// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Copyright 2010-2020 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
///
/// \file
/// \brief Verilator: String include for all Verilated C files
///
///     This file is included automatically by Verilator at the top of
///     all C++ files it generates.  It is used when strings or other
///     heavyweight types are required; these contents are not part of
///     verilated.h to save compile time when such types aren't used.
///
/// Code available from: https://verilator.org
///
//*************************************************************************

#ifndef _VERILATED_HEAVY_H_
#define _VERILATED_HEAVY_H_ 1  ///< Header Guard

#include "verilated.h"

#include <algorithm>
#include <deque>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <unordered_set>

//===================================================================
// String formatters (required by below containers)

extern std::string VL_TO_STRING(CData lhs);
extern std::string VL_TO_STRING(SData lhs);
extern std::string VL_TO_STRING(IData lhs);
extern std::string VL_TO_STRING(QData lhs);
inline std::string VL_TO_STRING(const std::string& obj) { return "\"" + obj + "\""; }
extern std::string VL_TO_STRING_W(int words, WDataInP obj);

//===================================================================
// Shuffle RNG

class VlURNG final {
public:
    typedef size_t result_type;
    static constexpr size_t min() { return 0; }
    static constexpr size_t max() { return 1ULL << 31; }
    size_t operator()() { return VL_MASK_I(31) & VL_RANDOM_I(32); }
};

//===================================================================
// Readmem/Writemem operation classes

class VlReadMem final {
    bool m_hex;  // Hex format
    int m_bits;  // Bit width of values
    const std::string& m_filename;  // Filename
    QData m_end;  // End address (as specified by user)
    FILE* m_fp;  // File handle for filename
    QData m_addr;  // Next address to read
    int m_linenum;  // Line number last read from file
public:
    VlReadMem(bool hex, int bits, const std::string& filename, QData start, QData end);
    ~VlReadMem();
    bool isOpen() const { return m_fp != nullptr; }
    int linenum() const { return m_linenum; }
    bool get(QData& addrr, std::string& valuer);
    void setData(void* valuep, const std::string& rhs);
};

class VlWriteMem final {
    bool m_hex;  // Hex format
    int m_bits;  // Bit width of values
    FILE* m_fp;  // File handle for filename
    QData m_addr;  // Next address to write
public:
    VlWriteMem(bool hex, int bits, const std::string& filename, QData start, QData end);
    ~VlWriteMem();
    bool isOpen() const { return m_fp != nullptr; }
    void print(QData addr, bool addrstamp, const void* valuep);
};

//===================================================================
// Verilog wide-number-in-array container
// Similar to std::array<WData, N>, but lighter weight, only methods needed
// by Verilator, to help compile time.
//
// This is only used when we need an upper-level container and so can't
// simply use a C style array (which is just a pointer).

template <std::size_t T_Words> class VlWide final {
    EData m_storage[T_Words];

public:
    // cppcheck-suppress uninitVar
    VlWide() = default;
    ~VlWide() = default;
    VlWide(const VlWide&) = default;
    VlWide(VlWide&&) = default;

    // OPERATOR METHODS
    VlWide& operator=(const VlWide&) = default;
    VlWide& operator=(VlWide&&) = default;
    const EData& operator[](size_t index) const { return m_storage[index]; };
    EData& operator[](size_t index) { return m_storage[index]; };
    operator WDataOutP() { return &m_storage[0]; }

    // METHODS
    const EData& at(size_t index) const { return m_storage[index]; }
    EData& at(size_t index) { return m_storage[index]; }
    WData* data() { return &m_storage[0]; }
    const WData* data() const { return &m_storage[0]; }
    bool operator<(const VlWide<T_Words>& rhs) const {
        return VL_LT_W(T_Words, data(), rhs.data());
    }
};

// Convert a C array to std::array reference by pointer magic, without copy.
// Data type (second argument) is so the function template can automatically generate.
template <std::size_t T_Words> VlWide<T_Words>& VL_CVT_W_A(WDataInP inp, const VlWide<T_Words>&) {
    return *((VlWide<T_Words>*)inp);
}

template <std::size_t T_Words> std::string VL_TO_STRING(const VlWide<T_Words>& obj) {
    return VL_TO_STRING_W(T_Words, obj.data());
}

//===================================================================
// Verilog queue and dynamic array container
// There are no multithreaded locks on this; the base variable must
// be protected by other means
//
// Bound here is the maximum size() allowed, e.g. 1 + SystemVerilog bound
// For dynamic arrays it is always zero
template <class T_Value, size_t T_MaxSize = 0> class VlQueue final {
private:
    // TYPES
    typedef std::deque<T_Value> Deque;

public:
    typedef typename Deque::const_iterator const_iterator;

private:
    // MEMBERS
    Deque m_deque;  // State of the assoc array
    T_Value m_defaultValue;  // Default value

public:
    // CONSTRUCTORS
    // m_defaultValue isn't defaulted. Caller's constructor must do it.
    VlQueue() = default;
    ~VlQueue() = default;
    VlQueue(const VlQueue&) = default;
    VlQueue(VlQueue&&) = default;
    VlQueue& operator=(const VlQueue&) = default;
    VlQueue& operator=(VlQueue&&) = default;

    // Standard copy constructor works. Verilog: assoca = assocb
    // Also must allow conversion from a different T_MaxSize queue
    template <size_t U_MaxSize = 0> VlQueue operator=(const VlQueue<T_Value, U_MaxSize>& rhs) {
        m_deque = rhs.privateDeque();
        if (VL_UNLIKELY(T_MaxSize && T_MaxSize < m_deque.size())) m_deque.resize(T_MaxSize - 1);
        return *this;
    }

    static VlQueue cons(const T_Value& lhs) {
        VlQueue out;
        out.push_back(lhs);
        return out;
    }
    static VlQueue cons(const T_Value& lhs, const T_Value& rhs) {
        VlQueue out;
        out.push_back(rhs);
        out.push_back(lhs);
        return out;
    }
    static VlQueue cons(const VlQueue& lhs, const T_Value& rhs) {
        VlQueue out = lhs;
        out.push_front(rhs);
        return out;
    }
    static VlQueue cons(const T_Value& lhs, const VlQueue& rhs) {
        VlQueue out = rhs;
        out.push_back(lhs);
        return out;
    }
    static VlQueue cons(const VlQueue& lhs, const VlQueue& rhs) {
        VlQueue out = rhs;
        for (const auto& i : lhs.m_deque) out.push_back(i);
        return out;
    }

    // METHODS
    T_Value& atDefault() { return m_defaultValue; }
    const T_Value& atDefault() const { return m_defaultValue; }
    const Deque& privateDeque() const { return m_deque; }

    // Size. Verilog: function int size(), or int num()
    int size() const { return m_deque.size(); }
    // Clear array. Verilog: function void delete([input index])
    void clear() { m_deque.clear(); }
    void erase(vlsint32_t index) {
        if (VL_LIKELY(index >= 0 && index < m_deque.size()))
            m_deque.erase(m_deque.begin() + index);
    }

    // Dynamic array new[] becomes a renew()
    void renew(size_t size) {
        clear();
        m_deque.resize(size, atDefault());
    }
    // Dynamic array new[]() becomes a renew_copy()
    void renew_copy(size_t size, const VlQueue<T_Value, T_MaxSize>& rhs) {
        if (size == 0) {
            clear();
        } else {
            *this = rhs;
            m_deque.resize(size, atDefault());
        }
    }

    // function void q.push_front(value)
    void push_front(const T_Value& value) {
        m_deque.push_front(value);
        if (VL_UNLIKELY(T_MaxSize != 0 && m_deque.size() > T_MaxSize)) m_deque.pop_back();
    }
    // function void q.push_back(value)
    void push_back(const T_Value& value) {
        if (VL_LIKELY(T_MaxSize == 0 || m_deque.size() < T_MaxSize)) m_deque.push_back(value);
    }
    // function value_t q.pop_front();
    T_Value pop_front() {
        if (m_deque.empty()) return m_defaultValue;
        T_Value v = m_deque.front();
        m_deque.pop_front();
        return v;
    }
    // function value_t q.pop_back();
    T_Value pop_back() {
        if (m_deque.empty()) return m_defaultValue;
        T_Value v = m_deque.back();
        m_deque.pop_back();
        return v;
    }

    // Setting. Verilog: assoc[index] = v
    // Can't just overload operator[] or provide a "at" reference to set,
    // because we need to be able to insert only when the value is set
    T_Value& at(vlsint32_t index) {
        static T_Value s_throwAway;
        // Needs to work for dynamic arrays, so does not use T_MaxSize
        if (VL_UNLIKELY(index < 0 || index >= m_deque.size())) {
            s_throwAway = atDefault();
            return s_throwAway;
        } else {
            return m_deque[index];
        }
    }
    // Accessing. Verilog: v = assoc[index]
    const T_Value& at(vlsint32_t index) const {
        static T_Value s_throwAway;
        // Needs to work for dynamic arrays, so does not use T_MaxSize
        if (VL_UNLIKELY(index < 0 || index >= m_deque.size())) {
            return atDefault();
        } else {
            return m_deque[index];
        }
    }
    // function void q.insert(index, value);
    void insert(vlsint32_t index, const T_Value& value) {
        if (VL_UNLIKELY(index < 0 || index >= m_deque.size())) return;
        m_deque.insert(m_deque.begin() + index, value);
    }

    // Return slice q[lsb:msb]
    VlQueue slice(vlsint32_t lsb, vlsint32_t msb) const {
        VlQueue out;
        if (VL_UNLIKELY(lsb < 0)) lsb = 0;
        if (VL_UNLIKELY(lsb >= m_deque.size())) lsb = m_deque.size() - 1;
        if (VL_UNLIKELY(msb >= m_deque.size())) msb = m_deque.size() - 1;
        for (vlsint32_t i = lsb; i <= msb; ++i) out.push_back(m_deque[i]);
        return out;
    }

    // For save/restore
    const_iterator begin() const { return m_deque.begin(); }
    const_iterator end() const { return m_deque.end(); }

    // Methods
    void sort() { std::sort(m_deque.begin(), m_deque.end()); }
    template <typename Func> void sort(Func with_func) {
        // with_func returns arbitrary type to use for the sort comparison
        std::sort(m_deque.begin(), m_deque.end(), [=](const T_Value& a, const T_Value& b) {
            // index number is meaninless with sort, as it changes
            return with_func(0, a) < with_func(0, b);
        });
    }
    void rsort() { std::sort(m_deque.rbegin(), m_deque.rend()); }
    template <typename Func> void rsort(Func with_func) {
        // with_func returns arbitrary type to use for the sort comparison
        std::sort(m_deque.rbegin(), m_deque.rend(), [=](const T_Value& a, const T_Value& b) {
            // index number is meaninless with sort, as it changes
            return with_func(0, a) < with_func(0, b);
        });
    }
    void reverse() { std::reverse(m_deque.begin(), m_deque.end()); }
    void shuffle() { std::shuffle(m_deque.begin(), m_deque.end(), VlURNG()); }
    VlQueue unique() const {
        VlQueue out;
        std::unordered_set<T_Value> saw;
        for (const auto& i : m_deque) {
            auto it = saw.find(i);
            if (it == saw.end()) {
                saw.insert(it, i);
                out.push_back(i);
            }
        }
        return out;
    }
    VlQueue<IData> unique_index() const {
        VlQueue<IData> out;
        IData index = 0;
        std::unordered_set<T_Value> saw;
        for (const auto& i : m_deque) {
            auto it = saw.find(i);
            if (it == saw.end()) {
                saw.insert(it, i);
                out.push_back(index);
            }
            ++index;
        }
        return out;
    }
    template <typename Func> VlQueue find(Func with_func) const {
        VlQueue out;
        IData index = 0;
        for (const auto& i : m_deque) {
            if (with_func(index, i)) out.push_back(i);
            ++index;
        }
        return out;
    }
    template <typename Func> VlQueue<IData> find_index(Func with_func) const {
        VlQueue<IData> out;
        IData index = 0;
        for (const auto& i : m_deque) {
            if (with_func(index, i)) out.push_back(index);
            ++index;
        }
        return out;
    }
    template <typename Func> VlQueue find_first(Func with_func) const {
        // Can't use std::find_if as need index number
        IData index = 0;
        for (const auto& i : m_deque) {
            if (with_func(index, i)) return VlQueue::cons(i);
            ++index;
        }
        return VlQueue{};
    }
    template <typename Func> VlQueue<IData> find_first_index(Func with_func) const {
        IData index = 0;
        for (const auto& i : m_deque) {
            if (with_func(index, i)) return VlQueue<IData>::cons(index);
            ++index;
        }
        return VlQueue<IData>{};
    }
    template <typename Func> VlQueue find_last(Func with_func) const {
        IData index = m_deque.size() - 1;
        for (auto it = m_deque.rbegin(); it != m_deque.rend(); ++it) {
            if (with_func(index, *it)) return VlQueue::cons(*it);
            --index;
        }
        return VlQueue{};
    }
    template <typename Func> VlQueue<IData> find_last_index(Func with_func) const {
        IData index = m_deque.size() - 1;
        for (auto it = m_deque.rbegin(); it != m_deque.rend(); ++it) {
            if (with_func(index, *it)) return VlQueue<IData>::cons(index);
            --index;
        }
        return VlQueue<IData>{};
    }

    // Reduction operators
    VlQueue min() const {
        if (m_deque.empty()) return VlQueue();
        const auto it = std::min_element(m_deque.begin(), m_deque.end());
        return VlQueue::cons(*it);
    }
    VlQueue max() const {
        if (m_deque.empty()) return VlQueue();
        const auto it = std::max_element(m_deque.begin(), m_deque.end());
        return VlQueue::cons(*it);
    }

    T_Value r_sum() const {
        T_Value out(0);  // Type must have assignment operator
        for (const auto& i : m_deque) out += i;
        return out;
    }
    template <typename Func> T_Value r_sum(Func with_func) const {
        T_Value out(0);  // Type must have assignment operator
        IData index = 0;
        for (const auto& i : m_deque) out += with_func(index++, i);
        return out;
    }
    T_Value r_product() const {
        if (m_deque.empty()) return T_Value(0);
        auto it = m_deque.begin();
        T_Value out{*it};
        ++it;
        for (; it != m_deque.end(); ++it) out *= *it;
        return out;
    }
    template <typename Func> T_Value r_product(Func with_func) const {
        if (m_deque.empty()) return T_Value(0);
        auto it = m_deque.begin();
        IData index = 0;
        T_Value out{with_func(index, *it)};
        ++it;
        ++index;
        for (; it != m_deque.end(); ++it) out *= with_func(index++, *it);
        return out;
    }
    T_Value r_and() const {
        if (m_deque.empty()) return T_Value(0);
        auto it = m_deque.begin();
        T_Value out{*it};
        ++it;
        for (; it != m_deque.end(); ++it) out &= *it;
        return out;
    }
    template <typename Func> T_Value r_and(Func with_func) const {
        if (m_deque.empty()) return T_Value(0);
        auto it = m_deque.begin();
        IData index = 0;
        T_Value out{with_func(index, *it)};
        ++it;
        ++index;
        for (; it != m_deque.end(); ++it) out &= with_func(index, *it);
        return out;
    }
    T_Value r_or() const {
        T_Value out(0);  // Type must have assignment operator
        for (const auto& i : m_deque) out |= i;
        return out;
    }
    template <typename Func> T_Value r_or(Func with_func) const {
        T_Value out(0);  // Type must have assignment operator
        IData index = 0;
        for (const auto& i : m_deque) out |= with_func(index++, i);
        return out;
    }
    T_Value r_xor() const {
        T_Value out(0);  // Type must have assignment operator
        for (const auto& i : m_deque) out ^= i;
        return out;
    }
    template <typename Func> T_Value r_xor(Func with_func) const {
        T_Value out(0);  // Type must have assignment operator
        IData index = 0;
        for (const auto& i : m_deque) out ^= with_func(index++, i);
        return out;
    }

    // Dumping. Verilog: str = $sformatf("%p", assoc)
    std::string to_string() const {
        if (m_deque.empty()) return "'{}";  // No trailing space
        std::string out = "'{";
        std::string comma;
        for (const auto& i : m_deque) {
            out += comma + VL_TO_STRING(i);
            comma = ", ";
        }
        return out + "} ";
    }
};

template <class T_Value> std::string VL_TO_STRING(const VlQueue<T_Value>& obj) {
    return obj.to_string();
}

//===================================================================
// Verilog associative array container
// There are no multithreaded locks on this; the base variable must
// be protected by other means
//
template <class T_Key, class T_Value> class VlAssocArray final {
private:
    // TYPES
    typedef std::map<T_Key, T_Value> Map;

public:
    typedef typename Map::const_iterator const_iterator;

private:
    // MEMBERS
    Map m_map;  // State of the assoc array
    T_Value m_defaultValue;  // Default value

public:
    // CONSTRUCTORS
    // m_defaultValue isn't defaulted. Caller's constructor must do it.
    VlAssocArray() = default;
    ~VlAssocArray() = default;
    VlAssocArray(const VlAssocArray&) = default;
    VlAssocArray(VlAssocArray&&) = default;
    VlAssocArray& operator=(const VlAssocArray&) = default;
    VlAssocArray& operator=(VlAssocArray&&) = default;

