// -*- mode: C++; c-file-style: "cc-mode" -*- //============================================================================= // // THIS MODULE IS PUBLICLY LICENSED // // Copyright 2001-2020 by Wilson Snyder. This program is free software; you // can redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License // Version 2.0. // SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0 // //============================================================================= /// /// \file /// \brief C++ Tracing in VCD Format /// //============================================================================= // SPDIFF_OFF #ifndef _VERILATED_VCD_C_H_ #define _VERILATED_VCD_C_H_ 1 #include "verilatedos.h" #include "verilated.h" #include #include #include class VerilatedVcd; class VerilatedVcdCallInfo; // SPDIFF_ON //============================================================================= // VerilatedFile /// File handling routines, which can be overrode for e.g. socket I/O class VerilatedVcdFile { private: int m_fd; ///< File descriptor we're writing to public: // METHODS VerilatedVcdFile() : m_fd(0) {} virtual ~VerilatedVcdFile() {} virtual bool open(const std::string& name) VL_MT_UNSAFE; virtual void close() VL_MT_UNSAFE; virtual ssize_t write(const char* bufp, ssize_t len) VL_MT_UNSAFE; }; //============================================================================= // VerilatedVcdSig /// Internal data on one signal being traced. class VerilatedVcdSig { protected: friend class VerilatedVcd; vluint32_t m_code; ///< VCD file code number int m_bits; ///< Size of value in bits VerilatedVcdSig(vluint32_t code, int bits) : m_code(code) , m_bits(bits) {} public: ~VerilatedVcdSig() {} }; //============================================================================= typedef void (*VerilatedVcdCallback_t)(VerilatedVcd* vcdp, void* userthis, vluint32_t code); //============================================================================= // VerilatedVcd /// Base class to create a Verilator VCD dump /// This is an internally used class - see VerilatedVcdC for what to call from applications class VerilatedVcd { private: VerilatedVcdFile* m_filep; ///< File we're writing to bool m_fileNewed; ///< m_filep needs destruction bool m_isOpen; ///< True indicates open file bool m_evcd; ///< True for evcd format std::string m_filename; ///< Filename we're writing to (if open) vluint64_t m_rolloverMB; ///< MB of file size to rollover at char m_scopeEscape; ///< Character to separate scope components int m_modDepth; ///< Depth of module hierarchy bool m_fullDump; ///< True indicates dump ignoring if changed vluint32_t m_nextCode; ///< Next code number to assign std::string m_modName; ///< Module name being traced now double m_timeRes; ///< Time resolution (ns/ms etc) double m_timeUnit; ///< Time units (ns/ms etc) vluint64_t m_timeLastDump; ///< Last time we did a dump char* m_wrBufp; ///< Output buffer char* m_wrFlushp; ///< Output buffer flush trigger location char* m_writep; ///< Write pointer into output buffer vluint64_t m_wrChunkSize; ///< Output buffer size vluint64_t m_wroteBytes; ///< Number of bytes written to this file vluint32_t* m_sigs_oldvalp; ///< Pointer to old signal values typedef std::vector SigVec; SigVec m_sigs; ///< Pointer to signal information typedef std::vector CallbackVec; CallbackVec m_callbacks; ///< Routines to perform dumping typedef std::map NameMap; NameMap* m_namemapp; ///< List of names for the header VerilatedAssertOneThread m_assertOne; ///< Assert only called from single thread void