedVcd() { close(); if (m_wrBufp) { delete[] m_wrBufp; m_wrBufp=NULL; } if (m_sigs_oldvalp) { delete[] m_sigs_oldvalp; m_sigs_oldvalp=NULL; } deleteNameMap(); if (m_filep && m_fileNewed) { delete m_filep; m_filep = NULL; } for (CallbackVec::const_iterator it=m_callbacks.begin(); it!=m_callbacks.end(); ++it) { delete (*it); } m_callbacks.clear(); VerilatedVcdSingleton::removeVcd(this); } void VerilatedVcd::closePrev() { // This function is on the flush() call path if (!isOpen()) return; bufferFlush(); m_isOpen = false; m_filep->close(); } void VerilatedVcd::closeErr() { // This function is on the flush() call path // Close due to an error. We might abort before even getting here, // depending on the definition of vl_fatal. if (!isOpen()) return; // No buffer flush, just fclose m_isOpen = false; m_filep->close(); // May get error, just ignore it } void VerilatedVcd::close() { // This function is on the flush() call path m_assertOne.check(); if (!isOpen()) return; if (m_evcd) { printStr("$vcdclose "); printTime(m_timeLastDump); printStr(" $end\n"); } closePrev(); } void VerilatedVcd::printStr(const char* str) { // Not fast... while (*str) { *m_writep++ = *str++; bufferCheck(); } } void VerilatedVcd::printQuad(vluint64_t n) { char buf [100]; sprintf(buf,"%" VL_PRI64 "u", n); printStr(buf); } void VerilatedVcd::printTime(vluint64_t timeui) { // VCD file format specification does not allow non-integers for timestamps // Dinotrace doesn't mind, but Cadence Vision seems to choke if (VL_UNLIKELY(timeui < m_timeLastDump)) { timeui = m_timeLastDump; static VL_THREAD_LOCAL bool backTime = false; if (!backTime) { backTime = true; VL_PRINTF_MT("%%Warning: VCD time is moving backwards, wave file may be incorrect.\n"); } } m_timeLastDump = timeui; printQuad(timeui); } void VerilatedVcd::bufferResize(vluint64_t minsize) { // minsize is size of largest write. We buffer at least 8 times as much data, // writing when we are 3/4 full (with thus 2*minsize remaining free) if (VL_UNLIKELY(minsize > m_wrChunkSize)) { char* oldbufp = m_wrBufp; m_wrChunkSize = minsize*2; m_wrBufp = new char [m_wrChunkSize * 8]; memcpy(m_wrBufp, oldbufp, m_writep - oldbufp); m_writep = m_wrBufp + (m_writep - oldbufp); m_wrFlushp = m_wrBufp + m_wrChunkSize * 6; delete [] oldbufp; oldbufp=NULL; } } void VerilatedVcd::bufferFlush() VL_MT_UNSAFE_ONE { // This function is on the flush() call path // We add output data to m_writep. // When it gets nearly full we dump it using this routine which calls write() // This is much faster than using buffered I/O m_assertOne.check(); if (VL_UNLIKELY(!isOpen())) return; char* wp = m_wrBufp; while (1) { ssize_t remaining = (m_writep - wp); if (remaining==0) break; errno = 0; ssize_t got = m_filep->write(wp, remaining); if (got>0) { wp += got; m_wroteBytes += got; } else if (got < 0) { if (errno != EAGAIN && errno != EINTR) { // write failed, presume error (perhaps out of disk space) std::string msg = std::string("VerilatedVcd::bufferFlush: ")+strerror(errno); VL_FATAL_MT("",0,"",msg.c_str()); closeErr(); break; } } } // Reset buffer m_writep = m_wrBufp; } //============================================================================= // Simple methods void VerilatedVcd::set_time_unit(const char* unitp) { //cout<<" set_time_unit("<=1e0) { suffixp="s"; value *= 1e0; } else if (value>=1e-3 ) { suffixp="ms"; value *= 1e3; } else if (value>=1e-6 ) { suffixp="us"; value *= 1e6; } else if (value>=1e-9 ) { suffixp="ns"; value *= 1e9; } else if (value>=1e-12) { suffixp="ps"; value *= 1e12; } else if (value>=1e-15) { suffixp="fs"; value *= 1e15; } else if (value>=1e-18) { suffixp="as"; value *= 1e18; } char valuestr[100]; sprintf(valuestr,"%3.0f%s", value, suffixp); return valuestr; // Gets converted to string, so no ref to stack } //============================================================================= // Definitions void VerilatedVcd::printIndent(int level_change) { if (level_change<0) m_modDepth += level_change; assert(m_modDepth>=0); for (int i=0; i0) m_modDepth += level_change; } void VerilatedVcd::dumpHeader() { printStr("$version Generated by VerilatedVcd $end\n"); time_t time_str = time(NULL); printStr("$date "); printStr(ctime(&time_str)); printStr(" $end\n"); printStr("$timescale "); const std::string& timeResStr = doubleToTimescale(m_timeRes); printStr(timeResStr.c_str()); printStr(" $end\n"); makeNameMap(); // Signal header assert(m_modDepth==0); printIndent(1); printStr("\n"); // We detect the spaces in module names to determine hierarchy. This // allows signals to be declared without fixed ordering, which is // required as Verilog signals might be separately declared from // SC module signals. // Print the signal names const char* lastName = ""; for (NameMap::const_iterator it=m_namemapp->begin(); it!=m_namemapp->end(); ++it) { const std::string& hiernamestr = it->first; const std::string& decl = it->second; // Determine difference between the old and new names const char* hiername = hiernamestr.c_str(); const char* lp = lastName; const char* np = hiername; lastName = hiername; // Skip common prefix, it must break at a space or tab for (; *np && (*np == *lp); np++, lp++) {} while (np!=hiername && *np && *np!=' ' && *np!='\t') { np--; lp--; } //printf("hier %s\n lp=%s\n np=%s\n",hiername,lp,np); // Any extra spaces in last name are scope ups we need to do bool first = true; for (; *lp; lp++) { if (*lp==' ' || (first && *lp!='\t')) { printIndent(-1); printStr("$upscope $end\n"); } first = false; } // Any new spaces are scope downs we need to do while (*np) { if (*np==' ') np++; if (*np=='\t') break; // tab means signal name starts printIndent(1); printStr("$scope module "); for (; *np && *np!=' ' && *np!='\t'; np++) { if (*np=='[') printStr("("); else if (*np==']') printStr(")"); else *m_writep++=*np; } printStr(" $end\n"); } printIndent(0); printStr(decl.c_str()); } while (m_modDepth>1) { printIndent(-1); printStr("$upscope $end\n"); } printIndent(-1); printStr("$enddefinitions $end\n\n\n"); assert(m_modDepth==0); // Reclaim storage deleteNameMap(); } void VerilatedVcd::module(const std::string& name) { m_assertOne.check(); m_modName = name; } void VerilatedVcd::declare(vluint32_t code, const char* name, const char* wirep, bool array, int arraynum, bool tri, bool bussed, int msb, int lsb) { if (!code) { VL_FATAL_MT(__FILE__, __LINE__, "", "Internal: internal trace problem, code 0 is illegal"); } int bits = ((msb>lsb)?(msb-lsb):(lsb-msb))+1; int codesNeeded = 1+int(bits/32); if (tri) codesNeeded *= 2; // Space in change array for __en signals // Make sure array is large enough m_nextCode = std::max(m_nextCode, code+codesNeeded); if (m_sigs.capacity() <= m_nextCode) { m_sigs.reserve(m_nextCode*2); // Power-of-2 allocation speeds things up } // Make sure write buffer is large enough (one character per bit), plus header bufferResize(bits+1024); // Save declaration info VerilatedVcdSig sig = VerilatedVcdSig(code, bits); m_sigs.push_back(sig); // Split name into basename // Spaces and tabs aren't legal in VCD signal names, so: // Space separates each level of scope // Tab separates final scope from signal name // Tab sorts before spaces, so signals nicely will print before scopes // Note the hiername may be nothing, if so we'll add "\t{name}" std::string nameasstr = name; if (!m_modName.empty()) { nameasstr = m_modName+m_scopeEscape+nameasstr; // Optional ->module prefix } std::string hiername; std::string basename; for (const char* cp=nameasstr.c_str(); *cp; cp++) { if (isScopeEscape(*cp)) { // Ahh, we've just read a scope, not a basename if (!hiername.empty()) hiername += " "; hiername += basename; basename = ""; } else { basename += *cp; } } hiername += "\t"+basename; // Print reference std::string decl = "$var "; if (m_evcd) decl += "port"; else decl += wirep; // usually "wire" char buf [1000]; sprintf(buf, " %2d ", bits); decl += buf; if (m_evcd) { sprintf(buf, "<%u", code); decl += buf; } else { decl += stringCode(code); } decl += " "; decl += basename; if (array) { sprintf(buf, "(%d)", arraynum); decl += buf; hiername += buf; } if (bussed) { sprintf(buf, " [%d:%d]", msb, lsb); decl += buf; } decl += " $end\n"; m_namemapp->insert(std::make_pair(hiername,decl)); } void VerilatedVcd::declBit(vluint32_t code, const char* name, bool array, int arraynum) { declare(code, name, "wire", array, arraynum, false, false, 0, 0); } void VerilatedVcd::declBus(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb) { declare(code, name, "wire", array, arraynum, false, true, msb, lsb); } void VerilatedVcd::declQuad(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb) { declare(code, name, "wire", array, arraynum, false, true, msb, lsb); } void VerilatedVcd::declArray(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb) { declare(code, name, "wire", array, arraynum, false, true, msb, lsb); } void VerilatedVcd::declTriBit(vluint32_t code, const char* name, bool array, int arraynum) { declare(code, name, "wire", array, arraynum, true, false, 0, 0); } void VerilatedVcd::declTriBus(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb) { declare(code, name, "wire", array, arraynum, true, true, msb, lsb); } void VerilatedVcd::declTriQuad(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb) { declare(code, name, "wire", array, arraynum, true, true, msb, lsb); } void VerilatedVcd::declTriArray(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb) { declare(code, name, "wire", array, arraynum, true, true, msb, lsb); } void VerilatedVcd::declFloat(vluint32_t code, const char* name, bool array, int arraynum) { declare(code, name, "real", array, arraynum, false, false, 31, 0); } void VerilatedVcd::declDouble(vluint32_t code, const char* name, bool array, int arraynum) { declare(code, name, "real", array, arraynum, false, false, 63, 0); } //============================================================================= void VerilatedVcd::fullDouble(vluint32_t code, const double newval) { // cppcheck-suppress invalidPointerCast (*(reinterpret_cast(&m_sigs_oldvalp[code]))) = newval; // Buffer can't overflow before sprintf; we sized during declaration sprintf(m_writep, "r%.16g", newval); m_writep += strlen(m_writep); *m_writep++=' '; printCode(code); *m_writep++='\n'; bufferCheck(); } void VerilatedVcd::fullFloat(vluint32_t code, const float newval) { // cppcheck-suppress invalidPointerCast (*(reinterpret_cast(&m_sigs_oldvalp[code]))) = newval; // Buffer can't overflow before sprintf; we sized during declaration sprintf(m_writep, "r%.16g", static_cast(newval)); m_writep += strlen(m_writep); *m_writep++=' '; printCode(code); *m_writep++='\n'; bufferCheck(); } //============================================================================= // Callbacks void VerilatedVcd::addCallback( VerilatedVcdCallback_t initcb, VerilatedVcdCallback_t fullcb, VerilatedVcdCallback_t changecb, void* userthis) VL_MT_UNSAFE_ONE { m_assertOne.check(); if (VL_UNLIKELY(isOpen())) { std::string msg = std::string("Internal: ")+__FILE__+"::"+__FUNCTION__ +" called with already open file"; VL_FATAL_MT(__FILE__, __LINE__, "", msg.c_str()); } VerilatedVcdCallInfo* vci = new VerilatedVcdCallInfo(initcb, fullcb, changecb, userthis, m_nextCode); m_callbacks.push_back(vci); } //============================================================================= // Dumping void VerilatedVcd::dumpFull(vluint64_t timeui) { m_assertOne.check(); dumpPrep(timeui); Verilated::quiesce(); for (vluint32_t ent = 0; ent< m_callbacks.size(); ent++) { VerilatedVcdCallInfo* cip = m_callbacks[ent]; (cip->m_fullcb)(this, cip->m_userthis, cip->m_code); } } void VerilatedVcd::dump(vluint64_t timeui) { m_assertOne.check(); if (!isOpen()) return; if (VL_UNLIKELY(m_fullDump)) { m_fullDump = false; // No need for more full dumps dumpFull(timeui); return; } if (VL_UNLIKELY(m_rolloverMB && m_wroteBytes > this->m_rolloverMB)) { openNext(true); if (!isOpen()) return; } dumpPrep(timeui); Verilated::quiesce(); for (vluint32_t ent = 0; ent< m_callbacks.size(); ++ent) { VerilatedVcdCallInfo* cip = m_callbacks[ent]; (cip->m_changecb)(this, cip->m_userthis, cip->m_code); } } void VerilatedVcd::dumpPrep(vluint64_t timeui) { printStr("#"); printTime(timeui); printStr("\n"); } //====================================================================== // Static members void VerilatedVcd::flush_all() VL_MT_UNSAFE_ONE { VerilatedVcdSingleton::flush_all(); } //====================================================================== //====================================================================== //====================================================================== #ifdef VERILATED_VCD_TEST #include vluint32_t v1, v2, s1, s2[3]; vluint32_t tri96[3]; vluint32_t tri96__tri[3]; vluint64_t quad96[2]; vluint8_t ch; vluint64_t timestamp = 1; double doub = 0; void vcdInit(VerilatedVcd* vcdp, void* userthis, vluint32_t code) { vcdp->scopeEscape('.'); vcdp->module("top"); vcdp->declBus(0x2, "v1",-1,5,1); vcdp->declBus(0x3, "v2",-1,6,0); vcdp->module("top.sub1"); vcdp->declBit(0x4, "s1",-1); vcdp->declBit(0x5, "ch",-1); vcdp->module("top.sub2"); vcdp->declArray(0x6, "s2",-1, 40,3); // Note need to add 3 for next code. vcdp->module("top2"); vcdp->declBus(0x2, "t2v1",-1,4,1); vcdp->declTriBit (0x10, "io1", -1); vcdp->declTriBus (0x12, "io5", -1,4,0); vcdp->declTriArray(0x16, "io96",-1,95,0); // Note need to add 6 for next code. vcdp->declDouble (0x1c, "doub",-1); // Note need to add 2 for next code. vcdp->declArray(0x1e, "q2",-1, 95, 0); // Note need to add 4 for next code. } void vcdFull(VerilatedVcd* vcdp, void* userthis, vluint32_t code) { vcdp->fullBus (0x2, v1,5); vcdp->fullBus (0x3, v2,7); vcdp->fullBit (0x4, s1); vcdp->fullBus (0x5, ch,2); vcdp->fullArray(0x6, &s2[0], 38); vcdp->fullTriBit (0x10, tri96[0]&1, tri96__tri[0]&1); vcdp->fullTriBus (0x12, tri96[0]&0x1f, tri96__tri[0]&0x1f, 5); vcdp->fullTriArray(0x16, tri96, tri96__tri, 96); vcdp->fullDouble(0x1c, doub); vcdp->fullArray(0x1e, &quad96[0], 96); } void vcdChange(VerilatedVcd* vcdp, void* userthis, vluint32_t code) { vcdp->chgBus (0x2, v1,5); vcdp->chgBus (0x3, v2,7); vcdp->chgBit (0x4, s1); vcdp->chgBus (0x5, ch,2); vcdp->chgArray(0x6, &s2[0], 38); vcdp->chgTriBit (0x10, tri96[0]&1, tri96__tri[0]&1); vcdp->chgTriBus (0x12, tri96[0]&0x1f, tri96__tri[0]&0x1f, 5); vcdp->chgTriArray (0x16, tri96, tri96__tri, 96); vcdp->chgDouble (0x1c, doub); vcdp->chgArray(0x1e, &quad96[0], 96); } main() { std::cout << "test: O_LARGEFILE=" << O_LARGEFILE << std::endl; v1 = v2 = s1 = 0; s2[0] = s2[1] = s2[2] = 0; tri96[2] = tri96[1] = tri96[0] = 0; tri96__tri[2] = tri96__tri[1] = tri96__tri[0] = ~0; quad96[1] = quad96[0] = 0; ch = 0; doub = 0; { VerilatedVcdC* vcdp = new VerilatedVcdC; vcdp->spTrace()->addCallback(&vcdInit, &vcdFull, &vcdChange, 0); vcdp->open("test.vcd"); // Dumping vcdp->dump(timestamp++); v1 = 0xfff; tri96[2] = 4; tri96[1] = 2; tri96[0] = 1; tri96__tri[2] = tri96__tri[1] = tri96__tri[0] = ~0; // Still tri quad96[1] = 0xffffffff ; quad96[0] = 0; doub = 1.5; vcdp->dump(timestamp++); v2 = 0x1; s2[1] = 2; tri96__tri[2] = tri96__tri[1] = tri96__tri[0] = 0; // enable w/o data change quad96[1] = 0 ; quad96[0] = ~0; doub = -1.66e13; vcdp->dump(timestamp++); ch = 2; tri96[2] = ~4; tri96[1] = ~2; tri96[0] = ~1; doub = -3.33e-13; vcdp->dump(timestamp++); vcdp->dump(timestamp++); # ifdef VERILATED_VCD_TEST_64BIT vluint64_t bytesPerDump = VL_ULL(15); for (vluint64_t i = 0; i < ((VL_ULL(1) << 32) / bytesPerDump); i++) { v1 = i; vcdp->dump(timestamp++); } # endif vcdp->close(); } } #endif //******************************************************************** // Local Variables: // compile-command: "mkdir -p ../test_dir && cd ../test_dir && c++ -DVERILATED_VCD_TEST ../include/verilated_vcd_c.cpp -o verilated_vcd_c && ./verilated_vcd_c && cat test.vcd" // End: