// -*- mode: C++; c-file-style: "cc-mode" -*- //************************************************************************* // // Code available from: https://verilator.org // // Copyright 2009-2021 by Wilson Snyder. This program is free software; you can // redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License // Version 2.0. // SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0 // //========================================================================= /// /// \file /// \brief Verilated VPI implementation code /// /// This file must be compiled and linked against all Verilated objects /// that use the VPI. /// /// Use "verilator --vpi" to add this to the Makefile for the linker. /// /// For documentation on the exported functions (named vpi_*) that are /// implemented here, refer to the IEEE DPI chapter. /// //========================================================================= #define VERILATOR_VERILATED_VPI_CPP_ #include "verilated.h" #include "verilated_vpi.h" #include "verilated_imp.h" #include #include #include //====================================================================== // Internal constants #define VL_DEBUG_IF_PLI VL_DEBUG_IF constexpr unsigned VL_VPI_LINE_SIZE_ = 8192; //====================================================================== // Internal macros #define VL_VPI_INTERNAL_ VerilatedVpiImp::error_info()->setMessage(vpiInternal)->setMessage #define VL_VPI_SYSTEM_ VerilatedVpiImp::error_info()->setMessage(vpiSystem)->setMessage #define VL_VPI_ERROR_ VerilatedVpiImp::error_info()->setMessage(vpiError)->setMessage #define VL_VPI_WARNING_ VerilatedVpiImp::error_info()->setMessage(vpiWarning)->setMessage #define VL_VPI_NOTICE_ VerilatedVpiImp::error_info()->setMessage(vpiNotice)->setMessage #define VL_VPI_ERROR_RESET_ VerilatedVpiImp::error_info()->resetError // Not supported yet #define VL_VPI_UNIMP_() \ (VL_VPI_ERROR_(__FILE__, __LINE__, Verilated::catName("Unsupported VPI function: ", __func__))) //====================================================================== // Implementation // Base VPI handled object class VerilatedVpio VL_NOT_FINAL { // CONSTANTS // Magic value stored in front of object to detect double free etc // Must be odd, as aligned pointer can never be odd static constexpr vluint32_t activeMagic() { return 0xfeed100f; } // MEM MANGLEMENT // Internal note: Globals may multi-construct, see verilated.cpp top. static VL_THREAD_LOCAL vluint8_t* t_freeHead; public: // CONSTRUCTORS VerilatedVpio() = default; virtual ~VerilatedVpio() = default; static void* operator new(size_t size) VL_MT_SAFE { // We new and delete tons of vpi structures, so keep them around // To simplify our free list, we use a size large enough for all derived types // We reserve word zero for the next pointer, as that's safer in case a // dangling reference to the original remains around. static const size_t chunk = 96; if (VL_UNCOVERABLE(size > chunk)) VL_FATAL_MT(__FILE__, __LINE__, "", "increase chunk"); if (VL_LIKELY(t_freeHead)) { vluint8_t* const newp = t_freeHead; t_freeHead = *(reinterpret_cast(newp)); *(reinterpret_cast(newp)) = activeMagic(); return newp + 8; } // +8: 8 bytes for next vluint8_t* newp = reinterpret_cast(::operator new(chunk + 8)); *(reinterpret_cast(newp)) = activeMagic(); return newp + 8; } static void operator delete(void* obj, size_t /*size*/)VL_MT_SAFE { vluint8_t* const oldp = (static_cast(obj)) - 8; if (VL_UNLIKELY(*(reinterpret_cast(oldp)) != activeMagic())) { VL_FATAL_MT(__FILE__, __LINE__, "", "vpi_release_handle() called on same object twice, or on non-Verilator " "VPI object"); } #ifdef VL_VPI_IMMEDIATE_FREE // Define to aid in finding leaky handles ::operator delete(oldp); #else *(reinterpret_cast(oldp)) = t_freeHead; t_freeHead = oldp; #endif } // MEMBERS static VerilatedVpio* castp(vpiHandle h) { return dynamic_cast(reinterpret_cast(h)); } inline vpiHandle castVpiHandle() { return reinterpret_cast(this); } // ACCESSORS virtual const char* name() const { return ""; } virtual const char* fullname() const { return ""; } virtual const char* defname() const { return ""; } virtual vluint32_t type() const { return 0; } virtual vluint32_t size() const { return 0; } virtual const VerilatedRange* rangep() const { return nullptr; } virtual vpiHandle dovpi_scan() { return nullptr; } virtual PLI_INT32 dovpi_remove_cb() { return 0; } }; class VerilatedVpioTimedCb final : public VerilatedVpio { // A handle to a timed callback created with vpi_register_cb // User can call vpi_remove_cb or vpi_release_handle on it vluint64_t m_id; // Unique id/sequence number to find schedule's event QData m_time; public: VerilatedVpioTimedCb(vluint64_t id, QData time) : m_id{id} , m_time{time} {} virtual ~VerilatedVpioTimedCb() override = default; static VerilatedVpioTimedCb* castp(vpiHandle h) { return dynamic_cast(reinterpret_cast(h)); } virtual vluint32_t type() const override { return vpiCallback; } virtual PLI_INT32 dovpi_remove_cb() override; }; class VerilatedVpioReasonCb final : public VerilatedVpio { // A handle to a non-timed callback created with vpi_register_cb // User can call vpi_remove_cb or vpi_release_handle on it vluint64_t m_id; // Unique id/sequence number to find schedule's event PLI_INT32 m_reason; // VPI callback reason code public: // cppcheck-suppress uninitVar // m_value VerilatedVpioReasonCb(vluint64_t id, PLI_INT32 reason) : m_id{id} , m_reason{reason} {} virtual ~VerilatedVpioReasonCb() override = default; static VerilatedVpioReasonCb* castp(vpiHandle h) { return dynamic_cast(reinterpret_cast(h)); } virtual vluint32_t type() const override { return vpiCallback; } virtual PLI_INT32 dovpi_remove_cb() override; }; class VerilatedVpioConst final : public VerilatedVpio { vlsint32_t m_num; public: explicit VerilatedVpioConst(vlsint32_t num) : m_num{num} {} virtual ~VerilatedVpioConst() override = default; static VerilatedVpioConst* castp(vpiHandle h) { return dynamic_cast(reinterpret_cast(h)); } virtual vluint32_t type() const override { return vpiConstant; } vlsint32_t num() const { return m_num; } }; class VerilatedVpioVarBase VL_NOT_FINAL : public VerilatedVpio { protected: const VerilatedVar* m_varp = nullptr; const VerilatedScope* m_scopep = nullptr; const VerilatedRange& get_range() const { // Determine number of dimensions and return outermost return (m_varp->dims() > 1) ? m_varp->unpacked() : m_varp->packed(); } public: VerilatedVpioVarBase(const VerilatedVar* varp, const VerilatedScope* scopep) : m_varp{varp} , m_scopep{scopep} {} explicit VerilatedVpioVarBase(const VerilatedVpioVarBase* varp) { if (varp) { m_varp = varp->m_varp; m_scopep = varp->m_scopep; } } static VerilatedVpioVarBase* castp(vpiHandle h) { return dynamic_cast(reinterpret_cast(h)); } const VerilatedVar* varp() const { return m_varp; } const VerilatedScope* scopep() const { return m_scopep; } virtual vluint32_t size() const override { return get_range().elements(); } virtual const VerilatedRange* rangep() const override { return &get_range(); } virtual const char* name() const override { return m_varp->name(); } virtual const char* fullname() const override { static VL_THREAD_LOCAL std::string t_out; t_out = std::string{m_scopep->name()} + "." + name(); return t_out.c_str(); } }; class VerilatedVpioParam final : public VerilatedVpioVarBase { public: VerilatedVpioParam(const VerilatedVar* varp, const VerilatedScope* scopep) : VerilatedVpioVarBase{varp, scopep} {} virtual ~VerilatedVpioParam() override = default; static VerilatedVpioParam* castp(vpiHandle h) { return dynamic_cast(reinterpret_cast(h)); } virtual vluint32_t type() const override { return vpiParameter; } void* varDatap() const { return m_varp->datap(); } }; class VerilatedVpioRange final : public VerilatedVpio { const VerilatedRange* m_range; public: explicit VerilatedVpioRange(const VerilatedRange* range) : m_range{range} {} virtual ~VerilatedVpioRange() override = default; static VerilatedVpioRange* castp(vpiHandle h) { return dynamic_cast(reinterpret_cast(h)); } virtual vluint32_t type() const override { return vpiRange; } virtual vluint32_t size() const override { return m_range->elements(); } virtual const VerilatedRange* rangep() const override { return m_range; } }; class VerilatedVpioRangeIter final : public VerilatedVpio { // Only supports 1 dimension const VerilatedRange* m_range; bool m_done = false; public: explicit VerilatedVpioRangeIter(const VerilatedRange* range) : m_range{range} {} virtual ~VerilatedVpioRangeIter() override = default; static VerilatedVpioRangeIter* castp(vpiHandle h) { return dynamic_cast(reinterpret_cast(h)); } virtual vluint32_t type() const override { return vpiIterator; } virtual vpiHandle dovpi_scan() override { if (VL_UNLIKELY(m_done)) { delete this; // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle return nullptr; } m_done = true; return ((new VerilatedVpioRange{m_range})->castVpiHandle()); } }; class VerilatedVpioScope VL_NOT_FINAL : public VerilatedVpio { protected: const VerilatedScope* m_scopep; public: explicit VerilatedVpioScope(const VerilatedScope* scopep) : m_scopep{scopep} {} virtual ~VerilatedVpioScope() override = default; static VerilatedVpioScope* castp(vpiHandle h) { return dynamic_cast(reinterpret_cast(h)); } virtual vluint32_t type() const override { return vpiScope; } const VerilatedScope* scopep() const { return m_scopep; } virtual const char* name() const override { return m_scopep->name(); } virtual const char* fullname() const override { return m_scopep->name(); } }; class VerilatedVpioVar VL_NOT_FINAL : public VerilatedVpioVarBase { vluint8_t* m_prevDatap = nullptr; // Previous value of data, for cbValueChange union { vluint8_t u8[4]; vluint32_t u32; } m_mask; // memoized variable mask vluint32_t m_entSize = 0; // memoized variable size protected: void* m_varDatap = nullptr; // varp()->datap() adjusted for array entries vlsint32_t m_index = 0; public: VerilatedVpioVar(const VerilatedVar* varp, const VerilatedScope* scopep) : VerilatedVpioVarBase{varp, scopep} { m_mask.u32 = VL_MASK_I(varp->packed().elements()); m_entSize = varp->entSize(); m_varDatap = varp->datap(); } explicit VerilatedVpioVar(const VerilatedVpioVar* varp) : VerilatedVpioVarBase{varp} { if (varp) { m_mask.u32 = varp->m_mask.u32; m_entSize = varp->m_entSize; m_varDatap = varp->m_varDatap; m_index = varp->m_index; // Not copying m_prevDatap, must be nullptr } else { m_mask.u32 = 0; } } virtual ~VerilatedVpioVar() override { if (m_prevDatap) VL_DO_CLEAR(delete[] m_prevDatap, m_prevDatap = nullptr); } static VerilatedVpioVar* castp(vpiHandle h) { return dynamic_cast(reinterpret_cast(h)); } vluint32_t mask() const { return m_mask.u32; } vluint8_t mask_byte(int idx) const { return m_mask.u8[idx & 3]; } vluint32_t entSize() const { return m_entSize; } vluint32_t index() const { return m_index; } virtual vluint32_t type() const override { return (varp()->dims() > 1) ? vpiMemory : vpiReg; // but might be wire, logic } void* prevDatap() const { return m_prevDatap; } void* varDatap() const { return m_varDatap; } void createPrevDatap() { if (VL_UNLIKELY(!m_prevDatap)) { m_prevDatap = new vluint8_t[entSize()]; std::memcpy(prevDatap(), varp()->datap(), entSize()); } } }; class VerilatedVpioMemoryWord final : public VerilatedVpioVar { public: VerilatedVpioMemoryWord(const VerilatedVar* varp, const VerilatedScope* scopep, vlsint32_t index, int offset) : VerilatedVpioVar{varp, scopep} { m_index = index; m_varDatap = (static_cast(varp->datap())) + entSize() * offset; } virtual ~VerilatedVpioMemoryWord() override = default; static VerilatedVpioMemoryWord* castp(vpiHandle h) { return dynamic_cast(reinterpret_cast(h)); } virtual vluint32_t type() const override { return vpiMemoryWord; } virtual vluint32_t size() const override { return varp()->packed().elements(); } virtual const VerilatedRange* rangep() const override { return &(varp()->packed()); } virtual const char* fullname() const override { static VL_THREAD_LOCAL std::string t_out; constexpr size_t LEN_MAX_INDEX = 25; char num[LEN_MAX_INDEX]; VL_SNPRINTF(num, LEN_MAX_INDEX, "%d", m_index); t_out = std::string{scopep()->name()} + "." + name() + "[" + num + "]"; return t_out.c_str(); } }; class VerilatedVpioVarIter final : public VerilatedVpio { const VerilatedScope* m_scopep; VerilatedVarNameMap::const_iterator m_it; bool m_started = false; public: explicit VerilatedVpioVarIter(const VerilatedScope* scopep) : m_scopep{scopep} {} virtual ~VerilatedVpioVarIter() override = default; static VerilatedVpioVarIter* castp(vpiHandle h) { return dynamic_cast(reinterpret_cast(h)); } virtual vluint32_t type() const override { return vpiIterator; } virtual vpiHandle dovpi_scan() override { if (VL_LIKELY(m_scopep->varsp())) { const VerilatedVarNameMap* const varsp = m_scopep->varsp(); if (VL_UNLIKELY(!m_started)) { m_it = varsp->begin(); m_started = true; } else if (VL_UNLIKELY(m_it == varsp->end())) { delete this; // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle return nullptr; } else { ++m_it; } if (VL_UNLIKELY(m_it == varsp->end())) { delete this; // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle return nullptr; } return ((new VerilatedVpioVar{&(m_it->second), m_scopep})->castVpiHandle()); } delete this; // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle return nullptr; // End of list - only one deep } }; class VerilatedVpioMemoryWordIter final : public VerilatedVpio { const vpiHandle m_handle; const VerilatedVar* m_varp; vlsint32_t m_iteration; vlsint32_t m_direction; bool m_done = false; public: VerilatedVpioMemoryWordIter(const vpiHandle handle, const VerilatedVar* varp) : m_handle{handle} , m_varp{varp} , m_iteration{varp->unpacked().right()} , m_direction{VL_LIKELY(varp->unpacked().left() > varp->unpacked().right()) ? 1 : -1} {} virtual ~VerilatedVpioMemoryWordIter() override = default; static VerilatedVpioMemoryWordIter* castp(vpiHandle h) { return dynamic_cast(reinterpret_cast(h)); } virtual vluint32_t type() const override { return vpiIterator; } void iterationInc() { if (!(m_done = (m_iteration == m_varp->unpacked().left()))) m_iteration += m_direction; } virtual vpiHandle dovpi_scan() override { if (VL_UNLIKELY(m_done)) { delete this; // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle return nullptr; } vpiHandle result = vpi_handle_by_index(m_handle, m_iteration); iterationInc(); return result; } }; class VerilatedVpioModule final : public VerilatedVpioScope { const char* m_name; const char* m_fullname; public: explicit VerilatedVpioModule(const VerilatedScope* modulep) : VerilatedVpioScope{modulep} { m_fullname = m_scopep->name(); if (std::strncmp(m_fullname, "TOP.", 4) == 0) m_fullname += 4; m_name = m_scopep->identifier(); } static VerilatedVpioModule* castp(vpiHandle h) { return dynamic_cast(reinterpret_cast(h)); } virtual vluint32_t type() const override { return vpiModule; } virtual const char* name() const override { return m_name; } virtual const char* fullname() const override { return m_fullname; } }; class VerilatedVpioModuleIter final : public VerilatedVpio { const std::vector* m_vec; std::vector::const_iterator m_it; public: explicit VerilatedVpioModuleIter(const std::vector& vec) : m_vec{&vec} { m_it = m_vec->begin(); } virtual ~VerilatedVpioModuleIter() override = default; static VerilatedVpioModuleIter* castp(vpiHandle h) { return dynamic_cast(reinterpret_cast(h)); } virtual vluint32_t type() const override { return vpiIterator; } virtual vpiHandle dovpi_scan() override { if (m_it == m_vec->end()) { delete this; // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle return nullptr; } const VerilatedScope* modp = *m_it++; return (new VerilatedVpioModule{modp})->castVpiHandle(); } }; //====================================================================== using VerilatedPliCb = PLI_INT32 (*)(struct t_cb_data*); class VerilatedVpiCbHolder final { // Holds information needed to call a callback vluint64_t m_id; s_cb_data m_cbData; s_vpi_value m_value; VerilatedVpioVar m_varo; // If a cbValueChange callback, the object we will return public: // cppcheck-suppress uninitVar // m_value VerilatedVpiCbHolder(vluint64_t id, const s_cb_data* cbDatap, const VerilatedVpioVar* varop) : m_id{id} , m_cbData{*cbDatap} , m_varo{varop} { m_value.format = cbDatap->value ? cbDatap->value->format : vpiSuppressVal; m_cbData.value = &m_value; if (varop) { m_cbData.obj = m_varo.castVpiHandle(); m_varo.createPrevDatap(); } else { m_cbData.obj = nullptr; } } ~VerilatedVpiCbHolder() = default; VerilatedPliCb cb_rtnp() const { return m_cbData.cb_rtn; } s_cb_data* cb_datap() { return &m_cbData; } vluint64_t id() const { return m_id; } bool invalid() const { return !m_id; } void invalidate() { m_id = 0; } }; struct VerilatedVpiTimedCbsCmp { // Ordering sets keyed by time, then callback unique id bool operator()(const std::pair& a, const std::pair& b) const { if (a.first < b.first) return true; if (a.first > b.first) return false; return a.second < b.second; } }; class VerilatedVpiError; class VerilatedVpiImp final { enum { CB_ENUM_MAX_VALUE = cbAtEndOfSimTime + 1 }; // Maxium callback reason using VpioCbList = std::list; using VpioTimedCbs = std::map, VerilatedVpiCbHolder>; // All only medium-speed, so use singleton function VpioCbList m_cbObjLists[CB_ENUM_MAX_VALUE]; // Callbacks for each supported reason VpioTimedCbs m_timedCbs; // Time based callbacks VerilatedVpiError* m_errorInfop = nullptr; // Container for vpi error info VerilatedAssertOneThread m_assertOne; // Assert only called from single thread vluint64_t m_nextCallbackId = 1; // Id to identify callback static VerilatedVpiImp& s() { // Singleton static VerilatedVpiImp s_s; return s_s; } public: static void assertOneCheck() { s().m_assertOne.check(); } static vluint64_t nextCallbackId() { return ++s().m_nextCallbackId; } static void cbReasonAdd(vluint64_t id, const s_cb_data* cb_data_p) { // The passed cb_data_p was property of the user, so need to recreate if (VL_UNCOVERABLE(cb_data_p->reason >= CB_ENUM_MAX_VALUE)) { VL_FATAL_MT(__FILE__, __LINE__, "", "vpi bb reason too large"); } VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_register_cb reason=%d id=%" VL_PRI64 "d obj=%p\n", cb_data_p->reason, id, cb_data_p->obj);); VerilatedVpioVar* varop = nullptr; if (cb_data_p->reason == cbValueChange) varop = VerilatedVpioVar::castp(cb_data_p->obj); s().m_cbObjLists[cb_data_p->reason].emplace_back(id, cb_data_p, varop); } static void cbTimedAdd(vluint64_t id, const s_cb_data* cb_data_p, QData time) { // The passed cb_data_p was property of the user, so need to recreate VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_register_cb reason=%d id=%" VL_PRI64 "d delay=%" VL_PRI64 "u\n", cb_data_p->reason, id, time);); s().m_timedCbs.emplace(std::piecewise_construct, std::forward_as_tuple(std::make_pair(time, id)), std::forward_as_tuple(id, cb_data_p, nullptr)); } static void cbReasonRemove(vluint64_t id, vluint32_t reason) { // Id might no longer exist, if already removed due to call after event, or teardown VpioCbList& cbObjList = s().m_cbObjLists[reason]; // We do not remove it now as we may be iterating the list, // instead set to nullptr and will cleanup later for (auto& ir : cbObjList) { if (ir.id() == id) ir.invalidate(); } } static void cbTimedRemove(vluint64_t id, QData time) { // Id might no longer exist, if already removed due to call after event, or teardown const auto it = s().m_timedCbs.find(std::make_pair(time, id)); if (VL_LIKELY(it != s().m_timedCbs.end())) it->second.invalidate(); } static void