    // METHODS
    T_Value& atDefault() { return m_defaultValue; }
    const T_Value& atDefault() const { return m_defaultValue; }

    // Size of array. Verilog: function int size(), or int num()
    int size() const { return m_map.size(); }
    // Clear array. Verilog: function void delete([input index])
    void clear() { m_map.clear(); }
    void erase(const T_Key& index) { m_map.erase(index); }
    // Return 0/1 if element exists. Verilog: function int exists(input index)
    int exists(const T_Key& index) const { return m_map.find(index) != m_map.end(); }
    // Return first element.  Verilog: function int first(ref index);
    int first(T_Key& indexr) const {
        const auto it = m_map.cbegin();
        if (it == m_map.end()) return 0;
        indexr = it->first;
        return 1;
    }
    // Return last element.  Verilog: function int last(ref index)
    int last(T_Key& indexr) const {
        const auto it = m_map.crbegin();
        if (it == m_map.rend()) return 0;
        indexr = it->first;
        return 1;
    }
    // Return next element. Verilog: function int next(ref index)
    int next(T_Key& indexr) const {
        auto it = m_map.find(indexr);
        if (VL_UNLIKELY(it == m_map.end())) return 0;
        ++it;
        if (VL_UNLIKELY(it == m_map.end())) return 0;
        indexr = it->first;
        return 1;
    }
    // Return prev element. Verilog: function int prev(ref index)
    int prev(T_Key& indexr) const {
        auto it = m_map.find(indexr);
        if (VL_UNLIKELY(it == m_map.end())) return 0;
        if (VL_UNLIKELY(it == m_map.begin())) return 0;
        --it;
        indexr = it->first;
        return 1;
    }
    // Setting. Verilog: assoc[index] = v
    // Can't just overload operator[] or provide a "at" reference to set,
    // because we need to be able to insert only when the value is set
    T_Value& at(const T_Key& index) {
        const auto it = m_map.find(index);
        if (it == m_map.end()) {
            std::pair<typename Map::iterator, bool> pit = m_map.emplace(index, m_defaultValue);
            return pit.first->second;
        }
        return it->second;
    }
    // Accessing. Verilog: v = assoc[index]
    const T_Value& at(const T_Key& index) const {
        const auto it = m_map.find(index);
        if (it == m_map.end()) {
            return m_defaultValue;
        } else {
            return it->second;
        }
    }
    // Setting as a chained operation
    VlAssocArray& set(const T_Key& index, const T_Value& value) {
        at(index) = value;
        return *this;
    }
    VlAssocArray& setDefault(const T_Value& value) {
        atDefault() = value;
        return *this;
    }

    // For save/restore
    const_iterator begin() const { return m_map.begin(); }
    const_iterator end() const { return m_map.end(); }

    // Methods
    VlQueue<T_Value> unique() const {
        VlQueue<T_Value> out;
        std::set<T_Value> saw;
        for (const auto& i : m_map) {
            auto it = saw.find(i.second);
            if (it == saw.end()) {
                saw.insert(it, i.second);
                out.push_back(i.second);
            }
        }
        return out;
    }
    VlQueue<T_Key> unique_index() const {
        VlQueue<T_Key> out;
        std::set<T_Key> saw;
        for (const auto& i : m_map) {
            auto it = saw.find(i.second);
            if (it == saw.end()) {
                saw.insert(it, i.second);
                out.push_back(i.first);
            }
        }
        return out;
    }
    template <typename Func> VlQueue<T_Value> find(Func with_func) const {
        VlQueue<T_Value> out;
        for (const auto& i : m_map)
            if (with_func(i.first, i.second)) out.push_back(i.second);
        return out;
    }
    template <typename Func> VlQueue<T_Key> find_index(Func with_func) const {
        VlQueue<T_Key> out;
        for (const auto& i : m_map)
            if (with_func(i.first, i.second)) out.push_back(i.first);
        return out;
    }
    template <typename Func> VlQueue<T_Value> find_first(Func with_func) const {
        const auto it
            = std::find_if(m_map.begin(), m_map.end(), [=](const std::pair<T_Key, T_Value>& i) {
                  return with_func(i.first, i.second);
              });
        if (it == m_map.end()) return VlQueue<T_Value>{};
        return VlQueue<T_Value>::cons(it->second);
    }
    template <typename Func> VlQueue<T_Key> find_first_index(Func with_func) const {
        const auto it
            = std::find_if(m_map.begin(), m_map.end(), [=](const std::pair<T_Key, T_Value>& i) {
                  return with_func(i.first, i.second);
              });
        if (it == m_map.end()) return VlQueue<T_Value>{};
        return VlQueue<T_Key>::cons(it->first);
    }
    template <typename Func> VlQueue<T_Value> find_last(Func with_func) const {
        const auto it
            = std::find_if(m_map.rbegin(), m_map.rend(), [=](const std::pair<T_Key, T_Value>& i) {
                  return with_func(i.first, i.second);
              });
        if (it == m_map.rend()) return VlQueue<T_Value>{};
        return VlQueue<T_Value>::cons(it->second);
    }
    template <typename Func> VlQueue<T_Key> find_last_index(Func with_func) const {
        const auto it
            = std::find_if(m_map.rbegin(), m_map.rend(), [=](const std::pair<T_Key, T_Value>& i) {
                  return with_func(i.first, i.second);
              });
        if (it == m_map.rend()) return VlQueue<T_Value>{};
        return VlQueue<T_Key>::cons(it->first);
    }