bufferResize(vluint64_t minsize); void bufferFlush() VL_MT_UNSAFE_ONE; inline void bufferCheck() { // Flush the write buffer if there's not enough space left for new information // We only call this once per vector, so we need enough slop for a very wide "b###" line if (VL_UNLIKELY(m_writep > m_wrFlushp)) { bufferFlush(); } } void closePrev(); void closeErr(); void openNext(); void makeNameMap(); void deleteNameMap(); void printIndent(int level_change); void printStr(const char* str); void printQuad(vluint64_t n); void printTime(vluint64_t timeui); void declare(vluint32_t code, const char* name, const char* wirep, bool array, int arraynum, bool tri, bool bussed, int msb, int lsb); void dumpHeader(); void dumpPrep(vluint64_t timeui); void dumpFull(vluint64_t timeui); // cppcheck-suppress functionConst void dumpDone(); inline void printCode(vluint32_t code) { *m_writep++ = static_cast('!' + code % 94); code /= 94; while (code) { code--; *m_writep++ = static_cast('!' + code % 94); code /= 94; } } static std::string stringCode(vluint32_t code) VL_PURE { std::string out; out += static_cast('!' + code % 94); code /= 94; while (code) { code--; out += static_cast('!' + code % 94); code /= 94; } return out; } // CONSTRUCTORS VL_UNCOPYABLE(VerilatedVcd); public: explicit VerilatedVcd(VerilatedVcdFile* filep = NULL); ~VerilatedVcd(); /// Routines can only be called from one thread; allow next call from different thread void changeThread() { m_assertOne.changeThread(); } // ACCESSORS /// Set size in megabytes after which new file should be created void rolloverMB(vluint64_t rolloverMB) { m_rolloverMB = rolloverMB; } /// Is file open? bool isOpen() const { return m_isOpen; } /// Change character that splits scopes. Note whitespace are ALWAYS escapes. void scopeEscape(char flag) { m_scopeEscape = flag; } /// Is this an escape? inline bool isScopeEscape(char c) { return isspace(c) || c == m_scopeEscape; } // METHODS /// Open the file; call isOpen() to see if errors void open(const char* filename) VL_MT_UNSAFE_ONE; void openNext(bool incFilename); ///< Open next data-only file void close() VL_MT_UNSAFE_ONE; ///< Close the file /// Flush any remaining data to this file void flush() VL_MT_UNSAFE_ONE { bufferFlush(); } /// Flush any remaining data from all files static void flush_all() VL_MT_UNSAFE_ONE; void set_time_unit(const char* unitp); ///< Set time units (s/ms, defaults to ns) void set_time_unit(const std::string& unit) { set_time_unit(unit.c_str()); } void set_time_resolution(const char* unitp); ///< Set time resolution (s/ms, defaults to ns) void set_time_resolution(const std::string& unit) { set_time_resolution(unit.c_str()); } double timescaleToDouble(const char* unitp); std::string doubleToTimescale(double value); /// Inside dumping routines, called each cycle to make the dump void dump(vluint64_t timeui); /// Call dump with a absolute unscaled time in seconds void dumpSeconds(double secs) { dump(static_cast(secs * m_timeRes)); } /// Inside dumping routines, declare callbacks for tracings void addCallback(VerilatedVcdCallback_t initcb, VerilatedVcdCallback_t fullcb, VerilatedVcdCallback_t changecb, void* userthis) VL_MT_UNSAFE_ONE; /// Inside dumping routines, declare a module void module(const std::string& name); /// Inside dumping routines, declare a signal void declBit(vluint32_t code, const char* name, bool array, int arraynum); void declBus(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb); void declQuad(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb); void