// -*- mode: C++; c-file-style: "cc-mode" -*- //============================================================================= // // THIS MODULE IS PUBLICLY LICENSED // // Copyright 2001-2020 by Wilson Snyder. This program is free software; you // can redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License // Version 2.0. // SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0 // //============================================================================= /// /// \file /// \brief C++ Tracing in VCD Format /// //============================================================================= // SPDIFF_OFF // clang-format off #include "verilatedos.h" #include "verilated.h" #include "verilated_vcd_c.h" #include #include #include #include #include #if defined(_WIN32) && !defined(__MINGW32__) && !defined(__CYGWIN__) # include #else # include #endif // SPDIFF_ON #ifndef O_LARGEFILE // For example on WIN32 # define O_LARGEFILE 0 #endif #ifndef O_NONBLOCK # define O_NONBLOCK 0 #endif #ifndef O_CLOEXEC # define O_CLOEXEC 0 #endif // clang-format on // This size comes form VCD allowing use of printable ASCII characters between // '!' and '~' inclusive, which are a total of 94 different values. Encoding a // 32 bit code hence needs a maximum of ceil(log94(2**32-1)) == 5 bytes. #define VL_TRACE_MAX_VCD_CODE_SIZE 5 ///< Maximum length of a VCD string code // We use 8 bytes per code in a suffix buffer array. // 1 byte optional separator + VL_TRACE_MAX_VCD_CODE_SIZE bytes for code // + 1 byte '\n' + 1 byte suffix size. This luckily comes out to a power of 2, // meaning the array can be aligned such that entries never straddle multiple // cache-lines. #define VL_TRACE_SUFFIX_ENTRY_SIZE 8 ///< Size of a suffix entry //============================================================================= // Specialization of the generics for this trace format #define VL_DERIVED_T VerilatedVcd #include "verilated_trace_imp.cpp" #undef VL_DERIVED_T //============================================================================= // VerilatedVcdImp /// Base class to hold some static state /// This is an internally used class class VerilatedVcdSingleton { private: typedef std::vector VcdVec; struct Singleton { VerilatedMutex s_vcdMutex; ///< Protect the singleton VcdVec s_vcdVecp VL_GUARDED_BY(s_vcdMutex); ///< List of all created traces }; static Singleton& singleton() { static Singleton s; return s; } public: static void pushVcd(VerilatedVcd* vcdp) VL_EXCLUDES(singleton().s_vcdMutex) { VerilatedLockGuard lock(singleton().s_vcdMutex); singleton().s_vcdVecp.push_back(vcdp); } static void removeVcd(const VerilatedVcd* vcdp) VL_EXCLUDES(singleton().s_vcdMutex) { VerilatedLockGuard lock(singleton().s_vcdMutex); VcdVec::iterator pos = find(singleton().s_vcdVecp.begin(), singleton().s_vcdVecp.end(), vcdp); if (pos != singleton().s_vcdVecp.end()) { singleton().s_vcdVecp.erase(pos); } } static void flush_all() VL_EXCLUDES(singleton().s_vcdMutex) VL_MT_UNSAFE_ONE { // Thread safety: Although this function is protected by a mutex so // perhaps in the future we can allow tracing in separate threads, // vcdp->flush() assumes call from single thread VerilatedLockGuard lock(singleton().s_vcdMutex); for (VcdVec::const_iterator it = singleton().s_vcdVecp.begin(); it != singleton().s_vcdVecp.end(); ++it) { VerilatedVcd* vcdp = *it; vcdp->flush(); } } }; //============================================================================= //============================================================================= //============================================================================= // VerilatedVcdFile bool VerilatedVcdFile::open(const std::string& name) VL_MT_UNSAFE { m_fd = ::open(name.c_str(), O_CREAT | O_WRONLY | O_TRUNC | O_LARGEFILE | O_NONBLOCK | O_CLOEXEC, 0666); return m_fd >= 0; } void VerilatedVcdFile::close() VL_MT_UNSAFE { ::close(m_fd); } ssize_t VerilatedVcdFile::write(const char* bufp, ssize_t len) VL_MT_UNSAFE { return ::write(m_fd, bufp, len); } //============================================================================= //============================================================================= //============================================================================= // Opening/Closing VerilatedVcd::VerilatedVcd(VerilatedVcdFile* filep) : m_isOpen(false) , m_rolloverMB(0) , m_modDepth(0) { // Not in header to avoid link issue if header is included without this .cpp file m_fileNewed = (filep == NULL); m_filep = m_fileNewed ? new VerilatedVcdFile : filep; m_namemapp = NULL; m_evcd = false; m_wrChunkSize = 8 * 1024; m_wrBufp = new char[m_wrChunkSize * 8]; m_wrFlushp = m_wrBufp + m_wrChunkSize * 6; m_writep = m_wrBufp; m_wroteBytes = 0; m_suffixesp = NULL; } void VerilatedVcd::open(const char* filename) { m_assertOne.check(); if (isOpen()) return; // Set member variables m_filename = filename; // "" is ok, as someone may overload open VerilatedVcdSingleton::pushVcd(this); // SPDIFF_OFF // Set callback so an early exit will flush us Verilated::flushCb(&flush_all); // SPDIFF_ON openNext(m_rolloverMB != 0); if (!isOpen()) return; dumpHeader(); // Get the direct access pointer to the code strings m_suffixesp = &m_suffixes[0]; // Note: C++11 m_suffixes.data(); // When using rollover, the first chunk contains the header only. if (m_rolloverMB) openNext(true); } void VerilatedVcd::openNext(bool incFilename) { // Open next filename in concat sequence, mangle filename if // incFilename is true. m_assertOne.check(); closePrev(); // Close existing if (incFilename) { // Find _0000.{ext} in filename std::string name = m_filename; size_t pos = name.rfind('.'); if (pos > 8 && 0 == strncmp("_cat", name.c_str() + pos - 8, 4) && isdigit(name.c_str()[pos - 4]) && isdigit(name.c_str()[pos - 3]) && isdigit(name.c_str()[pos - 2]) && isdigit(name.c_str()[pos - 1])) { // Increment code. if ((++(name[pos - 1])) > '9') { name[pos - 1] = '0'; if ((++(name[pos - 2])) > '9') { name[pos - 2] = '0'; if ((++(name[pos - 3])) > '9') { name[pos - 3] = '0'; if ((++(name[pos - 4])) > '9') { name[pos - 4] = '0'; } } } } } else { // Append _cat0000 name.insert(pos, "_cat0000"); } m_filename = name; } if (m_filename[0] == '|') { assert(0); // Not supported yet. } else { // cppcheck-suppress duplicateExpression if (!m_filep->open(m_filename)) { // User code can check isOpen() m_isOpen = false; return; } } m_isOpen = true; fullDump(true); // First dump must be full m_wroteBytes = 0; } bool VerilatedVcd::preChangeDump() { if (VL_UNLIKELY(m_rolloverMB && m_wroteBytes > m_rolloverMB)) { openNext(true); } return isOpen(); } void VerilatedVcd::emitTimeChange(vluint64_t timeui) { printStr("#"); printQuad(timeui); printStr("\n"); } void VerilatedVcd::makeNameMap() { // Take signal information from each module and build m_namemapp deleteNameMap(); m_namemapp = new NameMap; VerilatedTrace::traceInit(); // Though not speced, it's illegal to generate a vcd with signals // not under any module - it crashes at least two viewers. // If no scope was specified, prefix everything with a "top" // This comes from user instantiations with no name - IE Vtop(""). bool nullScope = false; for (NameMap::const_iterator it = m_namemapp->begin(); it != m_namemapp->end(); ++it) { const std::string& hiername = it->first; if (!hiername.empty() && hiername[0] == '\t') nullScope = true; } if (nullScope) { NameMap* newmapp = new NameMap; for (NameMap::const_iterator it = m_namemapp->begin(); it != m_namemapp->end(); ++it) { const std::string& hiername = it->first; const std::string& decl = it->second; std::string newname = std::string("top"); if (hiername[0] != '\t') newname += ' '; newname += hiername; newmapp->insert(std::make_pair(newname, decl)); } deleteNameMap(); m_namemapp = newmapp; } } void VerilatedVcd::deleteNameMap() { if (m_namemapp) VL_DO_CLEAR(delete m_namemapp, m_namemapp = NULL); } VerilatedVcd::~VerilatedVcd() { close(); if (m_wrBufp) VL_DO_CLEAR(delete[] m_wrBufp, m_wrBufp = NULL); deleteNameMap(); if (m_filep && m_fileNewed) VL_DO_CLEAR(delete m_filep, m_filep = NULL); VerilatedVcdSingleton::removeVcd(this); } void VerilatedVcd::closePrev() { // This function is on the