    // Reduction operators
    VlQueue<T_Value> min() const {
        if (m_map.empty()) return VlQueue<T_Value>();
        const auto it = std::min_element(
            m_map.begin(), m_map.end(),
            [](const std::pair<T_Key, T_Value>& a, const std::pair<T_Key, T_Value>& b) {
                return a.second < b.second;
            });
        return VlQueue<T_Value>::cons(it->second);
    }
    VlQueue<T_Value> max() const {
        if (m_map.empty()) return VlQueue<T_Value>();
        const auto it = std::max_element(
            m_map.begin(), m_map.end(),
            [](const std::pair<T_Key, T_Value>& a, const std::pair<T_Key, T_Value>& b) {
                return a.second < b.second;
            });
        return VlQueue<T_Value>::cons(it->second);
    }

    T_Value r_sum() const {
        T_Value out(0);  // Type must have assignment operator
        for (const auto& i : m_map) out += i.second;
        return out;
    }
    template <typename Func> T_Value r_sum(Func with_func) const {
        T_Value out(0);  // Type must have assignment operator
        for (const auto& i : m_map) out += with_func(i.first, i.second);
        return out;
    }
    T_Value r_product() const {
        if (m_map.empty()) return T_Value(0);
        auto it = m_map.begin();
        T_Value out{it->second};
        ++it;
        for (; it != m_map.end(); ++it) out *= it->second;
        return out;
    }
    template <typename Func> T_Value r_product(Func with_func) const {
        if (m_map.empty()) return T_Value(0);
        auto it = m_map.begin();
        T_Value out{with_func(it->first, it->second)};
        ++it;
        for (; it != m_map.end(); ++it) out *= with_func(it->first, it->second);
        return out;
    }
    T_Value r_and() const {
        if (m_map.empty()) return T_Value(0);
        auto it = m_map.begin();
        T_Value out{it->second};
        ++it;
        for (; it != m_map.end(); ++it) out &= it->second;
        return out;
    }
    template <typename Func> T_Value r_and(Func with_func) const {
        if (m_map.empty()) return T_Value(0);
        auto it = m_map.begin();
        T_Value out{with_func(it->first, it->second)};
        ++it;
        for (; it != m_map.end(); ++it) out &= with_func(it->first, it->second);
        return out;
    }
    T_Value r_or() const {
        T_Value out(0);  // Type must have assignment operator
        for (const auto& i : m_map) out |= i.second;
        return out;
    }
    template <typename Func> T_Value r_or(Func with_func) const {
        T_Value out(0);  // Type must have assignment operator
        for (const auto& i : m_map) out |= with_func(i.first, i.second);
        return out;
    }
    T_Value r_xor() const {
        T_Value out(0);  // Type must have assignment operator
        for (const auto& i : m_map) out ^= i.second;
        return out;
    }
    template <typename Func> T_Value r_xor(Func with_func) const {
        T_Value out(0);  // Type must have assignment operator
        for (const auto& i : m_map) out ^= with_func(i.first, i.second);
        return out;
    }