callTimedCbs() VL_MT_UNSAFE_ONE { assertOneCheck(); const QData time = VL_TIME_Q(); for (auto it = s().m_timedCbs.begin(); it != s().m_timedCbs.end();) { if (VL_UNLIKELY(it->first.first <= time)) { VerilatedVpiCbHolder& ho = it->second; const auto last_it = it; ++it; if (VL_UNLIKELY(!ho.invalid())) { VL_DEBUG_IF_PLI( VL_DBG_MSGF("- vpi: timed_callback id=%" VL_PRI64 "d\n", ho.id());); ho.invalidate(); // Timed callbacks are one-shot (ho.cb_rtnp())(ho.cb_datap()); } s().m_timedCbs.erase(last_it); } else { ++it; } } } static QData cbNextDeadline() { const auto it = s().m_timedCbs.cbegin(); if (VL_LIKELY(it != s().m_timedCbs.cend())) return it->first.first; return ~0ULL; // maxquad } static bool callCbs(const vluint32_t reason) VL_MT_UNSAFE_ONE { VpioCbList& cbObjList = s().m_cbObjLists[reason]; bool called = false; if (cbObjList.empty()) return called; const auto last = std::prev(cbObjList.end()); // prevent looping over newly added elements for (auto it = cbObjList.begin(); true;) { // cbReasonRemove sets to nullptr, so we know on removal the old end() will still exist bool was_last = it == last; if (VL_UNLIKELY(it->invalid())) { // Deleted earlier, cleanup it = cbObjList.erase(it); if (was_last) break; continue; } VerilatedVpiCbHolder& ho = *it; VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: reason_callback reason=%d id=%" VL_PRI64 "d\n", reason, ho.id());); (ho.cb_rtnp())(ho.cb_datap()); called = true; if (was_last) break; ++it; } return called; } static bool callValueCbs() VL_MT_UNSAFE_ONE { assertOneCheck(); VpioCbList& cbObjList = s().m_cbObjLists[cbValueChange]; bool called = false; std::unordered_set update; // set of objects to update after callbacks if (cbObjList.empty()) return called; const auto last = std::prev(cbObjList.end()); // prevent looping over newly added elements for (auto it = cbObjList.begin(); true;) { // cbReasonRemove sets to nullptr, so we know on removal the old end() will still exist const bool was_last = it == last; if (VL_UNLIKELY(it->invalid())) { // Deleted earlier, cleanup it = cbObjList.erase(it); if (was_last) break; continue; } VerilatedVpiCbHolder& ho = *it++; if (VerilatedVpioVar* const varop = VerilatedVpioVar::castp(ho.cb_datap()->obj)) { void* const newDatap = varop->varDatap(); void* const prevDatap = varop->prevDatap(); // Was malloced when we added the callback VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: value_test %s v[0]=%d/%d %p %p\n", varop->fullname(), *(static_cast(newDatap)), *(static_cast(prevDatap)), newDatap, prevDatap);); if (std::memcmp(prevDatap, newDatap, varop->entSize()) != 0) { VL_DEBUG_IF_PLI( VL_DBG_MSGF("- vpi: value_callback %" VL_PRI64 "d %s v[0]=%d\n", ho.id(), varop->fullname(), *(static_cast(newDatap)));); update.insert(varop); vpi_get_value(ho.cb_datap()->obj, ho.cb_datap()->value); (ho.cb_rtnp())(ho.cb_datap()); called = true; } } if (was_last) break; } for (const auto& ip : update) { std::memcpy(ip->prevDatap(), ip->varDatap(), ip->entSize()); } return called; } static VerilatedVpiError* error_info() VL_MT_UNSAFE_ONE; // getter for vpi error info }; //====================================================================== // Statics // Internal note: Globals may multi-construct, see verilated.cpp top. VL_THREAD_LOCAL vluint8_t* VerilatedVpio::t_freeHead = nullptr; //====================================================================== // VerilatedVpiError // Internal container for vpi error info class VerilatedVpiError final { t_vpi_error_info m_errorInfo; bool m_flag = false; char m_buff[VL_VPI_LINE_SIZE_]; void setError(PLI_BYTE8* message, PLI_BYTE8* code, PLI_BYTE8* file, PLI_INT32 line) { m_errorInfo.message = message; m_errorInfo.file = file; m_errorInfo.line = line; m_errorInfo.code = code; do_callbacks(); } void do_callbacks() { if (getError()->level >= vpiError && Verilated::threadContextp()->fatalOnVpiError()) { // Stop on vpi error/unsupported vpi_unsupported(); } // We need to run above code first because in the case that the // callback executes further vpi functions we will loose the error // as it will be overwritten. VerilatedVpiImp::callCbs(cbPLIError); } public: VerilatedVpiError() { m_buff[0] = '\0'; m_errorInfo.product = const_cast(Verilated::productName()); } ~VerilatedVpiError() = default; static void selfTest() VL_MT_UNSAFE_ONE; VerilatedVpiError* setMessage(PLI_INT32 level) { m_flag = true; m_errorInfo.level = level; return this; } void setMessage(const std::string& file, PLI_INT32 line, const char* message, ...) { // message cannot be a const string& as va_start cannot use a reference static VL_THREAD_LOCAL std::string t_filehold; va_list args; va_start(args, message); VL_VSNPRINTF(m_buff, sizeof(m_buff), message, args); va_end(args); m_errorInfo.state = vpiPLI; t_filehold = file; setError(static_cast(m_buff), nullptr, const_cast(t_filehold.c_str()), line); } p_vpi_error_info getError() { if (m_flag) return &m_errorInfo; return nullptr; } void resetError() { m_flag = false; } static void vpi_unsupported() { // Not supported yet const p_vpi_error_info error_info_p = VerilatedVpiImp::error_info()->getError(); if (error_info_p) { VL_FATAL_MT(error_info_p->file, error_info_p->line, "", error_info_p->message); return; } VL_FATAL_MT(__FILE__, __LINE__, "", "vpi_unsupported called without error info set"); } static const char* strFromVpiVal(PLI_INT32 vpiVal) VL_MT_SAFE; static const char* strFromVpiObjType(PLI_INT32 vpiVal) VL_MT_SAFE; static const char* strFromVpiMethod(PLI_INT32 vpiVal) VL_MT_SAFE; static const char* strFromVpiCallbackReason(PLI_INT32 vpiVal) VL_MT_SAFE; static const char* strFromVpiProp(PLI_INT32 vpiVal) VL_MT_SAFE; }; //====================================================================== // VerilatedVpi implementation void VerilatedVpi::callTimedCbs() VL_MT_UNSAFE_ONE { VerilatedVpiImp::callTimedCbs(); } bool VerilatedVpi::callValueCbs() VL_MT_UNSAFE_ONE { return VerilatedVpiImp::callValueCbs(); } bool VerilatedVpi::callCbs(vluint32_t reason) VL_MT_UNSAFE_ONE { return VerilatedVpiImp::callCbs(reason); } QData VerilatedVpi::cbNextDeadline() VL_MT_UNSAFE_ONE { return VerilatedVpiImp::cbNextDeadline(); } PLI_INT32 VerilatedVpioTimedCb::dovpi_remove_cb() { VerilatedVpiImp::cbTimedRemove(m_id, m_time); delete this; // IEEE 37.2.2 a vpi_remove_cb does a vpi_release_handle return 1; } PLI_INT32 VerilatedVpioReasonCb::dovpi_remove_cb() { VerilatedVpiImp::cbReasonRemove(m_id, m_reason); delete this; // IEEE 37.2.2 a vpi_remove_cb does a vpi_release_handle return 1; } //====================================================================== // VerilatedVpiImp implementation VerilatedVpiError* VerilatedVpiImp::error_info() VL_MT_UNSAFE_ONE { VerilatedVpiImp::assertOneCheck(); if (VL_UNLIKELY(!s().m_errorInfop)) s().m_errorInfop = new VerilatedVpiError; return s().m_errorInfop; } //====================================================================== // VerilatedVpiError Methods const char* VerilatedVpiError::strFromVpiVal(PLI_INT32 vpiVal) VL_MT_SAFE { // clang-format off static const char* const names[] = { "*undefined*", "vpiBinStrVal", "vpiOctStrVal", "vpiDecStrVal", "vpiHexStrVal", "vpiScalarVal", "vpiIntVal", "vpiRealVal", "vpiStringVal", "vpiVectorVal", "vpiStrengthVal", "vpiTimeVal", "vpiObjTypeVal", "vpiSuppressVal", "vpiShortIntVal", "vpiLongIntVal", "vpiShortRealVal", "vpiRawTwoStateVal", "vpiRawFourStateVal", }; // clang-format on if (VL_UNCOVERABLE(vpiVal < 0)) return names[0]; return names[(vpiVal <= vpiRawFourStateVal) ? vpiVal : 0]; } const char* VerilatedVpiError::strFromVpiObjType(PLI_INT32 vpiVal) VL_MT_SAFE { // clang-format off static const char* const names[] = { "*undefined*", "vpiAlways", "vpiAssignStmt", "vpiAssignment", "vpiBegin", "vpiCase", "vpiCaseItem", "vpiConstant", "vpiContAssign", "vpiDeassign", "vpiDefParam", "vpiDelayControl", "vpiDisable", "vpiEventControl", "vpiEventStmt", "vpiFor", "vpiForce", "vpiForever", "vpiFork", "vpiFuncCall", "vpiFunction", "vpiGate", "vpiIf", "vpiIfElse", "vpiInitial", "vpiIntegerVar", "vpiInterModPath", "vpiIterator", "vpiIODecl", "vpiMemory", "vpiMemoryWord", "vpiModPath", "vpiModule", "vpiNamedBegin", "vpiNamedEvent", "vpiNamedFork", "vpiNet", "vpiNetBit", "vpiNullStmt", "vpiOperation", "vpiParamAssign", "vpiParameter", "vpiPartSelect", "vpiPathTerm", "vpiPort", "vpiPortBit", "vpiPrimTerm", "vpiRealVar", "vpiReg", "vpiRegBit", "vpiRelease", "vpiRepeat", "vpiRepeatControl", "vpiSchedEvent", "vpiSpecParam", "vpiSwitch", "vpiSysFuncCall", "vpiSysTaskCall", "vpiTableEntry", "vpiTask", "vpiTaskCall", "vpiTchk", "vpiTchkTerm", "vpiTimeVar", "vpiTimeQueue", "vpiUdp", "vpiUdpDefn", "vpiUserSystf", "vpiVarSelect", "vpiWait", "vpiWhile", "vpiCondition", "vpiDelay", "vpiElseStmt", "vpiForIncStmt", "vpiForInitStmt", "vpiHighConn", "vpiLhs", "vpiIndex", "vpiLeftRange", "vpiLowConn", "vpiParent", "vpiRhs", "vpiRightRange", "vpiScope", "vpiSysTfCall", "vpiTchkDataTerm", "vpiTchkNotifier", "vpiTchkRefTerm", "vpiArgument", "vpiBit", "vpiDriver", "vpiInternalScope", "vpiLoad", "vpiModDataPathIn", "vpiModPathIn", "vpiModPathOut", "vpiOperand", "vpiPortInst", "vpiProcess", "vpiVariables", "vpiUse", "vpiExpr", "vpiPrimitive", "vpiStmt", "vpiAttribute", "vpiBitSelect", "vpiCallback", "vpiDelayTerm", "vpiDelayDevice", "vpiFrame", "vpiGateArray", "vpiModuleArray", "vpiPrimitiveArray", "vpiNetArray", "vpiRange", "vpiRegArray", "vpiSwitchArray", "vpiUdpArray", "vpiActiveTimeFormat", "vpiInTerm", "vpiInstanceArray", "vpiLocalDriver", "vpiLocalLoad", "vpiOutTerm", "vpiPorts", "vpiSimNet", "vpiTaskFunc", "vpiContAssignBit", "vpiNamedEventArray", "vpiIndexedPartSelect", "vpiBaseExpr", "vpiWidthExpr", "vpiGenScopeArray", "vpiGenScope", "vpiGenVar", "vpiAutomatics" }; // clang-format on if (VL_UNCOVERABLE(vpiVal < 0)) return names[0]; return