flush() call path if (!isOpen()) return; VerilatedTrace::flush(); bufferFlush(); m_isOpen = false; m_filep->close(); } void VerilatedVcd::closeErr() { // This function is on the flush() call path // Close due to an error. We might abort before even getting here, // depending on the definition of vl_fatal. if (!isOpen()) return; // No buffer flush, just fclose m_isOpen = false; m_filep->close(); // May get error, just ignore it } void VerilatedVcd::close() { // This function is on the flush() call path m_assertOne.check(); if (!isOpen()) return; if (m_evcd) { printStr("$vcdclose "); printQuad(timeLastDump()); printStr(" $end\n"); } closePrev(); // closePrev() called VerilatedTrace::flush(), so we just // need to shut down the tracing thread here. VerilatedTrace::close(); } void VerilatedVcd::flush() { VerilatedTrace::flush(); bufferFlush(); } void VerilatedVcd::printStr(const char* str) { // Not fast... while (*str) { *m_writep++ = *str++; bufferCheck(); } } void VerilatedVcd::printQuad(vluint64_t n) { char buf[100]; sprintf(buf, "%" VL_PRI64 "u", n); printStr(buf); } void VerilatedVcd::bufferResize(vluint64_t minsize) { // minsize is size of largest write. We buffer at least 8 times as much data, // writing when we are 3/4 full (with thus 2*minsize remaining free) if (VL_UNLIKELY(minsize > m_wrChunkSize)) { char* oldbufp = m_wrBufp; m_wrChunkSize = minsize * 2; m_wrBufp = new char[m_wrChunkSize * 8]; memcpy(m_wrBufp, oldbufp, m_writep - oldbufp); m_writep = m_wrBufp + (m_writep - oldbufp); m_wrFlushp = m_wrBufp + m_wrChunkSize * 6; VL_DO_CLEAR(delete[] oldbufp, oldbufp = NULL); } } void VerilatedVcd::bufferFlush() VL_MT_UNSAFE_ONE { // This function can be called from the trace thread // This function is on the flush() call path // We add output data to m_writep. // When it gets nearly full we dump it using this routine which calls write() // This is much faster than using buffered I/O m_assertOne.check(); if (VL_UNLIKELY(!isOpen())) return; char* wp = m_wrBufp; while (true) { ssize_t remaining = (m_writep - wp); if (remaining == 0) break; errno = 0; ssize_t got = m_filep->write(wp, remaining); if (got > 0) { wp += got; m_wroteBytes += got; } else if (got < 0) { if (errno != EAGAIN && errno != EINTR) { // write failed, presume error (perhaps out of disk space) std::string msg = std::string("VerilatedVcd::bufferFlush: ") + strerror(errno); VL_FATAL_MT("", 0, "", msg.c_str()); closeErr(); break; } } } // Reset buffer m_writep = m_wrBufp; } //============================================================================= // VCD string code char* VerilatedVcd::writeCode(char* writep, vluint32_t code) { *writep++ = static_cast('!' + code % 94); code /= 94; while (code) { code--; *writep++ = static_cast('!' + code % 94); code /= 94; } return writep; } //============================================================================= // Definitions void VerilatedVcd::printIndent(int level_change) { if (level_change < 0) m_modDepth += level_change; assert(m_modDepth >= 0); for (int i = 0; i < m_modDepth; i++) printStr(" "); if (level_change > 0) m_modDepth += level_change; } void VerilatedVcd::dumpHeader() { printStr("$version Generated by VerilatedVcd $end\n"); time_t time_str = time(NULL); printStr("$date "); printStr(ctime(&time_str)); printStr(" $end\n"); printStr("$timescale "); printStr(timeResStr().c_str()); // lintok-begin-on-ref printStr(" $end\n"); makeNameMap(); // Signal header assert(m_modDepth == 0); printIndent(1); printStr("\n"); // We detect the spaces in module names to determine hierarchy. This // allows signals to be declared without fixed ordering, which is // required as Verilog signals might be separately declared from // SC module signals. // Print the signal names const char* lastName = ""; for (NameMap::const_iterator it = m_namemapp->begin(); it != m_namemapp->end(); ++it) { const std::string& hiernamestr = it->first; const std::string& decl = it->second; // Determine difference between the old and new names const char* hiername = hiernamestr.c_str(); const char* lp = lastName; const char* np = hiername; lastName = hiername; // Skip common prefix, it must break at a space or tab for (; *np && (*np == *lp); np++, lp++) {} while (np != hiername && *np && *np != ' ' && *np != '\t') { np--; lp--; } // printf("hier %s\n lp=%s\n np=%s\n",hiername,lp,np); // Any extra spaces in last name are scope ups we need to do bool first = true; for (; *lp; lp++) { if (*lp == ' ' || (first && *lp != '\t')) { printIndent(-1); printStr("$upscope $end\n"); } first = false; } // Any new spaces are scope downs we need to do while (*np) { if (*np == ' ') np++; if (*np == '\t') break; // tab means signal name starts printIndent(1); printStr("$scope module "); for (; *np && *np != ' ' && *np != '\t'; np++) { if (*np == '[') { printStr("("); } else if (*np == ']') { printStr(")"); } else { *m_writep++ = *np; } } printStr(" $end\n"); } printIndent(0); printStr(decl.c_str()); } while (m_modDepth > 1) { printIndent(-1); printStr("$upscope $end\n"); } printIndent(-1); printStr("$enddefinitions $end\n\n\n"); assert(m_modDepth == 0); // Reclaim storage deleteNameMap(); } void VerilatedVcd::declare(vluint32_t code, const char* name, const char* wirep, bool array, int arraynum, bool tri, bool bussed, int msb, int lsb) { const int bits = ((msb > lsb) ? (msb - lsb) : (lsb - msb)) + 1; VerilatedTrace::declCode(code, bits, tri); if (m_suffixes.size() <= nextCode() * VL_TRACE_SUFFIX_ENTRY_SIZE) { m_suffixes.resize(nextCode() * VL_TRACE_SUFFIX_ENTRY_SIZE * 2, 0); } // Make sure write buffer is large enough (one character per bit), plus header bufferResize(bits + 1024); // Split name into basename // Spaces and tabs aren't legal in VCD signal names, so: // Space separates each level of scope // Tab separates final scope from signal name // Tab sorts before spaces, so signals nicely will print before scopes // Note the hiername may be nothing, if so we'll add "\t{name}" std::string nameasstr = name; if (!moduleName().empty()) { nameasstr = moduleName() + scopeEscape() + nameasstr; // Optional ->module prefix } std::string hiername; std::string basename; for (const char* cp = nameasstr.c_str(); *cp; cp++) { if (isScopeEscape(*cp)) { // Ahh, we've just read a scope, not a basename if (!hiername.empty()) hiername += " "; hiername += basename; basename = ""; } else { basename += *cp; } } hiername += "\t" + basename; // Print reference std::string decl = "$var "; if (m_evcd) { decl += "port"; } else { decl += wirep; // usually "wire" } char buf[1000]; sprintf(buf, " %2d ", bits); decl += buf; if (m_evcd) { sprintf(buf, "<%u", code); decl += buf; } else { // Add string code to decl char* const endp = writeCode(buf, code); *endp = '\0'; decl += buf; // Build suffix array entry char* const entryp = &m_suffixes[code * VL_TRACE_SUFFIX_ENTRY_SIZE]; const size_t length = endp - buf; assert(length <= VL_TRACE_MAX_VCD_CODE_SIZE); // 1 bit values don't have a ' ' separator between value and string code const bool isBit = bits == 1; entryp[0] = ' '; // Separator std::strcpy(entryp + !isBit, buf); // Code (overwrite separator if isBit) entryp[length + !isBit] = '\n'; // Replace '\0' with line termination '\n' // Set length of suffix (used to increment write pointer) entryp[VL_TRACE_SUFFIX_ENTRY_SIZE - 1] = !isBit + length + 1; } decl += " "; decl += basename; if (array) { sprintf(buf, "(%d)", arraynum); decl += buf; hiername += buf; } if (bussed) { sprintf(buf, " [%d:%d]", msb, lsb); decl += buf; } decl += " $end\n"; m_namemapp->insert(std::make_pair(hiername, decl)); } void VerilatedVcd::declBit(vluint32_t code, const char* name, bool array, int arraynum) { declare(code, name, "wire", array, arraynum, false, false, 0, 0); } void VerilatedVcd::declBus(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb) { declare(code, name, "wire", array, arraynum, false, true, msb, lsb); } void VerilatedVcd::declQuad(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb) { declare(code, name, "wire", array, arraynum, false, true, msb, lsb); } void VerilatedVcd::declArray(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb) { declare(code, name, "wire", array, arraynum, false, true, msb, lsb); } void