    // Dumping. Verilog: str = $sformatf("%p", assoc)
    std::string to_string() const {
        if (m_map.empty()) return "'{}";  // No trailing space
        std::string out = "'{";
        std::string comma;
        for (const auto& i : m_map) {
            out += comma + VL_TO_STRING(i.first) + ":" + VL_TO_STRING(i.second);
            comma = ", ";
        }
        // Default not printed - maybe random init data
        return out + "} ";
    }
};

template <class T_Key, class T_Value>
std::string VL_TO_STRING(const VlAssocArray<T_Key, T_Value>& obj) {
    return obj.to_string();
}

template <class T_Key, class T_Value>
void VL_READMEM_N(bool hex, int bits, const std::string& filename,
                  VlAssocArray<T_Key, T_Value>& obj, QData start, QData end) VL_MT_SAFE {
    VlReadMem rmem(hex, bits, filename, start, end);
    if (VL_UNLIKELY(!rmem.isOpen())) return;
    while (true) {
        QData addr;
        std::string data;
        if (rmem.get(addr /*ref*/, data /*ref*/)) {
            rmem.setData(&(obj.at(addr)), data);
        } else {
            break;
        }
    }
}

template <class T_Key, class T_Value>
void VL_WRITEMEM_N(bool hex, int bits, const std::string& filename,
                   const VlAssocArray<T_Key, T_Value>& obj, QData start, QData end) VL_MT_SAFE {
    VlWriteMem wmem(hex, bits, filename, start, end);
    if (VL_UNLIKELY(!wmem.isOpen())) return;
    for (const auto& i : obj) {
        QData addr = i.first;
        if (addr >= start && addr <= end) wmem.print(addr, true, &(i.second));
    }
}

//===================================================================
// Verilog packed array container
// For when a standard C++[] array is not sufficient, e.g. an
// array under a queue, or methods operating on the array

template <class T_Value, std::size_t T_Depth> class VlUnpacked final {
private:
    // TYPES
    typedef std::array<T_Value, T_Depth> Array;

public:
    typedef typename Array::const_iterator const_iterator;

private:
    // MEMBERS
    Array m_array;  // State of the assoc array

public:
    // CONSTRUCTORS
    VlUnpacked() = default;
    ~VlUnpacked() = default;
    VlUnpacked(const VlUnpacked&) = default;
    VlUnpacked(VlUnpacked&&) = default;
    VlUnpacked& operator=(const VlUnpacked&) = default;
    VlUnpacked& operator=(VlUnpacked&&) = default;

    // METHODS
    // Raw access
    WData* data() { return &m_array[0]; }
    const WData* data() const { return &m_array[0]; }

    T_Value& operator[](size_t index) { return m_array[index]; };
    const T_Value& operator[](size_t index) const { return m_array[index]; };
};

//===================================================================
// Verilog class reference container
// There are no multithreaded locks on this; the base variable must
// be protected by other means
//

#define VlClassRef std::shared_ptr

template <class T>  // T typically of type VlClassRef<x>
inline T VL_NULL_CHECK(T t, const char* filename, int linenum) {
    if (VL_UNLIKELY(!t)) Verilated::nullPointerError(filename, linenum);
    return t;
}

template <typename T, typename U>
static inline bool VL_CAST_DYNAMIC(VlClassRef<T> in, VlClassRef<U>& outr) {
    VlClassRef<U> casted = std::dynamic_pointer_cast<U>(in);
    if (VL_LIKELY(casted)) {
        outr = casted;
        return true;
    } else {
        return false;
    }
}

//======================================================================
// Conversion functions

extern std::string VL_CVT_PACK_STR_NW(int lwords, WDataInP lwp) VL_MT_SAFE;
inline std::string VL_CVT_PACK_STR_NQ(QData lhs) VL_PURE {
    WData lw[VL_WQ_WORDS_E];
    VL_SET_WQ(lw, lhs);
    return VL_CVT_PACK_STR_NW(VL_WQ_WORDS_E, lw);
}
inline std::string VL_CVT_PACK_STR_NN(const std::string& lhs) VL_PURE { return lhs; }
inline std::string& VL_CVT_PACK_STR_NN(std::string& lhs) VL_PURE { return lhs; }
inline std::string VL_CVT_PACK_STR_NI(IData lhs) VL_PURE {
    WData lw[VL_WQ_WORDS_E];
    VL_SET_WI(lw, lhs);
    return VL_CVT_PACK_STR_NW(1, lw);
}
inline std::string VL_CONCATN_NNN(const std::string& lhs, const std::string& rhs) VL_PURE {
    return lhs + rhs;
}
inline std::string VL_REPLICATEN_NNQ(int, int, int, const std::string& lhs, IData rep) VL_PURE {
    std::string out;
    out.reserve(lhs.length() * rep);
    for (unsigned times = 0; times < rep; ++times) out += lhs;
    return out;
}
inline std::string VL_REPLICATEN_NNI(int obits, int lbits, int rbits, const std::string& lhs,
                                     IData rep) VL_PURE {
    return VL_REPLICATEN_NNQ(obits, lbits, rbits, lhs, rep);
}

inline IData VL_LEN_IN(const std::string& ld) { return ld.length(); }
extern std::string VL_TOLOWER_NN(const std::string& ld);
extern std::string VL_TOUPPER_NN(const std::string& ld);

extern IData VL_FERROR_IN(IData fpi, std::string& outputr) VL_MT_SAFE;
extern IData VL_FOPEN_NN(const std::string& filename, const std::string& mode) VL_MT_SAFE;
extern IData VL_FOPEN_MCD_N(const std::string& filename) VL_MT_SAFE;
extern void VL_READMEM_N(bool hex, int bits, QData depth, int array_lsb,
                         const std::string& filename, void* memp, QData start,
                         QData end) VL_MT_SAFE;
extern void VL_WRITEMEM_N(bool hex, int bits, QData depth, int array_lsb,
                          const std::string& filename, const void* memp, QData start,
                          QData end) VL_MT_SAFE;
extern IData VL_SSCANF_INX(int lbits, const std::string& ld, const char* formatp, ...) VL_MT_SAFE;
extern void VL_SFORMAT_X(int obits_ignored, std::string& output, const char* formatp,
                         ...) VL_MT_SAFE;
extern std::string VL_SFORMATF_NX(const char* formatp, ...) VL_MT_SAFE;
extern void VL_TIMEFORMAT_IINI(int units, int precision, const std::string& suffix,
                               int width) VL_MT_SAFE;
extern IData VL_VALUEPLUSARGS_INW(int rbits, const std::string& ld, WDataOutP rwp) VL_MT_SAFE;
inline IData VL_VALUEPLUSARGS_INI(int rbits, const std::string& ld, CData& rdr) VL_MT_SAFE {
    WData rwp[2];  // WData must always be at least 2
    IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
    if (got) rdr = rwp[0];
    return got;
}
inline IData VL_VALUEPLUSARGS_INI(int rbits, const std::string& ld, SData& rdr) VL_MT_SAFE {
    WData rwp[2];  // WData must always be at least 2
    IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
    if (got) rdr = rwp[0];
    return got;
}
inline IData VL_VALUEPLUSARGS_INI(int rbits, const std::string& ld, IData& rdr) VL_MT_SAFE {
    WData rwp[2];
    IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
    if (got) rdr = rwp[0];
    return got;
}
inline IData VL_VALUEPLUSARGS_INQ(int rbits, const std::string& ld, QData& rdr) VL_MT_SAFE {
    WData rwp[2];
    IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
    if (got) rdr = VL_SET_QW(rwp);
    return got;
}
inline IData VL_VALUEPLUSARGS_INQ(int rbits, const std::string& ld, double& rdr) VL_MT_SAFE {
    WData rwp[2];
    IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
    if (got) rdr = VL_CVT_D_Q(VL_SET_QW(rwp));
    return got;
}
extern IData VL_VALUEPLUSARGS_INN(int, const std::string& ld, std::string& rdr) VL_MT_SAFE;

//======================================================================
// Strings

extern std::string VL_PUTC_N(const std::string& lhs, IData rhs, CData ths) VL_PURE;
extern CData VL_GETC_N(const std::string& lhs, IData rhs) VL_PURE;
extern std::string VL_SUBSTR_N(const std::string& lhs, IData rhs, IData ths) VL_PURE;

inline IData VL_CMP_NN(const std::string& lhs, const std::string& rhs, bool ignoreCase) VL_PURE {
    // SystemVerilog does not allow a string variable to contain '\0'.
    // So C functions such as strcmp() can correctly compare strings.
    if (ignoreCase) {
        return VL_STRCASECMP(lhs.c_str(), rhs.c_str());
    } else {
        return std::strcmp(lhs.c_str(), rhs.c_str());
    }
}

extern IData VL_ATOI_N(const std::string& str, int base) VL_PURE;

extern IData VL_FGETS_NI(std::string& dest, IData fpi);

//======================================================================
// Dumping

extern const char* vl_dumpctl_filenamep(bool setit = false,
                                        const std::string& filename = "") VL_MT_SAFE;

#endif  // Guard