// -*- mode: C++; c-file-style: "cc-mode" -*- //************************************************************************* // // Copyright 2003-2018 by Wilson Snyder. This program is free software; you can // redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License. // Version 2.0. // // Verilator is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // //========================================================================= /// /// \file /// \brief Verilator: Linked against all applications using Verilated source. /// /// This file must be compiled and linked against all objects /// created from Verilator. /// /// Code available from: http://www.veripool.org/verilator /// //========================================================================= #define _VERILATED_CPP_ #include "verilated_imp.h" #include #define VL_VALUE_STRING_MAX_WIDTH 8192 ///< Max static char array for VL_VALUE_STRING //=========================================================================== // Global variables // Slow path variables VerilatedMutex Verilated::m_mutex; VerilatedVoidCb Verilated::s_flushCb = NULL; // Keep below together in one cache line Verilated::Serialized Verilated::s_s; VL_THREAD_LOCAL Verilated::ThreadLocal Verilated::t_s; Verilated::CommandArgValues Verilated::s_args; VerilatedImp VerilatedImp::s_s; //=========================================================================== // User definable functions #ifndef VL_USER_FINISH // Define this to override this function void vl_finish (const char* filename, int linenum, const char* hier) VL_MT_UNSAFE { if (0 && hier) {} VL_PRINTF("- %s:%d: Verilog $finish\n", filename, linenum); // Not VL_PRINTF_MT, already on main thread if (Verilated::gotFinish()) { VL_PRINTF("- %s:%d: Second verilog $finish, exiting\n", filename, linenum); // Not VL_PRINTF_MT, already on main thread Verilated::flushCall(); exit(0); } Verilated::gotFinish(true); } #endif #ifndef VL_USER_STOP // Define this to override this function void vl_stop (const char* filename, int linenum, const char* hier) VL_MT_UNSAFE { Verilated::gotFinish(true); Verilated::flushCall(); vl_fatal (filename,linenum,hier,"Verilog $stop"); } #endif #ifndef VL_USER_FATAL // Define this to override this function void vl_fatal (const char* filename, int linenum, const char* hier, const char* msg) VL_MT_UNSAFE { if (0 && hier) {} Verilated::gotFinish(true); VL_PRINTF("%%Error: %s:%d: %s\n", filename, linenum, msg); // Not VL_PRINTF_MT, already on main thread Verilated::flushCall(); VL_PRINTF("Aborting...\n"); // Not VL_PRINTF_MT, already on main thread Verilated::flushCall(); // Second flush in case VL_PRINTF does something needing a flush abort(); } #endif //=========================================================================== // Wrapper to call certain functions via messages when multithreaded void VL_FINISH_MT (const char* filename, int linenum, const char* hier) VL_MT_SAFE { #ifdef VL_THREADED VerilatedThreadMsgQueue::post(VerilatedMsg([=](){ vl_finish(filename, linenum, hier); })); #else vl_finish(filename, linenum, hier); #endif } void VL_STOP_MT (const char* filename, int linenum, const char* hier) VL_MT_SAFE { #ifdef VL_THREADED VerilatedThreadMsgQueue::post(VerilatedMsg([=](){ vl_stop(filename, linenum, hier); })); #else vl_stop(filename, linenum, hier); #endif } void VL_FATAL_MT (const char* filename, int linenum, const char* hier, const char* msg) VL_MT_SAFE { #ifdef VL_THREADED VerilatedThreadMsgQueue::post(VerilatedMsg([=](){ vl_fatal(filename, linenum, hier, msg); })); #else vl_fatal(filename, linenum, hier, msg); #endif } //=========================================================================== // Debug prints /// sprintf but return as string (this isn't fast, for print messages only) std::string _vl_string_vprintf(const char* formatp, va_list ap) VL_MT_SAFE { va_list aq; va_copy(aq, ap); int len = VL_VSNPRINTF(NULL, 0, formatp, aq); va_end(aq); if (VL_UNLIKELY(len < 1)) { va_end(ap); return ""; } char* bufp = new char[len+1]; VL_VSNPRINTF(bufp, len+1, formatp, ap); va_end(ap); std::string out = std::string(bufp, len); delete[] bufp; return out; } vluint64_t _vl_dbg_sequence_number() VL_MT_SAFE { #ifdef VL_THREADED static std::atomic sequence; #else static vluint64_t sequence = 0; #endif return ++sequence; } vluint32_t VL_THREAD_ID() VL_MT_SAFE { #ifdef VL_THREADED // Alternative is to use std::this_thread::get_id, but that returns a hard-to-read number and is very slow static std::atomic s_nextId (0); static VL_THREAD_LOCAL vluint32_t t_myId = ++s_nextId; return t_myId; #else return 0; #endif } void VL_DBG_MSGF(const char* formatp, ...) VL_MT_SAFE { // We're still using c printf formats instead of operator<< so we can avoid the heavy // includes that otherwise would be required in every Verilated module va_list ap; va_start(ap, formatp); std::string out = _vl_string_vprintf(formatp, ap); va_end(ap); // printf("-imm-V{t%d,%" VL_PRI64 "d}%s", VL_THREAD_ID(), _vl_dbg_sequence_number(), out.c_str()); // Using VL_PRINTF not VL_PRINTF_MT so that we can call VL_DBG_MSGF // from within the guts of the thread execution machinery (and it goes // to the screen and not into the queues we're debugging) VL_PRINTF("-V{t%d,%" VL_PRI64 "u}%s", VL_THREAD_ID(), _vl_dbg_sequence_number(), out.c_str()); } #ifdef VL_THREADED void VL_PRINTF_MT(const char* formatp, ...) VL_MT_SAFE { va_list ap; va_start(ap, formatp); std::string out = _vl_string_vprintf(formatp, ap); va_end(ap); VerilatedThreadMsgQueue::post(VerilatedMsg([=](){ VL_PRINTF("%s", out.c_str()); })); } #endif //=========================================================================== // Overall class init Verilated::Serialized::Serialized() { s_randReset = 0; s_debug = 0; s_calcUnusedSigs = false; s_gotFinish = false; s_assertOn = true; s_fatalOnVpiError = true; // retains old default behaviour } //=========================================================================== // Random reset -- Only called at init time, so don't inline. IData VL_RAND32() VL_MT_SAFE { #ifdef VL_THREADED static VL_THREAD_LOCAL bool t_seeded = false; static VL_THREAD_LOCAL drand48_data t_buffer; static VerilatedMutex s_mutex; if (VL_UNLIKELY(!t_seeded)) { t_seeded = true; long seedval; { VerilatedLockGuard lock(s_mutex); seedval = lrand48()<<16 ^ lrand48(); if (!seedval) seedval++; } srand48_r(seedval, &t_buffer); } long v0; lrand48_r(&t_buffer, &v0); long v1; lrand48_r(&t_buffer, &v1); return (v0<<16) ^ v1; #elif defined(_WIN32) && !defined(__CYGWIN__) // Windows doesn't have lrand48(), although Cygwin does. return (rand()<<16) ^ rand(); #else return (lrand48()<<16) ^ lrand48(); #endif } IData VL_RANDOM_I(int obits) VL_MT_SAFE { return VL_RAND32() & VL_MASK_I(obits); } QData VL_RANDOM_Q(int obits) VL_MT_SAFE { QData data = ((QData)VL_RAND32()<=0; --i) { VL_PRINTF_MT("%08x ",iwp[i]); } VL_PRINTF_MT("\n"); } //=========================================================================== // Slow math WDataOutP _vl_moddiv_w(int lbits, WDataOutP owp, WDataInP lwp, WDataInP rwp, bool is_modulus) VL_MT_SAFE { // See Knuth Algorithm D. Computes u/v = q.r // This isn't massively tuned, as wide division is rare // for debug see V3Number version // Requires clean input int words = VL_WORDS_I(lbits); for (int i=0; i= 0; --j) { vluint64_t unw64 = ((k<(lwp[j])); owp[j] = unw64 / static_cast(rwp[0]); k = unw64 - static_cast(owp[j])*static_cast(rwp[0]); } if (is_modulus) { owp[0] = k; for (int i=1; i> 32 won't mask the value for (int i = vw-1; i>0; --i) { vn[i] = (rwp[i] << s) | (shift_mask & (rwp[i-1] >> (32-s))); } vn[0] = rwp[0] << s; // Copy and shift dividend by same amount; may set new upper word if (s) un[uw] = lwp[uw-1] >> (32-s); else un[uw] = 0; for (int i=uw-1; i>0; --i) { un[i] = (lwp[i] << s) | (shift_mask & (lwp[i-1] >> (32-s))); } un[0] = lwp[0] << s; // Main loop for (int j = uw - vw; j >= 0; --j) { // Estimate vluint64_t unw64 = (static_cast(un[j+vw])<(un[j+vw-1])); vluint64_t qhat = unw64 / static_cast(vn[vw-1]); vluint64_t rhat = unw64 - qhat*static_cast(vn[vw-1]); again: if (qhat >= VL_ULL(0x100000000) || ((qhat*vn[vw-2]) > ((rhat<> VL_ULL(32)) - (t >> VL_ULL(32)); } t = un[j+vw] - k; un[j+vw] = t; owp[j] = qhat; // Save quotient digit if (t < 0) { // Over subtracted; correct by adding back owp[j]--; k = 0; for (int i=0; i(un[i+j]) + static_cast(vn[i]) + k; un[i+j] = t; k = t >> VL_ULL(32); } un[j+vw] = un[j+vw] + k; } } if (is_modulus) { // modulus // Need to reverse normalization on copy to output for (int i=0; i> s) | (shift_mask & (un[i+1] << (32-s))); } for (int i=vw; i0) { // power = power*power VL_ASSIGN_W(obits, lastpowstore, powstore); VL_MUL_W(VL_WORDS_I(obits), powstore, lastpowstore, lastpowstore); } if (VL_BITISSET_W(rwp,bit)) { // out *= power VL_ASSIGN_W(obits, lastoutstore, owp); VL_MUL_W(VL_WORDS_I(obits), owp, lastoutstore, powstore); } } return owp; } WDataOutP VL_POW_WWQ(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp, QData rhs) VL_MT_SAFE { WData rhsw[2]; VL_SET_WQ(rhsw, rhs); return VL_POW_WWW(obits,lbits,rbits,owp,lwp,rhsw); } QData VL_POW_QQW(int, int, int rbits, QData lhs, WDataInP rwp) VL_MT_SAFE { // Skip check for rhs == 0, as short-circuit doesn't save time if (VL_UNLIKELY(lhs==0)) return 0; QData power = lhs; QData out = VL_ULL(1); for (int bit=0; bit0) power = power*power; if (VL_BITISSET_W(rwp,bit)) out *= power; } return out; } WDataOutP VL_POWSS_WWW(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, WDataInP rwp, bool lsign, bool rsign) VL_MT_SAFE { // obits==lbits, rbits can be different if (rsign && VL_SIGN_W(rbits, rwp)) { int words = VL_WORDS_I(obits); VL_ZERO_W(obits, owp); IData lor = 0; // 0=all zeros, ~0=all ones, else mix for (int i=1; i < (words-1); ++i) { lor |= lwp[i]; } lor |= ( (lwp[words-1] == VL_MASK_I(rbits)) ? ~VL_UL(0) : 0); if (lor==0 && lwp[0]==0) { return owp; } // "X" so return 0 else if (lor==0 && lwp[0]==1) { owp[0] = 1; return owp; } // 1 else if (lsign && lor == ~VL_UL(0) && lwp[0]==~VL_UL(0)) { // -1 if (rwp[0] & 1) { return VL_ALLONES_W(obits, owp); } // -1^odd=-1 else { owp[0] = 1; return owp; } // -1^even=1 } return 0; } return VL_POW_WWW(obits, rbits, rbits, owp, lwp, rwp); } WDataOutP VL_POWSS_WWQ(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp, QData rhs, bool lsign, bool rsign) VL_MT_SAFE { WData rhsw[2]; VL_SET_WQ(rhsw, rhs); return VL_POWSS_WWW(obits,lbits,rbits,owp,lwp,rhsw,lsign,rsign); } QData VL_POWSS_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp, bool lsign, bool rsign) VL_MT_SAFE { // Skip check for rhs == 0, as short-circuit doesn't save time if (rsign && VL_SIGN_W(rbits, rwp)) { if (lhs==0) return 0; // "X" else if (lhs==1) return 1; else if (lsign && lhs==VL_MASK_I(obits)) { // -1 if (rwp[0] & 1) return VL_MASK_I(obits); // -1^odd=-1 else return 1; // -1^even=1 } return 0; } return VL_POW_QQW(obits, rbits, rbits, lhs, rwp); } //=========================================================================== // Formatting /// Output a string representation of a wide number std::string VL_DECIMAL_NW(int width, WDataInP lwp) VL_MT_SAFE { int maxdecwidth = (width+3)*4/3; // Or (maxdecwidth+7)/8], but can't have more than 4 BCD bits per word WData bcd[VL_VALUE_STRING_MAX_WIDTH/4+2]; VL_ZERO_RESET_W(maxdecwidth, bcd); WData tmp[VL_VALUE_STRING_MAX_WIDTH/4+2]; WData tmp2[VL_VALUE_STRING_MAX_WIDTH/4+2]; int from_bit = width-1; // Skip all leading zeros for (; from_bit >= 0 && !(VL_BITRSHIFT_W(lwp, from_bit) & 1); --from_bit); // Double-dabble algorithm for (; from_bit >= 0; --from_bit) { // Any digits >= 5 need an add 3 (via tmp) for (int nibble_bit = 0; nibble_bit < maxdecwidth; nibble_bit+=4) { if ((VL_BITRSHIFT_W(bcd, nibble_bit) & 0xf) >= 5) { VL_ZERO_RESET_W(maxdecwidth, tmp2); tmp2[VL_BITWORD_I(nibble_bit)] |= 0x3 << VL_BITBIT_I(nibble_bit); VL_ASSIGN_W(maxdecwidth, tmp, bcd); VL_ADD_W(VL_WORDS_I(maxdecwidth), bcd, tmp, tmp2); } } // Shift; bcd = bcd << 1 VL_ASSIGN_W(maxdecwidth, tmp, bcd); VL_SHIFTL_WWI(maxdecwidth, maxdecwidth, 32, bcd, tmp, 1); // bcd[0] = lwp[from_bit] if (VL_BITISSET_W(lwp, from_bit)) bcd[0] |= 1; } std::string output; int lsb = (maxdecwidth-1) & ~3; for (; lsb>0; lsb-=4) { // Skip leading zeros if (VL_BITRSHIFT_W(bcd, lsb) & 0xf) break; } for (; lsb>=0; lsb-=4) { output += ('0' + (VL_BITRSHIFT_W(bcd, lsb) & 0xf)); // 0..9 } return output; } // Do a va_arg returning a quad, assuming input argument is anything less than wide #define _VL_VA_ARG_Q(ap, bits) (((bits) <= VL_WORDSIZE) ? va_arg(ap,IData) : va_arg(ap,QData)) void _vl_vsformat(std::string& output, const char* formatp, va_list ap) VL_MT_SAFE { // Format a Verilog $write style format into the output list // The format must be pre-processed (and lower cased) by Verilator // Arguments are in "width, arg-value (or WDataIn* if wide)" form // // Note uses a single buffer internally; presumes only one usage per printf // Note also assumes variables < 64 are not wide, this assumption is // sometimes not true in low-level routines written here in verilated.cpp static VL_THREAD_LOCAL char tmp[VL_VALUE_STRING_MAX_WIDTH]; static VL_THREAD_LOCAL char tmpf[VL_VALUE_STRING_MAX_WIDTH]; const char* pctp = NULL; // Most recent %##.