VerilatedVcd::declFloat(vluint32_t code, const char* name, bool array, int arraynum) { declare(code, name, "real", array, arraynum, false, false, 31, 0); } void VerilatedVcd::declDouble(vluint32_t code, const char* name, bool array, int arraynum) { declare(code, name, "real", array, arraynum, false, false, 63, 0); } #ifdef VL_TRACE_VCD_OLD_API void VerilatedVcd::declTriBit(vluint32_t code, const char* name, bool array, int arraynum) { declare(code, name, "wire", array, arraynum, true, false, 0, 0); } void VerilatedVcd::declTriBus(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb) { declare(code, name, "wire", array, arraynum, true, true, msb, lsb); } void VerilatedVcd::declTriQuad(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb) { declare(code, name, "wire", array, arraynum, true, true, msb, lsb); } void VerilatedVcd::declTriArray(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb) { declare(code, name, "wire", array, arraynum, true, true, msb, lsb); } #endif // VL_TRACE_VCD_OLD_API //============================================================================= // Trace recording routines //============================================================================= // Emit trace entries // Emit suffix, write back write pointer, check buffer void VerilatedVcd::finishLine(vluint32_t code, char* writep) { const char* const suffixp = m_suffixesp + code * VL_TRACE_SUFFIX_ENTRY_SIZE; // Copy the whole suffix (this avoid having hard to predict branches which // helps a lot). Note suffixp could be aligned, so could load it in one go, // but then we would be endiannes dependent which we don't have a way to // test right now and probably would make little difference... // Note: The maximum length of the suffix is // VL_TRACE_MAX_VCD_CODE_SIZE + 2 == 7, but we unroll this here for speed. writep[0] = suffixp[0]; writep[1] = suffixp[1]; writep[2] = suffixp[2]; writep[3] = suffixp[3]; writep[4] = suffixp[4]; writep[5] = suffixp[5]; writep[6] = '\n'; // The 6th index is always '\n' if it's relevant, no need to fetch it. // Now write back the write pointer incremented by the actual size of the // suffix, which was stored in the last byte of the suffix buffer entry. m_writep = writep + suffixp[VL_TRACE_SUFFIX_ENTRY_SIZE - 1]; bufferCheck(); } void VerilatedVcd::emitBit(vluint32_t code, vluint32_t newval) { char* wp = m_writep; *wp++ = '0' | static_cast(newval); finishLine(code, wp); } template void VerilatedVcd::emitBus(vluint32_t code, vluint32_t newval) { char* wp = m_writep; *wp++ = 'b'; newval <<= 32 - T_Bits; int bits = T_Bits; do { *wp++ = '0' | static_cast(newval >> 31); newval <<= 1; } while (--bits); finishLine(code, wp); } void VerilatedVcd::emitQuad(vluint32_t code, vluint64_t newval, int bits) { char* wp = m_writep; *wp++ = 'b'; newval <<= 64 - bits; // Handle the top 32 bits within the 64 bit input const int bitsInTopHalf = bits - 32; wp += bitsInTopHalf; // clang-format off switch (bitsInTopHalf) { case 32: wp[-32] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 31: wp[-31] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 30: wp[-30] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 29: wp[-29] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 28: wp[-28] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 27: wp[-27] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 26: wp[-26] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 25: wp[-25] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 24: wp[-24] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 23: wp[-23] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 22: wp[-22] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 21: wp[-21] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 20: wp[-20] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 19: wp[-19] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 18: wp[-18] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 17: wp[-17] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 16: wp[-16] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 