names[(vpiVal <= vpiAutomatics) ? vpiVal : 0]; } const char* VerilatedVpiError::strFromVpiMethod(PLI_INT32 vpiVal) VL_MT_SAFE { // clang-format off static const char* const names[] = { "vpiCondition", "vpiDelay", "vpiElseStmt", "vpiForIncStmt", "vpiForInitStmt", "vpiHighConn", "vpiLhs", "vpiIndex", "vpiLeftRange", "vpiLowConn", "vpiParent", "vpiRhs", "vpiRightRange", "vpiScope", "vpiSysTfCall", "vpiTchkDataTerm", "vpiTchkNotifier", "vpiTchkRefTerm", "vpiArgument", "vpiBit", "vpiDriver", "vpiInternalScope", "vpiLoad", "vpiModDataPathIn", "vpiModPathIn", "vpiModPathOut", "vpiOperand", "vpiPortInst", "vpiProcess", "vpiVariables", "vpiUse", "vpiExpr", "vpiPrimitive", "vpiStmt" }; // clang-format on if (vpiVal > vpiStmt || vpiVal < vpiCondition) return "*undefined*"; return names[vpiVal - vpiCondition]; } const char* VerilatedVpiError::strFromVpiCallbackReason(PLI_INT32 vpiVal) VL_MT_SAFE { // clang-format off static const char* const names[] = { "*undefined*", "cbValueChange", "cbStmt", "cbForce", "cbRelease", "cbAtStartOfSimTime", "cbReadWriteSynch", "cbReadOnlySynch", "cbNextSimTime", "cbAfterDelay", "cbEndOfCompile", "cbStartOfSimulation", "cbEndOfSimulation", "cbError", "cbTchkViolation", "cbStartOfSave", "cbEndOfSave", "cbStartOfRestart", "cbEndOfRestart", "cbStartOfReset", "cbEndOfReset", "cbEnterInteractive", "cbExitInteractive", "cbInteractiveScopeChange", "cbUnresolvedSystf", "cbAssign", "cbDeassign", "cbDisable", "cbPLIError", "cbSignal", "cbNBASynch", "cbAtEndOfSimTime" }; // clang-format on if (VL_UNCOVERABLE(vpiVal < 0)) return names[0]; return names[(vpiVal <= cbAtEndOfSimTime) ? vpiVal : 0]; } const char* VerilatedVpiError::strFromVpiProp(PLI_INT32 vpiVal) VL_MT_SAFE { // clang-format off static const char* const names[] = { "*undefined or other*", "vpiType", "vpiName", "vpiFullName", "vpiSize", "vpiFile", "vpiLineNo", "vpiTopModule", "vpiCellInstance", "vpiDefName", "vpiProtected", "vpiTimeUnit", "vpiTimePrecision", "vpiDefNetType", "vpiUnconnDrive", "vpiDefFile", "vpiDefLineNo", "vpiScalar", "vpiVector", "vpiExplicitName", "vpiDirection", "vpiConnByName", "vpiNetType", "vpiExplicitScalared", "vpiExplicitVectored", "vpiExpanded", "vpiImplicitDecl", "vpiChargeStrength", "vpiArray", "vpiPortIndex", "vpiTermIndex", "vpiStrength0", "vpiStrength1", "vpiPrimType", "vpiPolarity", "vpiDataPolarity", "vpiEdge", "vpiPathType", "vpiTchkType", "vpiOpType", "vpiConstType", "vpiBlocking", "vpiCaseType", "vpiFuncType", "vpiNetDeclAssign", "vpiUserDefn", "vpiScheduled", "*undefined*", "*undefined*", "vpiActive", "vpiAutomatic", "vpiCell", "vpiConfig", "vpiConstantSelect", "vpiDecompile", "vpiDefAttribute", "vpiDelayType", "vpiIteratorType", "vpiLibrary", "*undefined*", "vpiOffset", "vpiResolvedNetType", "vpiSaveRestartID", "vpiSaveRestartLocation", "vpiValid", "vpiSigned", "vpiStop", "vpiFinish", "vpiReset", "vpiSetInteractiveScope", "vpiLocalParam", "vpiModPathHasIfNone", "vpiIndexedPartSelectType", "vpiIsMemory", "vpiIsProtected" }; // clang-format on if (vpiVal == vpiUndefined) return "vpiUndefined"; return names[(vpiVal <= vpiIsProtected) ? vpiVal : 0]; } #define SELF_CHECK_RESULT_CSTR(got, exp) \ if (0 != std::strcmp((got), (exp))) { \ std::string msg \ = std::string{"%Error: "} + "GOT = '" + (got) + "'" + " EXP = '" + (exp) + "'"; \ VL_FATAL_MT(__FILE__, __LINE__, "", msg.c_str()); \ } #define SELF_CHECK_ENUM_STR(fn, enumn) \ do { \ const char* const strVal = VerilatedVpiError::fn(enumn); \ SELF_CHECK_RESULT_CSTR(strVal, #enumn); \ } while (0) void VerilatedVpi::selfTest() VL_MT_UNSAFE_ONE { VerilatedVpiError::selfTest(); } void VerilatedVpiError::selfTest() VL_MT_UNSAFE_ONE { VerilatedVpiImp::assertOneCheck(); SELF_CHECK_ENUM_STR(strFromVpiVal, vpiBinStrVal); SELF_CHECK_ENUM_STR(strFromVpiVal, vpiRawFourStateVal); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAlways); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAssignStmt); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAssignment); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiBegin); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiCase); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiCaseItem); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiConstant); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiContAssign); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDeassign); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDefParam); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDelayControl); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDisable); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiEventControl); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiEventStmt); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiFor); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiForce); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiForever); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiFork); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiFuncCall); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiFunction); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiGate); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIf); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIfElse); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiInitial); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIntegerVar); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiInterModPath); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIterator); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIODecl); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiMemory); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiMemoryWord); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiModPath); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiModule); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNamedBegin); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNamedEvent); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNamedFork); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNet); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNetBit); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNullStmt); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiOperation); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiParamAssign); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiParameter); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPartSelect); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPathTerm); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPort); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPortBit); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPrimTerm); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRealVar); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiReg); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRegBit); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRelease); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRepeat); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRepeatControl); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSchedEvent); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSpecParam); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSwitch); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSysFuncCall); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSysTaskCall); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTableEntry); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTask); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTaskCall); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTchk); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTchkTerm); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTimeVar); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTimeQueue); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiUdp); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiUdpDefn); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiUserSystf); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiVarSelect); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiWait); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiWhile); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiCondition); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDelay); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiElseStmt); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiForIncStmt); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiForInitStmt); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiHighConn); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLhs); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIndex); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLeftRange); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLowConn); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiParent); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRhs); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRightRange); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiScope); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSysTfCall); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTchkDataTerm); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTchkNotifier); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTchkRefTerm); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiArgument); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiBit); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDriver); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiInternalScope); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLoad); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiModDataPathIn); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiModPathIn); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiModPathOut); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiOperand); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPortInst); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiProcess); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiVariables); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiUse); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiExpr); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPrimitive); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiStmt); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAttribute); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiBitSelect); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiCallback); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDelayTerm); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDelayDevice); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiFrame); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiGateArray); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiModuleArray); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPrimitiveArray); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNetArray); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRange); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRegArray); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSwitchArray); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiUdpArray); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiActiveTimeFormat); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiInTerm); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiInstanceArray); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLocalDriver); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLocalLoad); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiOutTerm); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPorts); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSimNet); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTaskFunc); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiContAssignBit); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNamedEventArray); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIndexedPartSelect); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiBaseExpr); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiWidthExpr); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiGenScopeArray); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiGenScope); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiGenVar); SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAutomatics); SELF_CHECK_ENUM_STR(strFromVpiMethod, vpiCondition); SELF_CHECK_ENUM_STR(strFromVpiMethod, vpiStmt); SELF_CHECK_ENUM_STR(strFromVpiCallbackReason, cbValueChange); SELF_CHECK_ENUM_STR(strFromVpiCallbackReason, cbAtEndOfSimTime); SELF_CHECK_ENUM_STR(strFromVpiProp, vpiType); SELF_CHECK_ENUM_STR(strFromVpiProp, vpiProtected); SELF_CHECK_ENUM_STR(strFromVpiProp, vpiDirection); SELF_CHECK_ENUM_STR(strFromVpiProp, vpiTermIndex); SELF_CHECK_ENUM_STR(strFromVpiProp, vpiConstType); SELF_CHECK_ENUM_STR(strFromVpiProp, vpiAutomatic); SELF_CHECK_ENUM_STR(strFromVpiProp, vpiOffset); SELF_CHECK_ENUM_STR(strFromVpiProp, vpiStop); SELF_CHECK_ENUM_STR(strFromVpiProp, vpiIsProtected); } #undef SELF_CHECK_ENUM_STR #undef SELF_CHECK_RESULT_CSTR //====================================================================== // callback related vpiHandle vpi_register_cb(p_cb_data cb_data_p) { // Returns handle so user can remove the callback, user must vpi_release_handle it // Don't confuse with the callback-activated t_cb_data object handle // which is the object causing the callback rather than the callback itself VerilatedVpiImp::assertOneCheck(); VL_VPI_ERROR_RESET_(); // cppcheck-suppress nullPointer if (VL_UNLIKELY(!cb_data_p)) { VL_VPI_WARNING_(__FILE__, __LINE__, "%s : callback data pointer is null", __func__); return nullptr; } switch (cb_data_p->reason) { case cbAfterDelay: { QData time = 0; if (cb_data_p->time) time = VL_SET_QII(cb_data_p->time->high, cb_data_p->time->low); const QData abstime = VL_TIME_Q() + time; vluint64_t id = VerilatedVpiImp::nextCallbackId(); VerilatedVpioTimedCb* const vop = new VerilatedVpioTimedCb{id, abstime}; VerilatedVpiImp::cbTimedAdd(id, cb_data_p, abstime); return vop->castVpiHandle(); } case cbReadWriteSynch: // FALLTHRU // Supported via vlt_main.cpp case cbReadOnlySynch: // FALLTHRU // Supported via vlt_main.cpp case cbNextSimTime: // FALLTHRU // Supported via vlt_main.cpp case cbStartOfSimulation: // FALLTHRU // Supported via vlt_main.cpp case cbEndOfSimulation: // FALLTHRU // Supported via vlt_main.cpp case cbValueChange: // FALLTHRU // Supported via vlt_main.cpp case cbPLIError: // FALLTHRU // NOP, but need to return handle, so make object case cbEnterInteractive: // FALLTHRU // NOP, but need to return handle, so make object case cbExitInteractive: // FALLTHRU // NOP, but need to return handle, so make object case cbInteractiveScopeChange: { // FALLTHRU // NOP, but need to return handle, so make object const vluint64_t id = VerilatedVpiImp::nextCallbackId(); VerilatedVpioReasonCb* const vop = new VerilatedVpioReasonCb{id, cb_data_p->reason}; VerilatedVpiImp::cbReasonAdd(id, cb_data_p); return vop->castVpiHandle(); } default: VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Unsupported callback type %s", __func__, VerilatedVpiError::strFromVpiCallbackReason(cb_data_p->reason)); return nullptr; } } PLI_INT32 vpi_remove_cb(vpiHandle cb_obj) { VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_remove_cb %p\n", cb_obj);); VerilatedVpiImp::assertOneCheck(); VL_VPI_ERROR_RESET_(); VerilatedVpio* const vop = VerilatedVpio::castp(cb_obj); if (VL_UNLIKELY(!vop)) return 0; return vop->dovpi_remove_cb(); } void vpi_get_cb_info(vpiHandle /*object*/, p_cb_data /*cb_data_p*/) { VL_VPI_UNIMP_(); } vpiHandle vpi_register_systf(p_vpi_systf_data /*systf_data_p*/) { VL_VPI_UNIMP_(); return nullptr; } void vpi_get_systf_info(vpiHandle /*object*/, p_vpi_systf_data /*systf_data_p*/) { VL_VPI_UNIMP_(); } // for obtaining handles vpiHandle vpi_handle_by_name(PLI_BYTE8* namep, vpiHandle scope) { VerilatedVpiImp::assertOneCheck(); VL_VPI_ERROR_RESET_(); if (VL_UNLIKELY(!namep)) return nullptr; VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_handle_by_name %s %p\n", namep, scope);); const VerilatedVar* varp = nullptr; const VerilatedScope* scopep; const VerilatedVpioScope* const voScopep = VerilatedVpioScope::castp(scope); std::string scopeAndName = namep; if (voScopep) { scopeAndName = std::string{voScopep->fullname()} + "." + namep; namep = const_cast(scopeAndName.c_str()); } { // This doesn't yet follow the hierarchy in the proper way scopep = Verilated::threadContextp()->scopeFind(namep); if (scopep) { // Whole thing found as a scope if (scopep->type() == VerilatedScope::SCOPE_MODULE) { return (new VerilatedVpioModule{scopep})->castVpiHandle(); } else { return (new VerilatedVpioScope{scopep})->castVpiHandle(); } } const char* baseNamep = scopeAndName.c_str(); std::string scopename; const char* const dotp = std::strrchr(namep, '.'); if (VL_LIKELY(dotp)) { baseNamep = dotp + 1; const size_t len = dotp - namep; scopename = std::string{namep, len}; } if (scopename.find('.') == std::string::npos) { // This is a toplevel, hence search in our TOP ports first. scopep = Verilated::threadContextp()->scopeFind("TOP"); if (scopep) varp = scopep->varFind(baseNamep); } if (!varp) { scopep = Verilated::threadContextp()->scopeFind(scopename.c_str()); if (!scopep) return nullptr; varp = scopep->varFind(baseNamep); } } if (!varp) return nullptr; if (varp->isParam()) { return (new VerilatedVpioParam{varp, scopep})->castVpiHandle(); } else { return (new VerilatedVpioVar{varp, scopep})->castVpiHandle(); } } vpiHandle vpi_handle_by_index(vpiHandle object, PLI_INT32 indx) { // Used to get array entries VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_handle_by_index %p %d\n", object, indx);); VerilatedVpiImp::assertOneCheck(); VL_VPI_ERROR_RESET_(); // Memory words are not indexable VerilatedVpioMemoryWord* const vop = VerilatedVpioMemoryWord::castp(object); if (VL_UNLIKELY(vop)) return nullptr; const VerilatedVpioVar* const varop = VerilatedVpioVar::castp(object); if (VL_LIKELY(varop)) { if (varop->varp()->dims() < 2) return nullptr; if (VL_LIKELY(varop->varp()->unpacked().left() >= varop->varp()->unpacked().right())) { if (VL_UNLIKELY(indx > varop->varp()->unpacked().left() || indx < varop->varp()->unpacked().right())) return nullptr; return (new VerilatedVpioMemoryWord{varop->varp(), varop->scopep(), indx, indx - varop->varp()->unpacked().right()}) ->castVpiHandle(); } if (VL_UNLIKELY(indx < varop->varp()->unpacked().left() || indx > varop->varp()->unpacked().right())) return nullptr; return (new VerilatedVpioMemoryWord{varop->varp(), varop->scopep(), indx, indx - varop->varp()->unpacked().left()}) ->castVpiHandle(); } VL_VPI_INTERNAL_(__FILE__, __LINE__, "%s : can't resolve handle", __func__); return nullptr; } // for traversing relationships vpiHandle vpi_handle(PLI_INT32 type, vpiHandle object) { VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_handle %d %p\n", type, object);); VerilatedVpiImp::assertOneCheck(); VL_VPI_ERROR_RESET_(); switch (type) { case vpiLeftRange: { if (VerilatedVpioVarBase* const vop = VerilatedVpioVarBase::castp(object)) { if (VL_UNLIKELY(!vop->rangep())) return nullptr; return (new VerilatedVpioConst{vop->rangep()->left()})->castVpiHandle(); } else if (VerilatedVpioRange* const vop = VerilatedVpioRange::castp(object)) { if (VL_UNLIKELY(!vop->rangep())) return nullptr; return (new VerilatedVpioConst{vop->rangep()->left()})->castVpiHandle(); } VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Unsupported vpiHandle (%p) for type %s, nothing will be returned", __func__, object, VerilatedVpiError::strFromVpiMethod(type)); return nullptr; } case vpiRightRange: { if (VerilatedVpioVarBase* const vop = VerilatedVpioVarBase::castp(object)) { if (VL_UNLIKELY(!vop->rangep())) return nullptr; return (new VerilatedVpioConst{vop->rangep()->right()})->castVpiHandle(); } else if (VerilatedVpioRange* const vop = VerilatedVpioRange::castp(object)) { if (VL_UNLIKELY(!vop->rangep())) return nullptr; return (new VerilatedVpioConst{vop->rangep()->right()})->castVpiHandle(); } VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Unsupported vpiHandle (%p) for type %s, nothing will be returned", __func__, object, VerilatedVpiError::strFromVpiMethod(type)); return nullptr; } case vpiIndex: { VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object); if (VL_UNLIKELY(!vop)) return nullptr; const vlsint32_t val = vop->index(); return (new VerilatedVpioConst{val})->castVpiHandle(); } case vpiScope: { VerilatedVpioVarBase* const vop = VerilatedVpioVarBase::castp(object); if (VL_UNLIKELY(!vop)) return nullptr; return (new VerilatedVpioScope{vop->scopep()})->castVpiHandle(); } case vpiParent: { VerilatedVpioMemoryWord* const vop = VerilatedVpioMemoryWord::castp(object); if (VL_UNLIKELY(!vop)) return nullptr; return (new VerilatedVpioVar{vop->varp(), vop->scopep()})->castVpiHandle(); } default: VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned", __func__, VerilatedVpiError::strFromVpiMethod(type)); return nullptr; } } vpiHandle vpi_handle_multi(PLI_INT32 /*type*/, vpiHandle /*refHandle1*/, vpiHandle /*refHandle2*/, ...) { VL_VPI_UNIMP_(); return nullptr; } vpiHandle vpi_iterate(PLI_INT32 type, vpiHandle object) { VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_iterate %d %p\n", type, object);); VerilatedVpiImp::assertOneCheck(); VL_VPI_ERROR_RESET_(); switch (type) { case vpiMemoryWord: { const VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object); if (VL_UNLIKELY(!vop)) return nullptr; if (vop->varp()->dims() < 2) return nullptr; if (vop->varp()->dims() > 2) { VL_VPI_WARNING_(__FILE__, __LINE__, "%s: %s, object %s has unsupported number of indices (%d)", __func__, VerilatedVpiError::strFromVpiMethod(type), vop->fullname(), vop->varp()->dims()); } return (new VerilatedVpioMemoryWordIter{object, vop->varp()})->castVpiHandle(); } case vpiRange: { const VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object); if (VL_UNLIKELY(!vop)) return nullptr; if (vop->varp()->dims() < 2) return nullptr; // Unsupported is multidim list if (vop->varp()->dims() > 2) { VL_VPI_WARNING_(__FILE__, __LINE__, "%s: %s, object %s has unsupported number of indices (%d)", __func__, VerilatedVpiError::strFromVpiMethod(type), vop->fullname(), vop->varp()->dims()); } return ((new VerilatedVpioRangeIter{vop->rangep()})->castVpiHandle()); } case vpiReg: { const VerilatedVpioScope* const vop = VerilatedVpioScope::castp(object); if (VL_UNLIKELY(!vop)) return nullptr; return ((new VerilatedVpioVarIter{vop->scopep()})->castVpiHandle()); } case vpiModule: { const VerilatedVpioModule* const vop = VerilatedVpioModule::castp(object); const VerilatedHierarchyMap* const map = VerilatedImp::hierarchyMap(); const VerilatedScope* const modp = vop ? vop->scopep() : nullptr; const auto it = vlstd::as_const(map)->find(const_cast(modp)); if (it == map->end()) return nullptr; return ((new VerilatedVpioModuleIter{it->second})->castVpiHandle()); } default: VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned", __func__, VerilatedVpiError::strFromVpiObjType(type)); return nullptr; } } vpiHandle vpi_scan(vpiHandle object) { VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_scan %p\n", object);); VerilatedVpiImp::assertOneCheck(); VL_VPI_ERROR_RESET_(); VerilatedVpio* const vop = VerilatedVpio::castp(object); if (VL_UNLIKELY(!vop)) return nullptr; return vop->dovpi_scan(); } // for processing properties PLI_INT32 vpi_get(PLI_INT32 property, vpiHandle object) { // Leave this in the header file - in many cases the compiler can constant propagate "object" VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_get %d %p\n", property, object);); VerilatedVpiImp::assertOneCheck(); VL_VPI_ERROR_RESET_(); switch (property) { case vpiTimePrecision: { return Verilated::threadContextp()->timeprecision(); } case vpiTimeUnit: { const VerilatedVpioScope* const vop = VerilatedVpioScope::castp(object); if (!vop) return Verilated::threadContextp()->timeunit(); // Null asks for global, not unlikely return vop->scopep()->timeunit(); } case vpiType: { const VerilatedVpio* const vop = VerilatedVpio::castp(object); if (VL_UNLIKELY(!vop)) return 0; return vop->type(); } case vpiDirection: { // By forthought, the directions already are vpi enumerated const VerilatedVpioVarBase* const vop = VerilatedVpioVarBase::castp(object); if (VL_UNLIKELY(!vop)) return 0; return vop->varp()->vldir(); } case vpiScalar: // FALLTHRU case vpiVector: { const VerilatedVpioVarBase* const vop = VerilatedVpioVarBase::castp(object); if (VL_UNLIKELY(!vop)) return 0; return (property == vpiVector) ^ (vop->varp()->dims() == 0); } case vpiSize: { const VerilatedVpioVarBase* const vop = VerilatedVpioVarBase::castp(object); if (VL_UNLIKELY(!vop)) return 0; return vop->size(); } default: VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned", __func__, VerilatedVpiError::strFromVpiProp(property)); return 0; } } PLI_INT64 vpi_get64(PLI_INT32 /*property*/, vpiHandle /*object*/) { VL_VPI_UNIMP_(); return 0; } PLI_BYTE8* vpi_get_str(PLI_INT32 property, vpiHandle object) { VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_get_str %d %p\n", property, object);); VerilatedVpiImp::assertOneCheck(); const VerilatedVpio* const vop = VerilatedVpio::castp(object); VL_VPI_ERROR_RESET_(); if (VL_UNLIKELY(!vop)) return nullptr; switch (property) { case vpiName: { return const_cast(vop->name()); } case vpiFullName: { return const_cast(vop->fullname()); } case vpiDefName: { return const_cast(vop->defname()); } case vpiType: { return const_cast(VerilatedVpiError::strFromVpiObjType(vop->type())); } default: VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned", __func__, VerilatedVpiError::strFromVpiProp(property)); return nullptr; } } // delay processing void vpi_get_delays(vpiHandle /*object*/, p_vpi_delay /*delay_p*/) { VL_VPI_UNIMP_(); } void vpi_put_delays(vpiHandle /*object*/, p_vpi_delay /*delay_p*/) { VL_VPI_UNIMP_(); } // value processing bool vl_check_format(const VerilatedVar* varp, const p_vpi_value valuep, const char* fullname, bool isGetValue) { bool status = true; if ((valuep->format == vpiVectorVal) || (valuep->format == vpiBinStrVal) || (valuep->format == vpiOctStrVal) || (valuep->format == vpiHexStrVal)) { switch (varp->vltype()) { case VLVT_UINT8: case VLVT_UINT16: case VLVT_UINT32: case VLVT_UINT64: case VLVT_WDATA: return status; default: status = false; } } else if (valuep->format == vpiDecStrVal) { switch (varp->vltype()) { case VLVT_UINT8: case VLVT_UINT16: case VLVT_UINT32: case VLVT_UINT64: return status; default: status = false; } } else if (valuep->format == vpiStringVal) { switch (varp->vltype()) { case VLVT_UINT8: case VLVT_UINT16: case VLVT_UINT32: case VLVT_UINT64: case VLVT_WDATA: return status; case VLVT_STRING: if (isGetValue) { return status; } else { status = false; break; } default: status = false; } } else if (valuep->format == vpiIntVal) { switch (varp->vltype()) { case VLVT_UINT8: case VLVT_UINT16: case VLVT_UINT32: return status; default: status = false; } } else if (valuep->format == vpiSuppressVal) { return status; } else { status = false; } VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s", __func__, VerilatedVpiError::strFromVpiVal(valuep->format), fullname); return status; } void vl_get_value(const VerilatedVar* varp, void* varDatap, p_vpi_value valuep, const char* fullname) { if (!vl_check_format(varp, valuep, fullname, true)) return; // Maximum required size is for binary string, one byte per bit plus null termination static VL_THREAD_LOCAL char t_outStr[VL_VALUE_STRING_MAX_WORDS * VL_EDATASIZE + 1]; // cppcheck-suppress variableScope static VL_THREAD_LOCAL int t_outStrSz = sizeof(t_outStr) - 1; // We used to presume vpiValue.format = vpiIntVal or if single bit vpiScalarVal // This may cause backward compatibility issues with older code. if (valuep->format == vpiVectorVal) { // Vector pointer must come from our memory pool // It only needs to persist until the next vpi_get_value static VL_THREAD_LOCAL t_vpi_vecval t_out[VL_VALUE_STRING_MAX_WORDS * 2]; valuep->value.vector = t_out; if (varp->vltype() == VLVT_UINT8) { t_out[0].aval = *(reinterpret_cast(varDatap)); t_out[0].bval = 0; return; } else if (varp->vltype() == VLVT_UINT16) { t_out[0].aval = *(reinterpret_cast(varDatap)); t_out[0].bval = 0; return; } else if (varp->vltype() == VLVT_UINT32) { t_out[0].aval = *(reinterpret_cast(varDatap)); t_out[0].bval = 0; return; } else if (varp->vltype() == VLVT_UINT64) { QData data = *(reinterpret_cast(varDatap)); t_out[1].aval = static_cast(data >> 32ULL); t_out[1].bval = 0; t_out[0].aval = static_cast(data); t_out[0].bval = 0; return; } else if (varp->vltype() == VLVT_WDATA) { int words = VL_WORDS_I(varp->packed().elements()); if (VL_UNCOVERABLE(words >= VL_VALUE_STRING_MAX_WORDS)) { VL_FATAL_MT(__FILE__, __LINE__, "", "vpi_get_value with more than VL_VALUE_STRING_MAX_WORDS; increase and " "recompile"); } const WDataInP datap = (reinterpret_cast(varDatap)); for (int i = 0; i < words; ++i) { t_out[i].aval = datap[i]; t_out[i].bval = 0; } return; } } else if (valuep->format == vpiBinStrVal) { valuep->value.str = t_outStr; int bits = varp->packed().elements(); CData* datap = (reinterpret_cast(varDatap)); int i; if (bits > t_outStrSz) { // limit maximum size of output to size of buffer to prevent overrun. bits = t_outStrSz; VL_VPI_WARNING_( __FILE__, __LINE__, "%s: Truncating string value of %s for %s" " as buffer size (%d, VL_VALUE_STRING_MAX_WORDS=%d) is less than required (%d)", __func__, VerilatedVpiError::strFromVpiVal(valuep->format), fullname, t_outStrSz, VL_VALUE_STRING_MAX_WORDS, bits); } for (i = 0; i < bits; ++i) { char val = (datap[i >> 3] >> (i & 7)) & 1; t_outStr[bits - i - 1] = val ? '1' : '0'; } t_outStr[i] = '\0'; return; } else if (valuep->format == vpiOctStrVal) { valuep->value.str = t_outStr; int chars = (varp->packed().elements() + 2) / 3; const int bytes = VL_BYTES_I(varp->packed().elements()); CData* datap = (reinterpret_cast(varDatap)); int i; if (chars > t_outStrSz) { // limit maximum size of output to size of buffer to prevent overrun. VL_VPI_WARNING_( __FILE__, __LINE__, "%s: Truncating string value of %s for %s" " as buffer size (%d, VL_VALUE_STRING_MAX_WORDS=%d) is less than required (%d)", __func__, VerilatedVpiError::strFromVpiVal(valuep->format), fullname, t_outStrSz, VL_VALUE_STRING_MAX_WORDS, chars); chars = t_outStrSz; } for (i = 0; i < chars; ++i) { const div_t idx = div(i * 3, 8); int val = datap[idx.quot]; if ((idx.quot + 1) < bytes) { // if the next byte is valid or that in // for when the required 3 bits straddle adjacent bytes val |= datap[idx.quot + 1] << 8; } // align so least significant 3 bits represent octal char val >>= idx.rem; if (i == (chars - 1)) { // most signifcant char, mask off non existant bits when vector // size is not a multiple of 3 unsigned int rem = varp->packed().elements() % 3; if (rem) { // generate bit mask & zero non existant bits val &= (1 << rem) - 1; } } t_outStr[chars - i - 1] = '0' + (val & 7); } t_outStr[i] = '\0'; return; } else if (valuep->format == vpiDecStrVal) { valuep->value.str = t_outStr; // outStrSz does not include nullptr termination so add one if (varp->vltype() == VLVT_UINT8) { VL_SNPRINTF(t_outStr, t_outStrSz + 1, "%hhu", static_cast(*(reinterpret_cast(varDatap)))); return; } else if (varp->vltype() == VLVT_UINT16) { VL_SNPRINTF(t_outStr, t_outStrSz + 1, "%hu", static_cast(*(reinterpret_cast(varDatap)))); return; } else if (varp->vltype() == VLVT_UINT32) { VL_SNPRINTF(t_outStr, t_outStrSz + 1, "%u", static_cast(*(reinterpret_cast(varDatap)))); return; } else if (varp->vltype() == VLVT_UINT64) { VL_SNPRINTF(t_outStr, t_outStrSz + 1, "%llu", static_cast(*(reinterpret_cast(varDatap)))); return; } } else if (valuep->format == vpiHexStrVal) { valuep->value.str = t_outStr; int chars = (varp->packed().elements() + 3) >> 2; CData* datap = (reinterpret_cast(varDatap)); int i; if (chars > t_outStrSz) { // limit maximum size of output to size of buffer to prevent overrun. VL_VPI_WARNING_( __FILE__, __LINE__, "%s: Truncating string value of %s for %s" " as buffer size (%d, VL_VALUE_STRING_MAX_WORDS=%d) is less than required (%d)", __func__, VerilatedVpiError::strFromVpiVal(valuep->format), fullname, t_outStrSz, VL_VALUE_STRING_MAX_WORDS, chars); chars = t_outStrSz; } for (i = 0; i < chars; ++i) { char val = (datap[i >> 1] >> ((i & 1) << 2)) & 15; if (i == (chars - 1)) { // most signifcant char, mask off non existant bits when vector // size is not a multiple of 4 const unsigned int rem = varp->packed().elements() & 3; if (rem) { // generate bit mask & zero non existant bits val &= (1 << rem) - 1; } } t_outStr[chars - i - 1] = "0123456789abcdef"[static_cast(val)]; } t_outStr[i] = '\0'; return; } else if (valuep->format == vpiStringVal) { if (varp->vltype() == VLVT_STRING) { valuep->value.str = reinterpret_cast(varDatap); return; } else { valuep->value.str = t_outStr; int bytes = VL_BYTES_I(varp->packed().elements()); CData* datap = (reinterpret_cast(varDatap)); int i; if (bytes > t_outStrSz) { // limit maximum size of output to size of buffer to prevent overrun. VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Truncating string value of %s for %s" " as buffer size (%d, VL_VALUE_STRING_MAX_WORDS=%d) is less than " "required (%d)", __func__, VerilatedVpiError::strFromVpiVal(valuep->format), fullname, t_outStrSz, VL_VALUE_STRING_MAX_WORDS, bytes); bytes = t_outStrSz; } for (i = 0; i < bytes; ++i) { const char val = datap[bytes - i - 1]; // other simulators replace [leading?] zero chars with spaces, replicate here. t_outStr[i] = val ? val : ' '; } t_outStr[i] = '\0'; return; } } else if (valuep->format == vpiIntVal) { if (varp->vltype() == VLVT_UINT8) { valuep->value.integer = *(reinterpret_cast(varDatap)); return; } else if (varp->vltype() == VLVT_UINT16) { valuep->value.integer = *(reinterpret_cast(varDatap)); return; } else if (varp->vltype() == VLVT_UINT32) { valuep->value.integer = *(reinterpret_cast(varDatap)); return; } } else if (valuep->format == vpiSuppressVal) { return; } VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported format (%s) as requested for %s", __func__, VerilatedVpiError::strFromVpiVal(valuep->format), fullname); } void vpi_get_value(vpiHandle object, p_vpi_value valuep) { VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_get_value %p\n", object);); VerilatedVpiImp::assertOneCheck(); VL_VPI_ERROR_RESET_(); if (VL_UNLIKELY(!valuep)) return; if (VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object)) { vl_get_value(vop->varp(), vop->varDatap(), valuep, vop->fullname()); return; } else if (const VerilatedVpioParam* const vop = VerilatedVpioParam::castp(object)) { vl_get_value(vop->varp(), vop->varDatap(), valuep, vop->fullname()); return; } else if (VerilatedVpioConst* const vop = VerilatedVpioConst::castp(object)) { if (valuep->format == vpiIntVal) { valuep->value.integer = vop->num(); return; } VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s", __func__, VerilatedVpiError::strFromVpiVal(valuep->format), vop->fullname()); return; } VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported vpiHandle (%p)", __func__, object); } vpiHandle vpi_put_value(vpiHandle object, p_vpi_value valuep, p_vpi_time /*time_p*/, PLI_INT32 /*flags*/) { VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_put_value %p %p\n", object, valuep);); VerilatedVpiImp::assertOneCheck(); VL_VPI_ERROR_RESET_(); if (VL_UNLIKELY(!valuep)) { VL_VPI_WARNING_(__FILE__, __LINE__, "Ignoring vpi_put_value with nullptr value pointer"); return nullptr; } if (const VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object)) { VL_DEBUG_IF_PLI( VL_DBG_MSGF("- vpi: vpi_put_value name=%s fmt=%d vali=%d\n", vop->fullname(), valuep->format, valuep->value.integer); VL_DBG_MSGF("- vpi: varp=%p putatp=%p\n", vop->varp()->datap(), vop->varDatap());); if (VL_UNLIKELY(!vop->varp()->isPublicRW())) { VL_VPI_WARNING_(__FILE__, __LINE__, "Ignoring vpi_put_value to signal marked read-only," " use public_flat_rw instead: %s", vop->fullname()); return nullptr; } if (!vl_check_format(vop->varp(), valuep, vop->fullname(), false)) return nullptr; if (valuep->format == vpiVectorVal) { if (VL_UNLIKELY(!valuep->value.vector)) return nullptr; if (vop->varp()->vltype() == VLVT_UINT8) { *(reinterpret_cast(vop->varDatap())) = valuep->value.vector[0].aval & vop->mask(); return object; } else if (vop->varp()->vltype() == VLVT_UINT16) { *(reinterpret_cast(vop->varDatap())) = valuep->value.vector[0].aval & vop->mask(); return object; } else if (vop->varp()->vltype() == VLVT_UINT32) { *(reinterpret_cast(vop->varDatap())) = valuep->value.vector[0].aval & vop->mask(); return object; } else if (vop->varp()->vltype() == VLVT_UINT64) { *(reinterpret_cast(vop->varDatap())) = VL_SET_QII( valuep->value.vector[1].aval & vop->mask(), valuep->value.vector[0].aval); return object; } else if (vop->varp()->vltype() == VLVT_WDATA) { const int words = VL_WORDS_I(vop->varp()->packed().elements()); WDataOutP datap = (reinterpret_cast(vop->varDatap())); for (int i = 0; i < words; ++i) { datap[i] = valuep->value.vector[i].aval; if (i == (words - 1)) datap[i] &= vop->mask(); } return object; } } else if (valuep->format == vpiBinStrVal) { const int bits = vop->varp()->packed().elements(); const int len = std::strlen(valuep->value.str); CData* datap = (reinterpret_cast(vop->varDatap())); for (int i = 0; i < bits; ++i) { char set = (i < len) ? (valuep->value.str[len - i - 1] == '1') : 0; // zero bits 7:1 of byte when assigning to bit 0, else // or in 1 if bit set if (i & 7) { datap[i >> 3] |= set << (i & 7); } else { datap[i >> 3] = set; } } return object; } else if (valuep->format == vpiOctStrVal) { const int chars = (vop->varp()->packed().elements() + 2) / 3; const int bytes = VL_BYTES_I(vop->varp()->packed().elements()); const int len = std::strlen(valuep->value.str); CData* datap = (reinterpret_cast(vop->varDatap())); div_t idx; datap[0] = 0; // reset zero'th byte for (int i = 0; i < chars; ++i) { union { char byte[2]; vluint16_t half; } val; idx = div(i * 3, 8); if (i < len) { // ignore illegal chars char digit = valuep->value.str[len - i - 1]; if (digit >= '0' && digit <= '7') { val.half = digit - '0'; } else { VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Non octal character '%c' in '%s' as value %s for %s", __func__, digit, valuep->value.str, VerilatedVpiError::strFromVpiVal(valuep->format), vop->fullname()); val.half = 0; } } else { val.half = 0; } // align octal character to position within vector, note that // the three bits may straddle a byte boundary so two byte wide // assignments are made to adjacent bytes - but not if the least // significant byte of the aligned value is the most significant // byte of the destination. val.half <<= idx.rem; datap[idx.quot] |= val.byte[0]; // or in value if ((idx.quot + 1) < bytes) { datap[idx.quot + 1] = val.byte[1]; // this also resets // all bits to 0 prior to or'ing above } } // mask off non-existent bits in the most significant byte if (idx.quot == (bytes - 1)) { datap[idx.quot] &= vop->mask_byte(idx.quot); } else if (idx.quot + 1 == (bytes - 1)) { datap[idx.quot + 1] &= vop->mask_byte(idx.quot + 1); } // zero off remaining top bytes for (int i = idx.quot + 2; i < bytes; ++i) datap[i] = 0; return object; } else if (valuep->format == vpiDecStrVal) { char remainder[16]; unsigned long long val; const int success = std::sscanf(valuep->value.str, "%30llu%15s", &val, remainder); if (success < 1) { VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Parsing failed for '%s' as value %s for %s", __func__, valuep->value.str, VerilatedVpiError::strFromVpiVal(valuep->format), vop->fullname()); return nullptr; } if (success > 1) { VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Trailing garbage '%s' in '%s' as value %s for %s", __func__, remainder, valuep->value.str, VerilatedVpiError::strFromVpiVal(valuep->format), vop->fullname()); } if (vop->varp()->vltype() == VLVT_UINT8) { *(reinterpret_cast(vop->varDatap())) = val & vop->mask(); return object; } else if (vop->varp()->vltype() == VLVT_UINT16) { *(reinterpret_cast(vop->varDatap())) = val & vop->mask(); return object; } else if (vop->varp()->vltype() == VLVT_UINT32) { *(reinterpret_cast(vop->varDatap())) = val & vop->mask(); return object; } else if (vop->varp()->vltype() == VLVT_UINT64) { *(reinterpret_cast(vop->varDatap())) = val; (reinterpret_cast(vop->varDatap()))[1] &= vop->mask(); return object; } } else if (valuep->format == vpiHexStrVal) { const int chars = (vop->varp()->packed().elements() + 3) >> 2; CData* datap = (reinterpret_cast(vop->varDatap())); char* val = valuep->value.str; // skip hex ident if one is detected at the start of the string if (val[0] == '0' && (val[1] == 'x' || val[1] == 'X')) val += 2; const int len = std::strlen(val); for (int i = 0; i < chars; ++i) { char hex; // compute hex digit value if (i < len) { char digit = val[len - i - 1]; if (digit >= '0' && digit <= '9') { hex = digit - '0'; } else if (digit >= 'a' && digit <= 'f') { hex = digit - 'a' + 10; } else if (digit >= 'A' && digit <= 'F') { hex = digit - 'A' + 10; } else { VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Non hex character '%c' in '%s' as value %s for %s", __func__, digit, valuep->value.str, VerilatedVpiError::strFromVpiVal(valuep->format), vop->fullname()); hex = 0; } } else { hex = 0; } // assign hex digit value to destination if (i & 1) { datap[i >> 1] |= hex << 4; } else { datap[i >> 1] = hex; // this also resets all // bits to 0 prior to or'ing above of the msb } } // apply bit mask to most significant byte datap[(chars - 1) >> 1] &= vop->mask_byte((chars - 1) >> 1); return object; } else if (valuep->format == vpiStringVal) { const int bytes = VL_BYTES_I(vop->varp()->packed().elements()); const int len = std::strlen(valuep->value.str); CData* datap = (reinterpret_cast(vop->varDatap())); for (int i = 0; i < bytes; ++i) { // prepend with 0 values before placing string the least significant bytes datap[i] = (i < len) ? valuep->value.str[len - i - 1] : 0; } return object; } else if (valuep->format == vpiIntVal) { if (vop->varp()->vltype() == VLVT_UINT8) { *(reinterpret_cast(vop->varDatap())) = vop->mask() & valuep->value.integer; return object; } else if (vop->varp()->vltype() == VLVT_UINT16) { *(reinterpret_cast(vop->varDatap())) = vop->mask() & valuep->value.integer; return object; } else if (vop->varp()->vltype() == VLVT_UINT32) { *(reinterpret_cast(vop->varDatap())) = vop->mask() & valuep->value.integer; return object; } } VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported format (%s) as requested for %s", __func__, VerilatedVpiError::strFromVpiVal(valuep->format), vop->fullname()); return nullptr; } else if (const VerilatedVpioParam* const vop = VerilatedVpioParam::castp(object)) { VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Ignoring vpi_put_value to vpiParameter: %s", __func__, vop->fullname()); return nullptr; } else if (const VerilatedVpioConst* const vop = VerilatedVpioConst::castp(object)) { VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Ignoring vpi_put_value to vpiConstant: %s", __func__, vop->fullname()); return nullptr; } VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported vpiHandle (%p)", __func__, object); return nullptr; } void vpi_get_value_array(vpiHandle /*object*/, p_vpi_arrayvalue /*arrayvalue_p*/, PLI_INT32* /*index_p*/, PLI_UINT32 /*num*/) { VL_VPI_UNIMP_(); } void vpi_put_value_array(vpiHandle /*object*/, p_vpi_arrayvalue /*arrayvalue_p*/, PLI_INT32* /*index_p*/, PLI_UINT32 /*num*/) { VL_VPI_UNIMP_(); } // time processing void vpi_get_time(vpiHandle object, p_vpi_time time_p) { VerilatedVpiImp::assertOneCheck(); VL_VPI_ERROR_RESET_(); // cppcheck-suppress nullPointer if (VL_UNLIKELY(!time_p)) { VL_VPI_WARNING_(__FILE__, __LINE__, "Ignoring vpi_get_time with nullptr value pointer"); return; } if (time_p->type == vpiSimTime) { const QData qtime = VL_TIME_Q(); VlWide<2> itime; VL_SET_WQ(itime, qtime); time_p->low = itime[0]; time_p->high = itime[1]; return; } else if (time_p->type == vpiScaledRealTime) { double dtime = VL_TIME_D(); if (VerilatedVpioScope* const vop = VerilatedVpioScope::castp(object)) { const int scalePow10 = Verilated::threadContextp()->timeprecision() - vop->scopep()->timeunit(); const double scale = vl_time_multiplier(scalePow10); // e.g. 0.0001 dtime *= scale; } time_p->real = dtime; return; } VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported type (%d)", __func__, time_p->type); } // I/O routines PLI_UINT32 vpi_mcd_open(PLI_BYTE8* filenamep) { VerilatedVpiImp::assertOneCheck(); VL_VPI_ERROR_RESET_(); return VL_FOPEN_NN(filenamep, "wb"); } PLI_UINT32 vpi_mcd_close(PLI_UINT32 mcd) { VerilatedVpiImp::assertOneCheck(); VL_VPI_ERROR_RESET_(); VL_FCLOSE_I(mcd); return 0; } PLI_BYTE8* vpi_mcd_name(PLI_UINT32 /*mcd*/) { VL_VPI_UNIMP_(); return nullptr; } PLI_INT32 vpi_mcd_printf(PLI_UINT32 mcd, PLI_BYTE8* formatp, ...) { VerilatedVpiImp::assertOneCheck(); VL_VPI_ERROR_RESET_(); va_list ap; va_start(ap, formatp); const int chars = vpi_mcd_vprintf(mcd, formatp, ap); va_end(ap); return chars; } PLI_INT32 vpi_printf(PLI_BYTE8* formatp, ...) { VerilatedVpiImp::assertOneCheck(); VL_VPI_ERROR_RESET_(); va_list ap; va_start(ap, formatp); const int chars = vpi_vprintf(formatp, ap); va_end(ap); return chars; } PLI_INT32 vpi_vprintf(PLI_BYTE8* formatp, va_list ap) { VerilatedVpiImp::assertOneCheck(); VL_VPI_ERROR_RESET_(); return VL_VPRINTF(formatp, ap); } PLI_INT32 vpi_mcd_vprintf(PLI_UINT32 mcd, PLI_BYTE8* format, va_list ap) { VerilatedVpiImp::assertOneCheck(); FILE* const fp = VL_CVT_I_FP(mcd); VL_VPI_ERROR_RESET_(); // cppcheck-suppress nullPointer if (VL_UNLIKELY(!fp)) return 0; const int chars = vfprintf(fp, format, ap); return chars; } PLI_INT32 vpi_flush(void) { VerilatedVpiImp::assertOneCheck(); VL_VPI_ERROR_RESET_(); Verilated::runFlushCallbacks(); return 0; } PLI_INT32 vpi_mcd_flush(PLI_UINT32 mcd) { VerilatedVpiImp::assertOneCheck(); FILE* const fp = VL_CVT_I_FP(mcd); VL_VPI_ERROR_RESET_(); if (VL_UNLIKELY(!fp)) return 1; std::fflush(fp); return 0; } // utility routines PLI_INT32 vpi_compare_objects(vpiHandle /*object1*/, vpiHandle /*object2*/) { VL_VPI_UNIMP_(); return 0; } PLI_INT32 vpi_chk_error(p_vpi_error_info error_info_p) { // executing vpi_chk_error does not reset error // error_info_p can be nullptr, so only return level in that case VerilatedVpiImp::assertOneCheck(); p_vpi_error_info const _error_info_p = VerilatedVpiImp::error_info()->getError(); if (error_info_p && _error_info_p) *error_info_p = *_error_info_p; if (!_error_info_p) return 0; // no error occured return _error_info_p->level; // return error severity level } #ifndef VL_NO_LEGACY PLI_INT32 vpi_free_object(vpiHandle object) { // vpi_free_object is IEEE deprecated, use vpi_release_handle return vpi_release_handle(object); } #endif PLI_INT32 vpi_release_handle(vpiHandle object) { VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_release_handle %p\n", object);); VerilatedVpiImp::assertOneCheck(); VerilatedVpio* const vop = VerilatedVpio::castp(object); VL_VPI_ERROR_RESET_(); if (VL_UNLIKELY(!vop)) return 0; VL_DO_DANGLING(delete vop, vop); return 1; } PLI_INT32 vpi_get_vlog_info(p_vpi_vlog_info vlog_info_p) VL_MT_SAFE { VerilatedVpiImp::assertOneCheck(); VL_VPI_ERROR_RESET_(); auto argc_argv = Verilated::threadContextp()->impp()->argc_argv(); vlog_info_p->argc = argc_argv.first; vlog_info_p->argv = argc_argv.second; vlog_info_p->product = const_cast(Verilated::productName()); vlog_info_p->version = const_cast(Verilated::productVersion()); return 1; } // routines added with 1364-2001 PLI_INT32 vpi_get_data(PLI_INT32 /*id*/, PLI_BYTE8* /*dataLoc*/, PLI_INT32 /*numOfBytes*/) { VL_VPI_UNIMP_(); return 0; } PLI_INT32 vpi_put_data(PLI_INT32 /*id*/, PLI_BYTE8* /*dataLoc*/, PLI_INT32 /*numOfBytes*/) { VL_VPI_UNIMP_(); return 0; } void* vpi_get_userdata(vpiHandle /*obj*/) { VL_VPI_UNIMP_(); return nullptr; } PLI_INT32 vpi_put_userdata(vpiHandle /*obj*/, void* /*userdata*/) { VL_VPI_UNIMP_(); return 0; } PLI_INT32 vpi_control(PLI_INT32 operation, ...) { VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_control %d\n", operation);); VerilatedVpiImp::assertOneCheck(); VL_VPI_ERROR_RESET_(); switch (operation) { case vpiFinish: { VL_FINISH_MT("", 0, "*VPI*"); return 1; } case vpiStop: { VL_STOP_MT("", 0, "*VPI*"); return 1; // LCOV_EXCL_LINE } default: { VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Unsupported type %s, ignoring", __func__, VerilatedVpiError::strFromVpiProp(operation)); return 0; } } } vpiHandle vpi_handle_by_multi_index(vpiHandle /*obj*/, PLI_INT32 /*num_index*/, PLI_INT32* /*index_array*/) { VL_VPI_UNIMP_(); return nullptr; }