##g format bool inPct = false; bool widthSet = false; int width = 0; for (const char* pos = formatp; *pos; ++pos) { if (!inPct && pos[0]=='%') { pctp = pos; inPct = true; widthSet = false; width = 0; } else if (!inPct) { // Normal text // Fast-forward to next escape and add to output const char *ep = pos; while (ep[0] && ep[0]!='%') ep++; if (ep != pos) { output.append(pos, ep-pos); pos += ep-pos-1; } } else { // Format character inPct = false; char fmt = pos[0]; switch (fmt) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': inPct = true; // Get more digits widthSet = true; width = width*10 + (fmt - '0'); break; case '.': inPct = true; // Get more digits break; case '%': output += '%'; break; case 'N': { // "C" string with name of module, add . if needed const char* cstrp = va_arg(ap, const char*); if (VL_LIKELY(*cstrp)) { output += cstrp; output += '.'; } break; } case 'S': { // "C" string const char* cstrp = va_arg(ap, const char*); output += cstrp; break; } case '@': { // Verilog/C++ string va_arg(ap, int); // # bits is ignored const std::string* cstrp = va_arg(ap, const std::string*); output += *cstrp; break; } case 'e': case 'f': case 'g': { const int lbits = va_arg(ap, int); double d = va_arg(ap, double); if (lbits) {} // UNUSED - always 64 strncpy(tmpf, pctp, pos-pctp+1); tmpf[pos-pctp+1] = '\0'; sprintf(tmp, tmpf, d); output += tmp; break; } default: { // Deal with all read-and-print somethings const int lbits = va_arg(ap, int); QData ld = 0; WData qlwp[2]; WDataInP lwp; if (lbits <= VL_QUADSIZE) { ld = _VL_VA_ARG_Q(ap, lbits); VL_SET_WQ(qlwp,ld); lwp = qlwp; } else { lwp = va_arg(ap,WDataInP); ld = lwp[0]; } int lsb=lbits-1; if (widthSet && width==0) while (lsb && !VL_BITISSET_W(lwp,lsb)) --lsb; switch (fmt) { case 'c': { IData charval = ld & 0xff; output += charval; break; } case 's': for (; lsb>=0; --lsb) { lsb = (lsb / 8) * 8; // Next digit IData charval = VL_BITRSHIFT_W(lwp, lsb) & 0xff; output += (charval==0)?' ':charval; } break; case 'd': { // Signed decimal int digits; std::string append; if (lbits <= VL_QUADSIZE) { digits = sprintf(tmp,"%" VL_PRI64 "d", static_cast(VL_EXTENDS_QQ(lbits,lbits,ld))); append = tmp; } else { if (VL_SIGN_I(lbits, lwp[VL_WORDS_I(lbits)-1])) { WData neg[VL_VALUE_STRING_MAX_WIDTH/4+2]; VL_NEGATE_W(VL_WORDS_I(lbits), neg, lwp); append = std::string("-") + VL_DECIMAL_NW(lbits, neg); } else { append = VL_DECIMAL_NW(lbits, lwp); } digits = append.length(); } int needmore = width-digits; if (needmore>0) { if (pctp && pctp[0] && pctp[1]=='0') { //%0 output.append(needmore,'0'); // Pre-pad zero } else { output.append(needmore,' '); // Pre-pad spaces } } output += append; break; } case '#': { // Unsigned decimal int digits; std::string append; if (lbits <= VL_QUADSIZE) { digits = sprintf(tmp,"%" VL_PRI64 "u",ld); append = tmp; } else { append = VL_DECIMAL_NW(lbits, lwp); digits = append.length(); } int needmore = width-digits; if (needmore>0) { if (pctp && pctp[0] && pctp[1]=='0') { //%0 output.append(needmore,'0'); // Pre-pad zero } else { output.append(needmore,' '); // Pre-pad spaces } } output += append; break; } case 't': { // Time int digits; if (VL_TIME_MULTIPLIER==1) { digits=sprintf(tmp,"%" VL_PRI64 "u",ld); } else if (VL_TIME_MULTIPLIER==1000) { digits=sprintf(tmp,"%" VL_PRI64 "u.%03" VL_PRI64 "u", static_cast(ld/VL_TIME_MULTIPLIER), static_cast(ld%VL_TIME_MULTIPLIER)); } else { VL_FATAL_MT(__FILE__,__LINE__,"","Unsupported VL_TIME_MULTIPLIER"); } int needmore = width-digits; if (needmore>0) output.append(needmore,' '); // Pre-pad spaces output += tmp; break; } case 'b': for (; lsb>=0; --lsb) { output += (VL_BITRSHIFT_W(lwp, lsb) & 1) + '0'; } break; case 'o': for (; lsb>=0; --lsb) { lsb = (lsb / 3) * 3; // Next digit // Octal numbers may span more than one wide word, // so we need to grab each bit separately and check for overrun // Octal is rare, so we'll do it a slow simple way output += ('0' + ((VL_BITISSETLIMIT_W(lwp, lbits, lsb+0)) ? 1 : 0) + ((VL_BITISSETLIMIT_W(lwp, lbits, lsb+1)) ? 2 : 0) + ((VL_BITISSETLIMIT_W(lwp, lbits, lsb+2)) ? 4 : 0)); } break; case 'u': // Packed 2-state output.reserve(output.size() + 4*VL_WORDS_I(lbits)); for (int i=0; i((lwp[i] ) & 0xff); output += static_cast((lwp[i] >> 8) & 0xff); output += static_cast((lwp[i] >> 16) & 0xff); output += static_cast((lwp[i] >> 24) & 0xff); } break; case 'z': // Packed 4-state output.reserve(output.size() + 8*VL_WORDS_I(lbits)); for (int i=0; i((lwp[i] ) & 0xff); output += static_cast((lwp[i] >> 8) & 0xff); output += static_cast((lwp[i] >> 16) & 0xff); output += static_cast((lwp[i] >> 24) & 0xff); output += "\0\0\0\0"; // No tristate } break; case 'v': // Strength; assume always strong for (lsb=lbits-1; lsb>=0; --lsb) { if (VL_BITRSHIFT_W(lwp, lsb) & 1) output += "St1 "; else output += "St0 "; } break; case 'x': for (; lsb>=0; --lsb) { lsb = (lsb / 4) * 4; // Next digit IData charval = VL_BITRSHIFT_W(lwp, lsb) & 0xf; output += "0123456789abcdef"[charval]; } break; default: std::string msg = std::string("Unknown _vl_vsformat code: ")+pos[0]; VL_FATAL_MT(__FILE__,__LINE__,"",msg.c_str()); break; } // switch } } // switch } } } static inline bool _vl_vsss_eof(FILE* fp, int& floc) VL_MT_SAFE { if (fp) return feof(fp) ? 1 : 0; // 1:0 to prevent MSVC++ warning else return (floc<0); } static inline void _vl_vsss_advance(FILE* fp, int& floc) VL_MT_SAFE { if (fp) fgetc(fp); else floc -= 8; } static inline int _vl_vsss_peek(FILE* fp, int& floc, WDataInP fromp, const std::string& fstr) VL_MT_SAFE { // Get a character without advancing if (fp) { int data = fgetc(fp); if (data == EOF) return EOF; ungetc(data,fp); return data; } else { if (floc < 0) return EOF; floc = floc & ~7; // Align to closest character if (fromp == NULL) { return fstr[fstr.length()-1 - (floc>>3)]; } else { return VL_BITRSHIFT_W(fromp, floc) & 0xff; } } } static inline void _vl_vsss_skipspace(FILE* fp, int& floc, WDataInP fromp, const std::string& fstr) VL_MT_SAFE { while (1) { int c = _vl_vsss_peek(fp, floc, fromp, fstr); if (c==EOF || !isspace(c)) return; _vl_vsss_advance(fp, floc); } } static inline void _vl_vsss_read(FILE* fp, int& floc, WDataInP fromp, const std::string& fstr, char* tmpp, const char* acceptp) VL_MT_SAFE { // Read into tmp, consisting of characters from acceptp list char* cp = tmpp; while (1) { int c = _vl_vsss_peek(fp, floc, fromp, fstr); if (c==EOF || isspace(c)) break; if (acceptp!