15: wp[-15] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 14: wp[-14] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 13: wp[-13] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 12: wp[-12] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 11: wp[-11] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 10: wp[-10] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 9: wp[ -9] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 8: wp[ -8] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 7: wp[ -7] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 6: wp[ -6] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 5: wp[ -5] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 4: wp[ -4] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 3: wp[ -3] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 2: wp[ -2] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU case 1: wp[ -1] = '0' | static_cast(newval >> 63); newval<<=1; //FALLTHRU } // clang-format on // Handle the bottom 32 bits within the 64 bit input int remaining = 32; do { *wp++ = '0' | static_cast(newval >> 63); newval <<= 1; } while (--remaining); finishLine(code, wp); } void VerilatedVcd::emitArray(vluint32_t code, const vluint32_t* newvalp, int bits) { int words = (bits + 31) / 32; char* wp = m_writep; *wp++ = 'b'; // Handle the most significant word const int bitsInMSW = bits % 32 == 0 ? 32 : bits % 32; vluint32_t val = newvalp[--words] << (32 - bitsInMSW); wp += bitsInMSW; // clang-format off switch (bitsInMSW) { case 32: wp[-32] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 31: wp[-31] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 30: wp[-30] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 29: wp[-29] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 28: wp[-28] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 27: wp[-27] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 26: wp[-26] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 25: wp[-25] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 24: wp[-24] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 23: wp[-23] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 22: wp[-22] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 21: wp[-21] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 20: wp[-20] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 19: wp[-19] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 18: wp[-18] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 17: wp[-17] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 16: wp[-16] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 15: wp[-15] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 14: wp[-14] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 13: wp[-13] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 12: wp[-12] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 11: wp[-11] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 10: wp[-10] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 9: wp[ -9] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 8: wp[ -8] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 7: wp[ -7] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 6: wp[ -6] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 5: wp[ -5] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 4: wp[ -4] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 3: wp[ -3] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 2: wp[ -2] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU case 1: wp[ -1] = '0' | static_cast(val >> 31); val<<=1; //FALLTHRU } // clang-format on // Handle the remaining words while (words > 0) { vluint32_t val = newvalp[--words]; int bits = 32; do { *wp++ = '0' | static_cast(val >> 31); val <<= 1; } while (--bits); } finishLine(code, wp); } void VerilatedVcd::emitFloat(vluint32_t code, float newval) { char* wp = m_writep; // Buffer can't overflow before sprintf; we sized during declaration sprintf(wp, "r%.16g", static_cast(newval)); wp += strlen(wp); finishLine(code, wp); } void