declArray(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb); void declTriBit(vluint32_t code, const char* name, bool array, int arraynum); void declTriBus(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb); void declTriQuad(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb); void declTriArray(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb); void declDouble(vluint32_t code, const char* name, bool array, int arraynum); void declFloat(vluint32_t code, const char* name, bool array, int arraynum); // ... other module_start for submodules (based on cell name) /// Inside dumping routines, dump one signal void fullBit(vluint32_t code, const vluint32_t newval) { // Note the &1, so we don't require clean input -- makes more common no change case faster m_sigs_oldvalp[code] = newval; *m_writep++ = ('0' + static_cast(newval & 1)); printCode(code); *m_writep++ = '\n'; bufferCheck(); } void fullBus(vluint32_t code, const vluint32_t newval, int bits) { m_sigs_oldvalp[code] = newval; *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { *m_writep++ = ((newval & (1L << bit)) ? '1' : '0'); } *m_writep++ = ' '; printCode(code); *m_writep++ = '\n'; bufferCheck(); } void fullQuad(vluint32_t code, const vluint64_t newval, int bits) { (*(reinterpret_cast(&m_sigs_oldvalp[code]))) = newval; *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { *m_writep++ = ((newval & (VL_ULL(1) << bit)) ? '1' : '0'); } *m_writep++ = ' '; printCode(code); *m_writep++ = '\n'; bufferCheck(); } void fullArray(vluint32_t code, const vluint32_t* newval, int bits) { for (int word = 0; word < (((bits - 1) / 32) + 1); ++word) { m_sigs_oldvalp[code + word] = newval[word]; } *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { *m_writep++ = ((newval[(bit / 32)] & (1L << (bit & 0x1f))) ? '1' : '0'); } *m_writep++ = ' '; printCode(code); *m_writep++ = '\n'; bufferCheck(); } void fullArray(vluint32_t code, const vluint64_t* newval, int bits) { for (int word = 0; word < (((bits - 1) / 64) + 1); ++word) { m_sigs_oldvalp[code + word] = newval[word]; } *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { *m_writep++ = ((newval[(bit / 64)] & (VL_ULL(1) << (bit & 0x3f))) ? '1' : '0'); } *m_writep++ = ' '; printCode(code); *m_writep++ = '\n'; bufferCheck(); } void fullTriBit(vluint32_t code, const vluint32_t newval, const vluint32_t newtri) { m_sigs_oldvalp[code] = newval; m_sigs_oldvalp[code + 1] = newtri; *m_writep++ = "01zz"[m_sigs_oldvalp[code] | (m_sigs_oldvalp[code + 1] << 1)]; printCode(code); *m_writep++ = '\n'; bufferCheck(); } void fullTriBus(vluint32_t code, const vluint32_t newval, const vluint32_t newtri, int bits) { m_sigs_oldvalp[code] = newval; m_sigs_oldvalp[code + 1] = newtri; *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { *m_writep++ = "01zz"[((newval >> bit) & 1) | (((newtri >> bit) & 1) << 1)]; } *m_writep++ = ' '; printCode(code); *m_writep++ = '\n'; bufferCheck(); } void fullTriQuad(vluint32_t code, const vluint64_t newval, const vluint32_t newtri, int bits) { (*(reinterpret_cast(&m_sigs_oldvalp[code]))) = newval; (*(reinterpret_cast(&m_sigs_oldvalp[code + 1]))) = newtri; *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { *m_writep++ = "01zz"[((newval >> bit) & VL_ULL(1)) | (((newtri >> bit) & VL_ULL(1)) << VL_ULL(1))]; } *m_writep++ = ' '; printCode(code); *m_writep++ = '\n'; bufferCheck(); } void fullTriArray(vluint32_t code, const vluint32_t* newvalp, const vluint32_t* newtrip, int bits) { for (int word = 0; word < (((bits - 1) / 32) + 1); ++word) { m_sigs_oldvalp[code + word * 2] = newvalp[word]; m_sigs_oldvalp[code + word * 2 + 1] = newtrip[word]; } *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { vluint32_t valbit = (newvalp[(bit / 32)] >> (bit & 0x1f)) & 1; vluint32_t tribit = (newtrip[(bit / 32)] >> (bit & 0x1f)) & 1; *m_writep++ = "01zz"[valbit | (tribit << 1)]; } *m_writep++ = ' '; printCode(code); *m_writep++ = '\n'; bufferCheck(); } void fullDouble(vluint32_t code, const double newval); void fullFloat(vluint32_t code, const float newval); /// Inside dumping routines, dump one signal as unknowns /// Presently this code doesn't change the oldval vector. /// Thus this is for special standalone applications that after calling /// fullBitX, must when then value goes non-X call fullBit. inline void fullBitX(vluint32_t code) { *m_writep++ = 'x'; printCode(code); *m_writep++ = '\n'; bufferCheck(); } inline void fullBusX(vluint32_t code, int bits) { *m_writep++ = 'b'; for (int bit = bits - 1; bit >= 0; --bit) { *m_writep++ = 'x'; } *m_writep++ = ' '; printCode(code); *m_writep++ = '\n'; bufferCheck(); } inline void fullQuadX(vluint32_t code, int bits) { fullBusX(code, bits); } inline void fullArrayX(vluint32_t code, int bits) { fullBusX(code, bits); } /// Inside dumping routines, dump one signal if it has changed inline void chgBit(vluint32_t code, const vluint32_t newval) { vluint32_t diff = m_sigs_oldvalp[code] ^ newval; if (VL_UNLIKELY(diff)) { // Verilator 3.510 and newer provide clean input, so the below // is only for back compatibility if (VL_UNLIKELY(diff & 1)) { // Change after clean? fullBit(code, newval); } } } inline void chgBus(vluint32_t code, const vluint32_t newval, int bits) { vluint32_t diff = m_sigs_oldvalp[code] ^ newval; if (VL_UNLIKELY(diff)) { if (VL_UNLIKELY(bits == 32 || (diff & ((1U << bits) - 1)))) { fullBus(code, newval, bits); } } } inline void chgQuad(vluint32_t code, const vluint64_t newval, int bits) { vluint64_t diff = (*(reinterpret_cast(&m_sigs_oldvalp[code]))) ^ newval; if (VL_UNLIKELY(diff)) { if (VL_UNLIKELY(bits == 64 || (diff & ((VL_ULL(1) << bits) - 1)))) { fullQuad(code, newval, bits); } } } inline void chgArray(vluint32_t code, const vluint32_t* newval, int bits) { for (int word = 0; word < (((bits - 1) / 32) + 1); ++word) { if (VL_UNLIKELY(m_sigs_oldvalp[code + word] ^ newval[word])) { fullArray(code, newval, bits); return; } } } inline void chgArray(vluint32_t code, const vluint64_t* newval, int bits) { for (int word = 0; word < (((bits - 1) / 64) + 1); ++word) { if (VL_UNLIKELY(m_sigs_oldvalp[code + word] ^ newval[word])) { fullArray(code, newval, bits); return; } } } inline void chgTriBit(vluint32_t code, const vluint32_t newval, const vluint32_t newtri) { vluint32_t diff = ((m_sigs_oldvalp[code] ^ newval) | (m_sigs_oldvalp[code + 1] ^ newtri)); if (VL_UNLIKELY(diff)) { // Verilator 3.510 and newer provide clean input, so the below // is only for back compatibility if (VL_UNLIKELY(diff & 1)) { // Change after clean? fullTriBit(code, newval, newtri); } } } inline void chgTriBus(vluint32_t code, const vluint32_t newval, const vluint32_t newtri, int bits) { vluint32_t diff = ((m_sigs_oldvalp[code] ^ newval) | (m_sigs_oldvalp[code + 1] ^ newtri)); if (VL_UNLIKELY(diff)) { if (VL_UNLIKELY(bits == 32 || (diff & ((1U << bits) - 1)))) { fullTriBus(code, newval, newtri, bits); } } } inline void chgTriQuad(vluint32_t code, const vluint64_t newval, const vluint32_t newtri, int bits) { vluint64_t diff = (((*(reinterpret_cast(&m_sigs_oldvalp[code]))) ^ newval) | ((*(reinterpret_cast(&m_sigs_oldvalp[code + 1]))) ^ newtri)); if (VL_UNLIKELY(diff)) { if (VL_UNLIKELY(bits == 64 || (diff & ((VL_ULL(1) << bits) - 1)))) { fullTriQuad(code, newval, newtri, bits); } } } inline void chgTriArray(vluint32_t code, const vluint32_t* newvalp, const vluint32_t* newtrip, int bits) { for (int word = 0; word < (((bits - 1) / 32) + 1); ++word) { if (VL_UNLIKELY((m_sigs_oldvalp[code + word * 2] ^ newvalp[word]) | (m_sigs_oldvalp[code + word * 2 + 1] ^ newtrip[word]))) { fullTriArray(code, newvalp, newtrip, bits); return; } } } inline void chgDouble(vluint32_t code, const double newval) { // cppcheck-suppress invalidPointerCast if (VL_UNLIKELY((*(reinterpret_cast(&m_sigs_oldvalp[code]))) != newval)) { fullDouble(code, newval); } } inline void chgFloat(vluint32_t code, const float newval) { // cppcheck-suppress invalidPointerCast if (VL_UNLIKELY((*(reinterpret_cast(&m_sigs_oldvalp[code]))) != newval)) { fullFloat(code, newval); } } protected: // METHODS void evcd(bool flag) { m_evcd = flag; } }; //============================================================================= // VerilatedVcdC /// Create a VCD dump file in C standalone (no SystemC) simulations. /// Also derived for use in SystemC simulations. /// Thread safety: Unless otherwise indicated, every function is VL_MT_UNSAFE_ONE class VerilatedVcdC { VerilatedVcd m_sptrace; ///< Trace file being created // CONSTRUCTORS VL_UNCOPYABLE(VerilatedVcdC); public: explicit VerilatedVcdC(VerilatedVcdFile* filep = NULL) : m_sptrace(filep) {} ~VerilatedVcdC() { close(); } /// Routines can only be called from one thread; allow next call from different thread void changeThread() { spTrace()->changeThread(); } public: // ACCESSORS /// Is file open? bool isOpen() const { return m_sptrace.isOpen(); } // METHODS /// Open a new VCD file /// This includes a complete header dump each time it is called, /// just as if this object was deleted and reconstructed. void open(const char* filename) VL_MT_UNSAFE_ONE { m_sptrace.open(filename); } /// Continue a VCD dump by rotating to a new file name /// The header is only in the first file created, this allows /// "cat" to be used to combine the header plus any number of data files. void openNext(bool incFilename = true) VL_MT_UNSAFE_ONE { m_sptrace.openNext(incFilename); } /// Set size in megabytes after which new file should be created void rolloverMB(size_t rolloverMB) { m_sptrace.rolloverMB(rolloverMB); } /// Close dump void close() VL_MT_UNSAFE_ONE { m_sptrace.close(); } /// Flush dump void flush() VL_MT_UNSAFE_ONE { m_sptrace.flush(); } /// Write one cycle of dump data void dump(vluint64_t timeui) { m_sptrace.dump(timeui); } /// Write one cycle of dump data - backward compatible and to reduce /// conversion warnings. It's better to use a vluint64_t time instead. void dump(double timestamp) { dump(static_cast(timestamp)); } void dump(vluint32_t timestamp) { dump(static_cast(timestamp)); } void dump(int timestamp) { dump(static_cast(timestamp)); } /// Set time units (s/ms, defaults to ns) /// See also VL_TIME_PRECISION, and VL_TIME_MULTIPLIER in verilated.h void set_time_unit(const char* unit) { m_sptrace.set_time_unit(unit); } void set_time_unit(const std::string& unit) { set_time_unit(unit.c_str()); } /// Set time resolution (s/ms, defaults to ns) /// See also VL_TIME_PRECISION, and VL_TIME_MULTIPLIER in verilated.h void set_time_resolution(const char* unit) { m_sptrace.set_time_resolution(unit); } void set_time_resolution(const std::string& unit) { set_time_resolution(unit.c_str()); } /// Internal class access inline VerilatedVcd* spTrace() { return &m_sptrace; } }; #endif // guard