=NULL // String - allow anything && NULL==strchr(acceptp, c)) break; if (acceptp!=NULL) c = tolower(c); // Non-strings we'll simplify *cp++ = c; _vl_vsss_advance(fp, floc); } *cp++ = '\0'; //VL_DBG_MSGF(" _read got='"<>=1) { VL_ASSIGNBIT_WI(0, lsb, owp, ld & 1); } } static inline void _vl_vsss_based(WDataOutP owp, int obits, int baseLog2, const char* strp, size_t posstart, size_t posend) VL_MT_SAFE { // Read in base "2^^baseLog2" digits from strp[posstart..posend-1] into owp of size obits. int lsb = 0; for (int i=0, pos=static_cast(posend)-1; i=static_cast(posstart); --pos) { switch (tolower (strp[pos])) { case 'x': case 'z': case '?': //FALLTHRU case '0': lsb += baseLog2; break; case '1': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 1); lsb+=baseLog2; break; case '2': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 2); lsb+=baseLog2; break; case '3': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 3); lsb+=baseLog2; break; case '4': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 4); lsb+=baseLog2; break; case '5': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 5); lsb+=baseLog2; break; case '6': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 6); lsb+=baseLog2; break; case '7': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 7); lsb+=baseLog2; break; case '8': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 8); lsb+=baseLog2; break; case '9': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 9); lsb+=baseLog2; break; case 'a': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 10); lsb+=baseLog2; break; case 'b': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 11); lsb+=baseLog2; break; case 'c': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 12); lsb+=baseLog2; break; case 'd': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 13); lsb+=baseLog2; break; case 'e': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 14); lsb+=baseLog2; break; case 'f': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 15); lsb+=baseLog2; break; case '_': break; } } } IData _vl_vsscanf(FILE* fp, // If a fscanf int fbits, WDataInP fromp, // Else if a sscanf const std::string& fstr, // if a sscanf to string const char* formatp, va_list ap) VL_MT_SAFE { // Read a Verilog $sscanf/$fscanf style format into the output list // The format must be pre-processed (and lower cased) by Verilator // Arguments are in "width, arg-value (or WDataIn* if wide)" form static VL_THREAD_LOCAL char tmp[VL_VALUE_STRING_MAX_WIDTH]; int floc = fbits - 1; IData got = 0; bool inPct = false; const char* pos = formatp; for (; *pos && !_vl_vsss_eof(fp,floc); ++pos) { //VL_DBG_MSGF("_vlscan fmt='"< VL_QUADSIZE) { owp = va_arg(ap,WDataOutP); } for (int i=0; i(strlen(tmp)))-1; int lsb = 0; for (int i=0; i=0; --lpos) { _vl_vsss_setbit(owp,obits,lsb, 8, tmp[lpos]); lsb+=8; } break; } case 'd': { // Signed decimal _vl_vsss_skipspace(fp,floc,fromp,fstr); _vl_vsss_read(fp,floc,fromp,fstr, tmp, "0123456789+-xXzZ?_"); if (!tmp[0]) goto done; vlsint64_t ld; sscanf(tmp,"%30" VL_PRI64 "d",&ld); VL_SET_WQ(owp,ld); break; } case 'f': case 'e': case 'g': { // Real number _vl_vsss_skipspace(fp,floc,fromp,fstr); _vl_vsss_read(fp,floc,fromp,fstr, tmp, "+-.0123456789eE"); if (!tmp[0]) goto done; // cppcheck-suppress unusedStructMember // It's used union { double r; vlsint64_t ld; } u; u.r = strtod(tmp, NULL); VL_SET_WQ(owp,u.ld); break; } case 't': // FALLTHRU // Time case '#': { // Unsigned decimal _vl_vsss_skipspace(fp,floc,fromp,fstr); _vl_vsss_read(fp,floc,fromp,fstr, tmp, "0123456789+-xXzZ?_"); if (!tmp[0]) goto done; QData ld; sscanf(tmp,"%30" VL_PRI64 "u",&ld); VL_SET_WQ(owp,ld); break; } case 'b': { _vl_vsss_skipspace(fp,floc,fromp,fstr); _vl_vsss_read(fp,floc,fromp,fstr, tmp, "01xXzZ?_"); if (!tmp[0]) goto done; _vl_vsss_based(owp,obits, 1, tmp, 0, strlen(tmp)); break; } case 'o': { _vl_vsss_skipspace(fp,floc,fromp,fstr); _vl_vsss_read(fp,floc,fromp,fstr, tmp, "01234567xXzZ?_"); if (!tmp[0]) goto done; _vl_vsss_based(owp,obits, 3, tmp, 0, strlen(tmp)); break; } case 'x': { _vl_vsss_skipspace(fp,floc,fromp,fstr); _vl_vsss_read(fp,floc,fromp,fstr, tmp, "0123456789abcdefABCDEFxXzZ?_"); if (!tmp[0]) goto done; _vl_vsss_based(owp,obits, 4, tmp, 0, strlen(tmp)); break; } default: std::string msg = std::string("Unknown _vl_vsscanf code: ")+pos[0]; VL_FATAL_MT(__FILE__,__LINE__,"",msg.c_str()); break; } // switch got++; // Reload data if non-wide (if wide, we put it in the right place directly) if (obits <= VL_BYTESIZE) { CData* p = va_arg(ap,CData*); *p = owp[0]; } else if (obits <= VL_SHORTSIZE) { SData* p = va_arg(ap,SData*); *p = owp[0]; } else if (obits <= VL_WORDSIZE) { IData* p = va_arg(ap,IData*); *p = owp[0]; } else if (obits <= VL_QUADSIZE) { QData* p = va_arg(ap,QData*); *p = VL_SET_QW(owp); } } } // switch } } done: return got; } //=========================================================================== // File I/O FILE* VL_CVT_I_FP(IData lhs) VL_MT_SAFE { return VerilatedImp::fdToFp(lhs); } void _VL_VINT_TO_STRING(int obits, char* destoutp, WDataInP sourcep) VL_MT_SAFE { // See also VL_DATA_TO_STRING_NW int lsb=obits-1; bool start=true; char* destp = destoutp; for (; lsb>=0; --lsb) { lsb = (lsb / 8) * 8; // Next digit IData charval = VL_BITRSHIFT_W(sourcep, lsb) & 0xff; if (!start || charval) { *destp++ = (charval==0)?' ':charval; start = false; // Drop leading 0s } } *destp = '\0'; // Terminate // Drop trailing spaces if (!start) while (isspace(*(destp-1)) && destp>destoutp) *--destp = '\0'; } void _VL_STRING_TO_VINT(int obits, void* destp, size_t srclen, const char* srcp) VL_MT_SAFE { // Convert C string to Verilog format size_t bytes = VL_BYTES_I(obits); char* op = reinterpret_cast(destp); if (srclen > bytes) srclen = bytes; // Don't overflow destination size_t i; for (i=0; i VL_TO_STRING_MAX_WORDS*VL_WORDSIZE)) { VL_FATAL_MT(__FILE__,__LINE__,"","Internal: fgets buffer overrun"); } // We don't use fgets, as we must read \0s. IData got = 0; char* cp = buffer; while (got < bytes) { int c = getc(fp); // getc() is threadsafe if (c==EOF) break; *cp++ = c; got++; if (c=='\n') break; } _VL_STRING_TO_VINT(obits, destp, got, buffer); return got; } IData VL_FOPEN_NI(const std::string& filename, IData mode) VL_MT_SAFE { // While threadsafe, each thread can only access different file handles char modez[5]; _VL_VINT_TO_STRING(VL_WORDSIZE, modez, &mode); return VL_FOPEN_S(filename.c_str(), modez); } IData VL_FOPEN_QI(QData filename, IData mode) VL_MT_SAFE { // While threadsafe, each thread can only access different file handles WData fnw[2]; VL_SET_WQ(fnw, filename); return VL_FOPEN_WI(2, fnw, mode); } IData VL_FOPEN_WI(int fnwords, WDataInP filenamep, IData mode) VL_MT_SAFE { // While threadsafe, each thread can only access different file handles char filenamez[VL_TO_STRING_MAX_WORDS*VL_WORDSIZE+1]; _VL_VINT_TO_STRING(fnwords*VL_WORDSIZE, filenamez, filenamep); char modez[5]; _VL_VINT_TO_STRING(VL_WORDSIZE, modez, &mode); return VL_FOPEN_S(filenamez,modez); } IData VL_FOPEN_S(const char* filenamep, const char* modep) VL_MT_SAFE { return VerilatedImp::fdNew(fopen(filenamep,modep)); } void VL_FCLOSE_I(IData fdi) VL_MT_SAFE { // While threadsafe, each thread can only access different file handles FILE* fp = VL_CVT_I_FP(fdi); if (VL_UNLIKELY(!fp)) return; fclose(fp); VerilatedImp::fdDelete(fdi); } void VL_SFORMAT_X(int obits, CData& destr, const char* formatp, ...) VL_MT_SAFE { static VL_THREAD_LOCAL std::string output; // static only for speed output = ""; va_list ap; va_start(ap,formatp); _vl_vsformat(output, formatp, ap); va_end(ap); _VL_STRING_TO_VINT(obits, &destr, output.length(), output.c_str()); } void VL_SFORMAT_X(int obits, SData& destr, const char* formatp, ...) VL_MT_SAFE { static VL_THREAD_LOCAL std::string output; // static only for speed output = ""; va_list ap; va_start(ap,formatp); _vl_vsformat(output, formatp, ap); va_end(ap); _VL_STRING_TO_VINT(obits, &destr, output.length(), output.c_str()); } void VL_SFORMAT_X(int obits, IData& destr, const char* formatp, ...) VL_MT_SAFE { static VL_THREAD_LOCAL std::string output; // static only for speed output = ""; va_list ap; va_start(ap,formatp); _vl_vsformat(output, formatp, ap); va_end(ap); _VL_STRING_TO_VINT(obits, &destr, output.length(), output.c_str()); } void VL_SFORMAT_X(int obits, QData& destr, const char* formatp, ...) VL_MT_SAFE { static VL_THREAD_LOCAL std::string output; // static only for speed output = ""; va_list ap; va_start(ap,formatp); _vl_vsformat(output, formatp, ap); va_end(ap); _VL_STRING_TO_VINT(obits, &destr, output.length(), output.c_str()); } void VL_SFORMAT_X(int obits, void* destp, const char* formatp, ...) VL_MT_SAFE { static VL_THREAD_LOCAL std::string output; // static only for speed output = ""; va_list ap; va_start(ap,formatp); _vl_vsformat(output, formatp, ap); va_end(ap); _VL_STRING_TO_VINT(obits, destp, output.length(), output.c_str()); } void VL_SFORMAT_X(int obits_ignored, std::string &output, const char* formatp, ...) VL_MT_SAFE { if (obits_ignored) {} output = ""; va_list ap; va_start(ap,formatp); _vl_vsformat(output, formatp, ap); va_end(ap); } std::string VL_SFORMATF_NX(const char* formatp, ...) VL_MT_SAFE { static VL_THREAD_LOCAL std::string output; // static only for speed output = ""; va_list ap; va_start(ap,formatp); _vl_vsformat(output, formatp, ap); va_end(ap); return output; } void VL_WRITEF(const char* formatp, ...) VL_MT_SAFE { static VL_THREAD_LOCAL std::string output; // static only for speed output = ""; va_list ap; va_start(ap,formatp); _vl_vsformat(output, formatp, ap); va_end(ap); VL_PRINTF_MT("%s", output.c_str()); } void VL_FWRITEF(IData fpi, const char* formatp, ...) VL_MT_SAFE { // While threadsafe, each thread can only access different file handles static VL_THREAD_LOCAL std::string output; // static only for speed output = ""; FILE* fp = VL_CVT_I_FP(fpi); if (VL_UNLIKELY(!fp)) return; va_list ap; va_start(ap,formatp); _vl_vsformat(output, formatp, ap); va_end(ap); fputs(output.c_str(), fp); } IData VL_FSCANF_IX(IData fpi, const char* formatp, ...) VL_MT_SAFE { // While threadsafe, each thread can only access different file handles FILE* fp = VL_CVT_I_FP(fpi); if (VL_UNLIKELY(!fp)) return 0; va_list ap; va_start(ap,formatp); IData got = _vl_vsscanf(fp, 0, NULL, "", formatp, ap); va_end(ap); return got; } IData VL_SSCANF_IIX(int lbits, IData ld, const char* formatp, ...) VL_MT_SAFE { WData fnw[2]; VL_SET_WI(fnw, ld); va_list ap; va_start(ap,formatp); IData got = _vl_vsscanf(NULL, lbits, fnw, "", formatp, ap); va_end(ap); return got; } IData VL_SSCANF_IQX(int lbits, QData ld, const char* formatp, ...) VL_MT_SAFE { WData fnw[2]; VL_SET_WQ(fnw, ld); va_list ap; va_start(ap,formatp); IData got = _vl_vsscanf(NULL, lbits, fnw, "", formatp, ap); va_end(ap); return got; } IData VL_SSCANF_IWX(int lbits, WDataInP lwp, const char* formatp, ...) VL_MT_SAFE { va_list ap; va_start(ap,formatp); IData got = _vl_vsscanf(NULL, lbits, lwp, "", formatp, ap); va_end(ap); return got; } IData VL_SSCANF_INX(int, const std::string& ld, const char* formatp, ...) VL_MT_SAFE { va_list ap; va_start(ap,formatp); IData got = _vl_vsscanf(NULL, ld.length()*8, NULL, ld, formatp, ap); va_end(ap); return got; } void VL_WRITEMEM_Q(bool hex, int width, int depth, int array_lsb, int, QData ofilename, const void* memp, IData start, IData end) VL_MT_SAFE { WData fnw[2]; VL_SET_WQ(fnw, ofilename); return VL_WRITEMEM_W(hex, width,depth,array_lsb,2,fnw,memp,start,end); } void VL_WRITEMEM_W(bool hex, int width, int depth, int array_lsb, int fnwords, WDataInP ofilenamep, const void* memp, IData start, IData end) VL_MT_SAFE { char ofilenamez[VL_TO_STRING_MAX_WORDS*VL_WORDSIZE+1]; _VL_VINT_TO_STRING(fnwords*VL_WORDSIZE, ofilenamez, ofilenamep); std::string ofilenames(ofilenamez); return VL_WRITEMEM_N(hex, width,depth,array_lsb,ofilenames,memp,start,end); } const char* memhFormat(int nBits) { assert((nBits >= 1) && (nBits <= 32)); static char buf[32]; switch ((nBits - 1) / 4) { case 0: VL_SNPRINTF(buf, 32, "%%01x"); break; case 1: VL_SNPRINTF(buf, 32, "%%02x"); break; case 2: VL_SNPRINTF(buf, 32, "%%03x"); break; case 3: VL_SNPRINTF(buf, 32, "%%04x"); break; case 4: VL_SNPRINTF(buf, 32, "%%05x"); break; case 5: VL_SNPRINTF(buf, 32, "%%06x"); break; case 6: VL_SNPRINTF(buf, 32, "%%07x"); break; case 7: VL_SNPRINTF(buf, 32, "%%08x"); break; default: assert(false); break; } return buf; } void VL_WRITEMEM_N( bool hex, // Hex format, else binary int width, // Width of each array row int depth, // Number of rows int array_lsb, // Index of first row. Valid row addresses // // range from array_lsb up to (array_lsb + depth - 1) const std::string& ofilenamep, // Output file name const void* memp, // Array state IData start, // First array row address to write IData end // Last address to write ) VL_MT_SAFE { if (VL_UNLIKELY(!hex)) { VL_FATAL_MT(ofilenamep.c_str(), 0, "", "VL_WRITEMEM_N only supports hex format for now, sorry!"); return; } FILE* fp = fopen(ofilenamep.c_str(), "w"); if (VL_UNLIKELY(!fp)) { VL_FATAL_MT(ofilenamep.c_str(), 0, "", "$writemem file not found"); return; } for (int row_addr = start; row_addr <= end; ++row_addr) { if ((row_addr < array_lsb) || (row_addr > array_lsb + depth - 1)) { vluint32_t endmax = ~0; if (end != endmax) { VL_FATAL_MT(ofilenamep.c_str(), 0, "", "$writemem specified address out-of-bounds"); } // else, it's not an error to overflow due to end == endmax, // just return cleanly. goto cleanup; } // Compute the offset into the memp array. int row_offset = row_addr - array_lsb; if (width <= 8) { const CData* datap = &(reinterpret_cast(memp))[row_offset]; fprintf(fp, memhFormat(width), VL_MASK_I(width) & *datap); fprintf(fp, "\n"); } else if (width <= 16) { const SData* datap = &(reinterpret_cast(memp))[row_offset]; fprintf(fp, memhFormat(width), VL_MASK_I(width) & *datap); fprintf(fp, "\n"); } else if (width <= 32) { const IData* datap = &(reinterpret_cast(memp))[row_offset]; fprintf(fp, memhFormat(width), VL_MASK_I(width) & *datap); fprintf(fp, "\n"); } else if (width <= 64) { const QData* datap = &(reinterpret_cast(memp))[row_offset]; vluint64_t value = VL_MASK_Q(width) & *datap; vluint32_t lo = value & 0xffffffff; vluint32_t hi = value >> 32; fprintf(fp, memhFormat(width - 32), hi); fprintf(fp, "%08x\n", lo); } else { WDataInP memDatap = reinterpret_cast(memp); WDataInP datap = &memDatap[row_offset * VL_WORDS_I(width)]; // output as a sequence of VL_WORDSIZE'd words // from MSB to LSB. Mask off the MSB word which could // contain junk above the top of valid data. int word_idx = ((width - 1) / VL_WORDSIZE); bool first = true; while (word_idx >= 0) { IData data = datap[word_idx]; if (first) { data &= VL_MASK_I(width); int top_word_nbits = ((width - 1) & 0x1f) + 1; fprintf(fp, memhFormat(top_word_nbits), data); } else { fprintf(fp, "%08x", data); } word_idx--; first = false; } fprintf(fp, "\n"); } } cleanup: fclose(fp); } void VL_READMEM_Q(bool hex, int width, int depth, int array_lsb, int, QData ofilename, void* memp, IData start, IData end) VL_MT_SAFE { WData fnw[2]; VL_SET_WQ(fnw, ofilename); return VL_READMEM_W(hex,width,depth,array_lsb,2,fnw,memp,start,end); } void VL_READMEM_W(bool hex, int width, int depth, int array_lsb, int fnwords, WDataInP ofilenamep, void* memp, IData start, IData end) VL_MT_SAFE { char ofilenamez[VL_TO_STRING_MAX_WORDS*VL_WORDSIZE+1]; _VL_VINT_TO_STRING(fnwords*VL_WORDSIZE, ofilenamez, ofilenamep); std::string ofilenames(ofilenamez); return VL_READMEM_N(hex,width,depth,array_lsb,ofilenames,memp,start,end); } void VL_READMEM_N( bool hex, // Hex format, else binary int width, // Width of each array row int depth, // Number of rows int array_lsb, // Index of first row. Valid row addresses // // range from array_lsb up to (array_lsb + depth - 1) const std::string& ofilenamep, // Input file name void* memp, // Array state IData start, // First array row address to read IData end // Last row address to read ) VL_MT_SAFE { FILE* fp = fopen(ofilenamep.c_str(), "r"); if (VL_UNLIKELY(!fp)) { // We don't report the Verilog source filename as it slow to have to pass it down VL_FATAL_MT (ofilenamep.c_str(), 0, "", "$readmem file not found"); return; } // Prep for reading IData addr = start; int linenum = 1; bool innum = false; bool ignore_to_eol = false; bool ignore_to_cmt = false; bool needinc = false; bool reading_addr = false; int lastc = ' '; // Read the data // We process a character at a time, as then we don't need to deal // with changing buffer sizes dynamically, etc. while (1) { int c = fgetc(fp); if (VL_UNLIKELY(c==EOF)) break; //printf("%d: Got '%c' Addr%x IN%d IgE%d IgC%d ninc%d\n", // linenum, c, addr, innum, ignore_to_eol, ignore_to_cmt, needinc); if (c=='\n') { linenum++; ignore_to_eol=false; if (innum) reading_addr=false; innum=false; } else if (c=='\t' || c==' ' || c=='\r' || c=='\f') { if (innum) reading_addr=false; innum=false; } // Skip // comments and detect /* comments else if (ignore_to_cmt && lastc=='*' && c=='/') { ignore_to_cmt = false; if (innum) reading_addr=false; innum=false; } else if (!ignore_to_eol && !ignore_to_cmt) { if (lastc=='/' && c=='*') { ignore_to_cmt = true; } else if (lastc=='/' && c=='/') { ignore_to_eol = true; } else if (c=='/') {} // Part of /* or // else if (c=='_') {} else if (c=='@') { reading_addr = true; innum=false; needinc=false; } // Check for hex or binary digits as file format requests else if (isxdigit(c) || (!reading_addr && (c=='x' || c=='X'))) { c = tolower(c); int value = (c >= 'a' ? (c=='x' ? VL_RAND_RESET_I(4) : (c-'a'+10)) : (c-'0')); if (!innum) { // Prep for next number if (needinc) { addr++; needinc=false; } } if (reading_addr) { // Decode @ addresses if (!innum) addr=0; addr = (addr<<4) + value; } else { needinc = true; //printf(" Value width=%d @%x = %c\n", width, addr, c); if (VL_UNLIKELY(addr >= static_cast(depth+array_lsb) || addr < static_cast(array_lsb))) { VL_FATAL_MT (ofilenamep.c_str(), linenum, "", "$readmem file address beyond bounds of array"); } else { int entry = addr - array_lsb; QData shift = hex ? VL_ULL(4) : VL_ULL(1); // Shift value in if (width<=8) { CData* datap = &(reinterpret_cast(memp))[entry]; if (!innum) { *datap = 0; } *datap = ((*datap << shift) + value) & VL_MASK_I(width); } else if (width<=16) { SData* datap = &(reinterpret_cast(memp))[entry]; if (!innum) { *datap = 0; } *datap = ((*datap << shift) + value) & VL_MASK_I(width); } else if (width<=VL_WORDSIZE) { IData* datap = &(reinterpret_cast(memp))[entry]; if (!innum) { *datap = 0; } *datap = ((*datap << shift) + value) & VL_MASK_I(width); } else if (width<=VL_QUADSIZE) { QData* datap = &(reinterpret_cast(memp))[entry]; if (!innum) { *datap = 0; } *datap = ((*datap << static_cast(shift)) + static_cast(value)) & VL_MASK_Q(width); } else { WDataOutP datap = &(reinterpret_cast(memp))[ entry*VL_WORDS_I(width) ]; if (!innum) { VL_ZERO_RESET_W(width, datap); } _VL_SHIFTL_INPLACE_W(width, datap, static_cast(shift)); datap[0] |= value; } if (VL_UNLIKELY(value>=(1<> 8; // Want exit status } IData VL_TESTPLUSARGS_I(const char* formatp) VL_MT_SAFE { const std::string& match = VerilatedImp::argPlusMatch(formatp); if (match == "") return 0; else return 1; } IData VL_VALUEPLUSARGS_INW(int rbits, const std::string& ld, WDataOutP rwp) VL_MT_SAFE { std::string prefix; bool inPct = false; bool done = false; char fmt = ' '; for (const char* posp = ld.c_str(); !done && *posp; ++posp) { if (!inPct && posp[0]=='%') { inPct = true; } else if (!inPct) { // Normal text prefix += *posp; } else { // Format character switch (tolower(*posp)) { case '%': prefix += *posp; inPct = false; break; default: fmt = *posp; done = true; break; } } } const std::string& match = VerilatedImp::argPlusMatch(prefix.c_str()); const char* dp = match.c_str() + 1 /*leading + */ + prefix.length(); if (match == "") return 0; VL_ZERO_RESET_W(rbits, rwp); switch (tolower(fmt)) { case 'd': vlsint64_t lld; sscanf(dp,"%30" VL_PRI64 "d",&lld); VL_SET_WQ(rwp,lld); break; case 'b': _vl_vsss_based(rwp,rbits, 1, dp, 0, strlen(dp)); break; case 'o': _vl_vsss_based(rwp,rbits, 3, dp, 0, strlen(dp)); break; case 'h': //FALLTHRU case 'x': _vl_vsss_based(rwp,rbits, 4, dp, 0, strlen(dp)); break; case 's': // string/no conversion for (int i=0, lsb=0, posp=static_cast(strlen(dp))-1; i=0; --posp) { _vl_vsss_setbit(rwp,rbits,lsb, 8, dp[posp]); lsb+=8; } break; case 'e': //FALLTHRU - Unsupported case 'f': //FALLTHRU - Unsupported case 'g': //FALLTHRU - Unsupported default: // Other simulators simply return 0 in these cases and don't error out return 0; } _VL_CLEAN_INPLACE_W(rbits,rwp); return 1; } IData VL_VALUEPLUSARGS_INN(int, const std::string& ld, std::string& rdr) VL_MT_SAFE { std::string prefix; bool inPct = false; bool done = false; for (const char* posp = ld.c_str(); !done && *posp; ++posp) { if (!inPct && posp[0]=='%') { inPct = true; } else if (!inPct) { // Normal text prefix += *posp; } else { // Format character switch (tolower(*posp)) { case '%': prefix += *posp; inPct = false; break; default: done = true; break; } } } const std::string& match = VerilatedImp::argPlusMatch(prefix.c_str()); const char* dp = match.c_str() + 1 /*leading + */ + prefix.length(); if (match == "") return 0; rdr = std::string(dp); return 1; } const char* vl_mc_scan_plusargs(const char* prefixp) VL_MT_SAFE { const std::string& match = VerilatedImp::argPlusMatch(prefixp); static VL_THREAD_LOCAL char outstr[VL_VALUE_STRING_MAX_WIDTH]; if (match == "") return NULL; strncpy(outstr, match.c_str()+strlen(prefixp)+1, // +1 to skip the "+" VL_VALUE_STRING_MAX_WIDTH); outstr[VL_VALUE_STRING_MAX_WIDTH-1] = '\0'; return outstr; } //=========================================================================== // Heavy functions std::string VL_CVT_PACK_STR_NW(int lwords, WDataInP lwp) VL_MT_SAFE { // See also _VL_VINT_TO_STRING char destout[VL_TO_STRING_MAX_WORDS*VL_WORDSIZE+1]; int obits = lwords * VL_WORDSIZE; int lsb=obits-1; bool start=true; char* destp = destout; int len = 0; for (; lsb>=0; --lsb) { lsb = (lsb / 8) * 8; // Next digit IData charval = VL_BITRSHIFT_W(lwp, lsb) & 0xff; if (!start || charval) { *destp++ = (charval==0)?' ':charval; len++; start = false; // Drop leading 0s } } return std::string(destout, len); } //=========================================================================== // Verilated:: Methods Verilated::ThreadLocal::ThreadLocal() : #ifdef VL_THREADED t_mtaskId(0), t_endOfEvalReqd(0), #endif t_dpiScopep(NULL), t_dpiFilename(0), t_dpiLineno(0) { } Verilated::ThreadLocal::~ThreadLocal() { } void Verilated::debug(int val) VL_MT_SAFE { VerilatedLockGuard lock(m_mutex); s_s.s_debug = val; if (val) { #ifdef VL_DEBUG VL_DEBUG_IF(VL_DBG_MSGF("- Verilated::debug is on. Message prefix indicates {,}.\n");); #else VL_PRINTF_MT("- Verilated::debug attempted, but compiled without VL_DEBUG, so messages suppressed.\n"); #endif } } void Verilated::randReset(int val) VL_MT_SAFE { VerilatedLockGuard lock(m_mutex); s_s.s_randReset = val; } void Verilated::calcUnusedSigs(bool flag) VL_MT_SAFE { VerilatedLockGuard lock(m_mutex); s_s.s_calcUnusedSigs = flag; } void Verilated::gotFinish(bool flag) VL_MT_SAFE { VerilatedLockGuard lock(m_mutex); s_s.s_gotFinish = flag; } void Verilated::assertOn(bool flag) VL_MT_SAFE { VerilatedLockGuard lock(m_mutex); s_s.s_assertOn = flag; } void Verilated::fatalOnVpiError(bool flag) VL_MT_SAFE { VerilatedLockGuard lock(m_mutex); s_s.s_fatalOnVpiError = flag; } const char* Verilated::catName(const char* n1, const char* n2) VL_MT_SAFE { // Returns new'ed data // Used by symbol table creation to make module names static VL_THREAD_LOCAL char* strp = NULL; static VL_THREAD_LOCAL size_t len = 0; size_t newlen = strlen(n1)+strlen(n2)+2; if (!strp || newlen > len) { if (strp) delete [] strp; strp = new char[newlen]; len = newlen; } strcpy(strp,n1); if (*n1) strcat(strp,"."); strcat(strp,n2); return strp; } void Verilated::flushCb(VerilatedVoidCb cb) VL_MT_SAFE { VerilatedLockGuard lock(m_mutex); if (s_flushCb == cb) {} // Ok - don't duplicate else if (!s_flushCb) { s_flushCb=cb; } else { // Someday we may allow multiple callbacks ala atexit(), but until then VL_FATAL_MT("unknown",0,"", "Verilated::flushCb called twice with different callbacks"); } } void Verilated::flushCall() VL_MT_SAFE { VerilatedLockGuard lock(m_mutex); if (s_flushCb) (*s_flushCb)(); fflush(stderr); fflush(stdout); } void Verilated::commandArgs(int argc, const char** argv) VL_MT_SAFE { VerilatedLockGuard lock(m_mutex); s_args.argc = argc; s_args.argv = argv; VerilatedImp::commandArgs(argc,argv); } const char* Verilated::commandArgsPlusMatch(const char* prefixp) VL_MT_SAFE { const std::string& match = VerilatedImp::argPlusMatch(prefixp); static VL_THREAD_LOCAL char outstr[VL_VALUE_STRING_MAX_WIDTH]; if (match == "") return ""; strncpy(outstr, match.c_str(), VL_VALUE_STRING_MAX_WIDTH); outstr[VL_VALUE_STRING_MAX_WIDTH-1] = '\0'; return outstr; } void Verilated::overWidthError(const char* signame) VL_MT_SAFE { // Slowpath - Called only when signal sets too high of a bit std::string msg = (std::string("Testbench C set input '") + signame + "' to value that overflows what the signal's width can fit"); VL_FATAL_MT("unknown",0,"", msg.c_str()); } void Verilated::quiesce() VL_MT_SAFE { #ifdef VL_THREADED // Wait until all threads under this evaluation are quiet // THREADED-TODO #endif } void Verilated::internalsDump() VL_MT_SAFE { VerilatedImp::internalsDump(); } void Verilated::scopesDump() VL_MT_SAFE { VerilatedImp::scopesDump(); } const VerilatedScope* Verilated::scopeFind(const char* namep) VL_MT_SAFE { return VerilatedImp::scopeFind(namep); } int Verilated::exportFuncNum(const char* namep) VL_MT_SAFE { return VerilatedImp::exportFind(namep); } const VerilatedScopeNameMap* Verilated::scopeNameMap() VL_MT_SAFE { return VerilatedImp::scopeNameMap(); } #ifdef VL_THREADED void Verilated::endOfThreadMTaskGuts(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE { VL_DEBUG_IF(VL_DBG_MSGF("End of thread mtask\n");); VerilatedThreadMsgQueue::flush(evalMsgQp); } void Verilated::endOfEvalGuts(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE { VL_DEBUG_IF(VL_DBG_MSGF("End-of-eval cleanup\n");); evalMsgQp->process(); } #endif //=========================================================================== // VerilatedImp:: Methods void VerilatedImp::internalsDump() VL_MT_SAFE { VerilatedLockGuard lock(s_s.m_argMutex); VL_PRINTF_MT("internalsDump:\n"); versionDump(); VL_PRINTF_MT(" Argv:"); for (ArgVec::const_iterator it=s_s.m_argVec.begin(); it!=s_s.m_argVec.end(); ++it) { VL_PRINTF_MT(" %s",it->c_str()); } VL_PRINTF_MT("\n"); scopesDump(); exportsDump(); userDump(); } void VerilatedImp::versionDump() VL_MT_SAFE { VL_PRINTF_MT(" Version: %s %s\n", Verilated::productName(), Verilated::productVersion()); } void VerilatedImp::commandArgs(int argc, const char** argv) VL_EXCLUDES(s_s.m_argMutex) { VerilatedLockGuard lock(s_s.m_argMutex); s_s.m_argVec.clear(); // Always clear commandArgsAddGuts(argc, argv); } void VerilatedImp::commandArgsAdd(int argc, const char** argv) VL_EXCLUDES(s_s.m_argMutex) { VerilatedLockGuard lock(s_s.m_argMutex); commandArgsAddGuts(argc, argv); } void VerilatedImp::commandArgsAddGuts(int argc, const char** argv) VL_REQUIRES(s_s.m_argMutex) { if (!s_s.m_argVecLoaded) s_s.m_argVec.clear(); for (int i=0; i m_udims || dim > 3)) return NULL; if (VL_UNLIKELY(indx < low(dim) || indx > high(dim))) return NULL; int indxAdj = indx - low(dim); vluint8_t* bytep = reinterpret_cast(datap); // If on index 1 of a 2 index array, then each index 1 is index2sz*entsz size_t slicesz = entSize(); for (int d=dim+1; d<=m_udims; ++d) slicesz *= elements(d); bytep += indxAdj*slicesz; return bytep; } //====================================================================== // VerilatedScope:: Methods VerilatedScope::VerilatedScope() { m_callbacksp = NULL; m_namep = NULL; m_funcnumMax = 0; m_symsp = NULL; m_varsp = NULL; } VerilatedScope::~VerilatedScope() { // Memory cleanup - not called during normal operation VerilatedImp::scopeErase(this); if (m_namep) { delete [] m_namep; m_namep = NULL; } if (m_callbacksp) { delete [] m_callbacksp; m_callbacksp = NULL; } if (m_varsp) { delete m_varsp; m_varsp = NULL; } m_funcnumMax = 0; // Force callback table to empty } void VerilatedScope::configure(VerilatedSyms* symsp, const char* prefixp, const char* suffixp) VL_MT_UNSAFE { // Slowpath - called once/scope at construction // We don't want the space and reference-count access overhead of strings. m_symsp = symsp; char* namep = new char[strlen(prefixp)+strlen(suffixp)+2]; strcpy(namep, prefixp); if (*prefixp && *suffixp) strcat(namep,"."); strcat(namep, suffixp); m_namep = namep; VerilatedImp::scopeInsert(this); } void VerilatedScope::exportInsert(int finalize, const char* namep, void* cb) VL_MT_UNSAFE { // Slowpath - called once/scope*export at construction // Insert a exported function into scope table int funcnum = VerilatedImp::exportInsert(namep); if (!finalize) { // Need two passes so we know array size to create // Alternative is to dynamically stretch the array, which is more code, and slower. if (funcnum >= m_funcnumMax) { m_funcnumMax = funcnum+1; } } else { if (VL_UNLIKELY(funcnum >= m_funcnumMax)) { VL_FATAL_MT(__FILE__,__LINE__,"","Internal: Bad funcnum vs. pre-finalize maximum"); } if (VL_UNLIKELY(!m_callbacksp)) { // First allocation m_callbacksp = new void* [m_funcnumMax]; memset(m_callbacksp, 0, m_funcnumMax*sizeof(void*)); } m_callbacksp[funcnum] = cb; } } void VerilatedScope::varInsert(int finalize, const char* namep, void* datap, VerilatedVarType vltype, int vlflags, int dims, ...) VL_MT_UNSAFE { // Grab dimensions // In the future we may just create a large table at emit time and statically construct from that. if (!finalize) return; if (!m_varsp) m_varsp = new VerilatedVarNameMap(); VerilatedVar var (namep, datap, vltype, (VerilatedVarFlags)vlflags, dims); va_list ap; va_start(ap,dims); for (int i=0; i=1 && i<=3) { var.m_unpacked[i-1].m_left = msb; var.m_unpacked[i-1].m_right = lsb; } else { // We could have a linked list of ranges, but really this whole thing needs // to be generalized to support structs and unions, etc. VL_FATAL_MT(__FILE__,__LINE__,"", (std::string("Unsupported multi-dimensional public varInsert: ") + namep).c_str()); } } va_end(ap); m_varsp->insert(std::make_pair(namep,var)); } // cppcheck-suppress unusedFunction // Used by applications VerilatedVar* VerilatedScope::varFind(const char* namep) const VL_MT_SAFE_POSTINIT { if (VL_LIKELY(m_varsp)) { VerilatedVarNameMap::iterator it = m_varsp->find(namep); if (VL_LIKELY(it != m_varsp->end())) { return &(it->second); } } return NULL; } void* VerilatedScope::exportFindNullError(int funcnum) VL_MT_SAFE { // Slowpath - Called only when find has failed std::string msg = (std::string("Testbench C called '") +VerilatedImp::exportName(funcnum) +"' but scope wasn't set, perhaps due to dpi import call without 'context'"); VL_FATAL_MT("unknown",0,"", msg.c_str()); return NULL; } void* VerilatedScope::exportFindError(int funcnum) const { // Slowpath - Called only when find has failed std::string msg = (std::string("Testbench C called '") +VerilatedImp::exportName(funcnum) +"' but this DPI export function exists only in other scopes, not scope '" +name()+"'"); VL_FATAL_MT("unknown",0,"", msg.c_str()); return NULL; } void VerilatedScope::scopeDump() const { VL_PRINTF_MT(" SCOPE %p: %s\n", this, name()); for (int i=0; ivarsp()) { for (VerilatedVarNameMap::const_iterator it = varsp->begin(); it != varsp->end(); ++it) { VL_PRINTF_MT(" VAR %p: %s\n", &(it->second), it->first); } } } //=========================================================================== // VerilatedOneThreaded:: Methods #if defined(VL_THREADED) && defined(VL_DEBUG) void VerilatedAssertOneThread::fatal_different() VL_MT_SAFE { VL_FATAL_MT(__FILE__, __LINE__, "", "Routine called that is single threaded, but called from" " a different thread then the expected constructing thread"); } #endif //===========================================================================