VerilatedVcd::emitDouble(vluint32_t code, double newval) { char* wp = m_writep; // Buffer can't overflow before sprintf; we sized during declaration sprintf(wp, "r%.16g", newval); wp += strlen(wp); finishLine(code, wp); } #ifdef VL_TRACE_VCD_OLD_API void VerilatedVcd::fullBit(vluint32_t code, const vluint32_t newval) { // Note the &1, so we don't require clean input -- makes more common no change case faster *oldp(code) = newval; *m_writep++ = ('0' + static_cast(newval & 1)); m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullBus(vluint32_t code, const vluint32_t newval, int bits) { *oldp(code) = newval; *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { *m_writep++ = ((newval & (1L << bit)) ? '1' : '0'); } *m_writep++ = ' '; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullQuad(vluint32_t code, const vluint64_t newval, int bits) { (*(reinterpret_cast(oldp(code)))) = newval; *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { *m_writep++ = ((newval & (VL_ULL(1) << bit)) ? '1' : '0'); } *m_writep++ = ' '; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullArray(vluint32_t code, const vluint32_t* newval, int bits) { for (int word = 0; word < (((bits - 1) / 32) + 1); ++word) { oldp(code)[word] = newval[word]; } *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { *m_writep++ = ((newval[(bit / 32)] & (1L << (bit & 0x1f))) ? '1' : '0'); } *m_writep++ = ' '; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullArray(vluint32_t code, const vluint64_t* newval, int bits) { for (int word = 0; word < (((bits - 1) / 64) + 1); ++word) { oldp(code)[word] = newval[word]; } *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { *m_writep++ = ((newval[(bit / 64)] & (VL_ULL(1) << (bit & 0x3f))) ? '1' : '0'); } *m_writep++ = ' '; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullTriBit(vluint32_t code, const vluint32_t newval, const vluint32_t newtri) { oldp(code)[0] = newval; oldp(code)[1] = newtri; *m_writep++ = "01zz"[newval | (newtri << 1)]; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullTriBus(vluint32_t code, const vluint32_t newval, const vluint32_t newtri, int bits) { oldp(code)[0] = newval; oldp(code)[1] = newtri; *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { *m_writep++ = "01zz"[((newval >> bit) & 1) | (((newtri >> bit) & 1) << 1)]; } *m_writep++ = ' '; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullTriQuad(vluint32_t code, const vluint64_t newval, const vluint32_t newtri, int bits) { (*(reinterpret_cast(oldp(code)))) = newval; (*(reinterpret_cast(oldp(code + 1)))) = newtri; *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { *m_writep++ = "01zz"[((newval >> bit) & VL_ULL(1)) | (((newtri >> bit) & VL_ULL(1)) << VL_ULL(1))]; } *m_writep++ = ' '; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullTriArray(vluint32_t code, const vluint32_t* newvalp, const vluint32_t* newtrip, int bits) { for (int word = 0; word < (((bits - 1) / 32) + 1); ++word) { oldp(code)[word * 2] = newvalp[word]; oldp(code)[word * 2 + 1] = newtrip[word]; } *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { vluint32_t valbit = (newvalp[(bit / 32)] >> (bit & 0x1f)) & 1; vluint32_t tribit = (newtrip[(bit / 32)] >> (bit & 0x1f)) & 1; *m_writep++ = "01zz"[valbit | (tribit << 1)]; } *m_writep++ = ' '; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullDouble(vluint32_t code, const double newval) { // cppcheck-suppress invalidPointerCast (*(reinterpret_cast(oldp(code)))) = newval; // Buffer can't overflow before sprintf; we sized during declaration sprintf(m_writep, "r%.16g", newval); m_writep += strlen(m_writep); *m_writep++ = ' '; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullFloat(vluint32_t code, const float newval) { // cppcheck-suppress invalidPointerCast (*(reinterpret_cast(oldp(code)))) = newval; // Buffer can't overflow before sprintf; we sized during declaration sprintf(m_writep, "r%.16g", static_cast(newval)); m_writep += strlen(m_writep); *m_writep++ = ' '; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullBitX(vluint32_t code) { *m_writep++ = 'x'; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullBusX(vluint32_t code, int bits) { *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) *m_writep++ = 'x'; *m_writep++ = ' '; m_writep = writeCode(m_writep, code); *m_writep++ = '\n'; bufferCheck(); } void VerilatedVcd::fullQuadX(vluint32_t code, int bits) { fullBusX(code, bits); } void VerilatedVcd::fullArrayX(vluint32_t code, int bits) { fullBusX(code, bits); } #endif // VL_TRACE_VCD_OLD_API //====================================================================== // Static members void VerilatedVcd::flush_all() VL_MT_UNSAFE_ONE { VerilatedVcdSingleton::flush_all(); } //====================================================================== //====================================================================== //====================================================================== // clang-format off #ifdef VERILATED_VCD_TEST #include vluint32_t v1, v2, s1, s2[3]; vluint32_t tri96[3]; vluint32_t tri96__tri[3]; vluint64_t quad96[2]; vluint8_t ch; vluint64_t timestamp = 1; double doub = 0; void vcdInit(VerilatedVcd* vcdp, void* userthis, vluint32_t code) { vcdp->scopeEscape('.'); vcdp->module("top"); vcdp->declBus(0x2, "v1",-1,5,1); vcdp->declBus(0x3, "v2",-1,6,0); vcdp->module("top.sub1"); vcdp->declBit(0x4, "s1",-1); vcdp->declBit(0x5, "ch",-1); vcdp->module("top.sub2"); vcdp->declArray(0x6, "s2",-1, 40,3); // Note need to add 3 for next code. vcdp->module("top2"); vcdp->declBus(0x2, "t2v1",-1,4,1); vcdp->declTriBit(0x10, "io1",-1); vcdp->declTriBus(0x12, "io5",-1,4,0); vcdp->declTriArray(0x16, "io96",-1,95,0); // Note need to add 6 for next code. vcdp->declDouble(0x1c, "doub",-1); // Note need to add 2 for next code. vcdp->declArray(0x1e, "q2",-1,95,0); // Note need to add 4 for next code. } void vcdFull(VerilatedVcd* vcdp, void* userthis, vluint32_t code) { vcdp->fullBus(0x2, v1, 5); vcdp->fullBus(0x3, v2, 7); vcdp->fullBit(0x4, s1); vcdp->fullBus(0x5, ch, 2); vcdp->fullArray(0x6, &s2[0], 38); vcdp->fullTriBit(0x10, tri96[0] & 1, tri96__tri[0] & 1); vcdp->fullTriBus(0x12, tri96[0] & 0x1f, tri96__tri[0] & 0x1f, 5); vcdp->fullTriArray(0x16, tri96, tri96__tri, 96); vcdp->fullDouble(0x1c, doub); vcdp->fullArray(0x1e, &quad96[0], 96); } void vcdChange(VerilatedVcd* vcdp, void* userthis, vluint32_t code) { vcdp->chgBus(0x2, v1, 5); vcdp->chgBus(0x3, v2, 7); vcdp->chgBit(0x4, s1); vcdp->chgBus(0x5, ch, 2); vcdp->chgArray(0x6, &s2[0], 38); vcdp->chgTriBit(0x10, tri96[0] & 1, tri96__tri[0] & 1); vcdp->chgTriBus(0x12, tri96[0] & 0x1f, tri96__tri[0] & 0x1f, 5); vcdp->chgTriArray(0x16, tri96, tri96__tri, 96); vcdp->chgDouble(0x1c, doub); vcdp->chgArray(0x1e, &quad96[0], 96); } main() { std::cout << "test: O_LARGEFILE=" << O_LARGEFILE << std::endl; v1 = v2 = s1 = 0; s2[0] = s2[1] = s2[2] = 0; tri96[2] = tri96[1] = tri96[0] = 0; tri96__tri[2] = tri96__tri[1] = tri96__tri[0] = ~0; quad96[1] = quad96[0] = 0; ch = 0; doub = 0; { VerilatedVcdC* vcdp = new VerilatedVcdC; vcdp->spTrace()->addCallback(&vcdInit, &vcdFull, &vcdChange, 0); vcdp->open("test.vcd"); // Dumping vcdp->dump(timestamp++); v1 = 0xfff; tri96[2] = 4; tri96[1] = 2; tri96[0] = 1; tri96__tri[2] = tri96__tri[1] = tri96__tri[0] = ~0; // Still tri quad96[1] = 0xffffffff; quad96[0] = 0; doub = 1.5; vcdp->dump(timestamp++); v2 = 0x1; s2[1] = 2; tri96__tri[2] = tri96__tri[1] = tri96__tri[0] = 0; // enable w/o data change quad96[1] = 0; quad96[0] = ~0; doub = -1.66e13; vcdp->dump(timestamp++); ch = 2; tri96[2] = ~4; tri96[1] = ~2; tri96[0] = ~1; doub = -3.33e-13; vcdp->dump(timestamp++); vcdp->dump(timestamp++); # ifdef VERILATED_VCD_TEST_64BIT vluint64_t bytesPerDump = VL_ULL(15); for (vluint64_t i = 0; i < ((VL_ULL(1) << 32) / bytesPerDump); i++) { v1 = i; vcdp->dump(timestamp++); } # endif vcdp->close(); } } #endif //******************************************************************** // ;compile-command: "mkdir -p ../test_dir && cd ../test_dir && c++ -DVERILATED_VCD_TEST ../include/verilated_vcd_c.cpp -o verilated_vcd_c && ./verilated_vcd_c && cat test.vcd" // // Local Variables: // End: