// -*- mode: C++; c-file-style: "cc-mode" -*- //************************************************************************* // // Code available from: https://verilator.org // // Copyright 2003-2023 by Wilson Snyder. This program is free software; you can // redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License // Version 2.0. // SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0 // //************************************************************************* /// /// \file /// \brief Verilated common functions /// /// verilated.h should be included instead of this file. /// /// Those macro/function/variable starting or ending in _ are internal, /// however many of the other function/macros here are also internal. /// //************************************************************************* #ifndef VERILATOR_VERILATED_FUNCS_H_ #define VERILATOR_VERILATED_FUNCS_H_ #ifndef VERILATOR_VERILATED_H_INTERNAL_ #error "verilated_funcs.h should only be included by verilated.h" #endif #include //========================================================================= // Extern functions -- User may override -- See verilated.cpp /// Routine to call for $finish /// User code may wish to replace this function, to do so, define VL_USER_FINISH. /// This code does not have to be thread safe. /// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this. extern void vl_finish(const char* filename, int linenum, const char* hier) VL_MT_UNSAFE; /// Routine to call for $stop and non-fatal error /// User code may wish to replace this function, to do so, define VL_USER_STOP. /// This code does not have to be thread safe. /// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this. extern void vl_stop(const char* filename, int linenum, const char* hier) VL_MT_UNSAFE; /// Routine to call for fatal messages /// User code may wish to replace this function, to do so, define VL_USER_FATAL. /// This code does not have to be thread safe. /// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this. extern void vl_fatal(const char* filename, int linenum, const char* hier, const char* msg) VL_MT_UNSAFE; /// Routine to call for warning messages /// User code may wish to replace this function, to do so, define VL_USER_WARN. /// This code does not have to be thread safe. extern void vl_warn(const char* filename, int linenum, const char* hier, const char* msg) VL_MT_UNSAFE; //========================================================================= // Extern functions -- Slow path /// Multithread safe wrapper for calls to $finish extern void VL_FINISH_MT(const char* filename, int linenum, const char* hier) VL_MT_SAFE; /// Multithread safe wrapper for calls to $stop extern void VL_STOP_MT(const char* filename, int linenum, const char* hier, bool maybe = true) VL_MT_SAFE; /// Multithread safe wrapper to call for fatal messages extern void VL_FATAL_MT(const char* filename, int linenum, const char* hier, const char* msg) VL_MT_SAFE; /// Multithread safe wrapper to call for warning messages extern void VL_WARN_MT(const char* filename, int linenum, const char* hier, const char* msg) VL_MT_SAFE; // clang-format off /// Print a string, multithread safe. Eventually VL_PRINTF will get called. extern void VL_PRINTF_MT(const char* formatp, ...) VL_ATTR_PRINTF(1) VL_MT_SAFE; // clang-format on /// Print a debug message from internals with standard prefix, with printf style format extern void VL_DBG_MSGF(const char* formatp, ...) VL_ATTR_PRINTF(1) VL_MT_SAFE; // EMIT_RULE: VL_RANDOM: oclean=dirty inline IData VL_RANDOM_I() VL_MT_SAFE { return vl_rand64(); } inline QData VL_RANDOM_Q() VL_MT_SAFE { return vl_rand64(); } extern WDataOutP VL_RANDOM_W(int obits, WDataOutP outwp) VL_MT_SAFE; extern IData VL_RANDOM_SEEDED_II(IData& seedr) VL_MT_SAFE; extern IData VL_URANDOM_SEEDED_II(IData seed) VL_MT_SAFE; inline IData VL_URANDOM_RANGE_I(IData hi, IData lo) { const uint64_t rnd = vl_rand64(); if (VL_LIKELY(hi > lo)) { // (hi - lo + 1) can be zero when hi is UINT_MAX and lo is zero if (VL_UNLIKELY(hi - lo + 1 == 0)) return rnd; // Modulus isn't very fast but it's common that hi-low is power-of-two return (rnd % (hi - lo + 1)) + lo; } else { if (VL_UNLIKELY(lo - hi + 1 == 0)) return rnd; return (rnd % (lo - hi + 1)) + hi; } } /// Random reset a signal of given width (init time only) extern IData VL_RAND_RESET_I(int obits) VL_MT_SAFE; /// Random reset a signal of given width (init time only) extern QData VL_RAND_RESET_Q(int obits) VL_MT_SAFE; /// Random reset a signal of given width (init time only) extern WDataOutP VL_RAND_RESET_W(int obits, WDataOutP outwp) VL_MT_SAFE; /// Zero reset a signal (slow - else use VL_ZERO_W) extern WDataOutP VL_ZERO_RESET_W(int obits, WDataOutP outwp) VL_MT_SAFE; extern void VL_PRINTTIMESCALE(const char* namep, const char* timeunitp, const VerilatedContext* contextp) VL_MT_SAFE; extern WDataOutP _vl_moddiv_w(int lbits, WDataOutP owp, WDataInP const lwp, WDataInP const rwp, bool is_modulus) VL_MT_SAFE; extern IData VL_FGETS_IXI(int obits, void* destp, IData fpi) VL_MT_SAFE; extern void VL_FFLUSH_I(IData fdi) VL_MT_SAFE; extern IData VL_FSEEK_I(IData fdi, IData offset, IData origin) VL_MT_SAFE; extern IData VL_FTELL_I(IData fdi) VL_MT_SAFE; extern void VL_FCLOSE_I(IData fdi) VL_MT_SAFE; extern IData VL_FREAD_I(int width, int array_lsb, int array_size, void* memp, IData fpi, IData start, IData count) VL_MT_SAFE; extern void VL_WRITEF(const char* formatp, ...) VL_MT_SAFE; extern void VL_FWRITEF(IData fpi, const char* formatp, ...) VL_MT_SAFE; extern IData VL_FSCANF_IX(IData fpi, const char* formatp, ...) VL_MT_SAFE; extern IData VL_SSCANF_IIX(int lbits, IData ld, const char* formatp, ...) VL_MT_SAFE; extern IData VL_SSCANF_IQX(int lbits, QData ld, const char* formatp, ...) VL_MT_SAFE; extern IData VL_SSCANF_IWX(int lbits, WDataInP const lwp, const char* formatp, ...) VL_MT_SAFE; extern void VL_SFORMAT_X(int obits, CData& destr, const char* formatp, ...) VL_MT_SAFE; extern void VL_SFORMAT_X(int obits, SData& destr, const char* formatp, ...) VL_MT_SAFE; extern void VL_SFORMAT_X(int obits, IData& destr, const char* formatp, ...) VL_MT_SAFE; extern void VL_SFORMAT_X(int obits, QData& destr, const char* formatp, ...) VL_MT_SAFE; extern void VL_SFORMAT_X(int obits, void* destp, const char* formatp, ...) VL_MT_SAFE; extern void VL_STACKTRACE() VL_MT_SAFE; extern std::string VL_STACKTRACE_N() VL_MT_SAFE; extern IData VL_SYSTEM_IW(int lhswords, WDataInP const lhsp) VL_MT_SAFE; extern IData VL_SYSTEM_IQ(QData lhs) VL_MT_SAFE; inline IData VL_SYSTEM_II(IData lhs) VL_MT_SAFE { return VL_SYSTEM_IQ(lhs); } extern IData VL_TESTPLUSARGS_I(const std::string& format) VL_MT_SAFE; extern const char* vl_mc_scan_plusargs(const char* prefixp) VL_MT_SAFE; // PLIish //========================================================================= // Base macros // Return true if data[bit] set; not 0/1 return, but 0/non-zero return. #define VL_BITISSETLIMIT_W(data, width, bit) (((bit) < (width)) && VL_BITISSET_W(data, bit)) // Shift appropriate word by bit. Does not account for wrapping between two words #define VL_BITRSHIFT_W(data, bit) ((data)[VL_BITWORD_E(bit)] >> VL_BITBIT_E(bit)) // Create two 32-bit words from quadword // WData is always at least 2 words; does not clean upper bits #define VL_SET_WQ(owp, data) \ do { \ (owp)[0] = static_cast(data); \ (owp)[1] = static_cast((data) >> VL_EDATASIZE); \ } while (false) #define VL_SET_WI(owp, data) \ do { \ (owp)[0] = static_cast(data); \ (owp)[1] = 0; \ } while (false) #define VL_SET_QW(lwp) \ ((static_cast((lwp)[0])) \ | (static_cast((lwp)[1]) << (static_cast(VL_EDATASIZE)))) #define VL_SET_QII(ld, rd) ((static_cast(ld) << 32ULL) | static_cast(rd)) // Return FILE* from IData extern FILE* VL_CVT_I_FP(IData lhs) VL_MT_SAFE; // clang-format off // Use a union to avoid cast-to-different-size warnings // Return void* from QData static inline void* VL_CVT_Q_VP(QData lhs) VL_PURE { union { void* fp; QData q; } u; u.q = lhs; return u.fp; } // Return QData from const void* static inline QData VL_CVT_VP_Q(const void* fp) VL_PURE { union { const void* fp; QData q; } u; u.q = 0; u.fp = fp; return u.q; } // Return double from QData (bits, not numerically) static inline double VL_CVT_D_Q(QData lhs) VL_PURE { union { double d; QData q; } u; u.q = lhs; return u.d; } // Return QData from double (bits, not numerically) static inline QData VL_CVT_Q_D(double lhs) VL_PURE { union { double d; QData q; } u; u.d = lhs; return u.q; } // clang-format on // Return double from lhs (numeric) unsigned double VL_ITOR_D_W(int lbits, WDataInP const lwp) VL_PURE; static inline double VL_ITOR_D_I(int, IData lhs) VL_PURE { return static_cast(static_cast(lhs)); } static inline double VL_ITOR_D_Q(int, QData lhs) VL_PURE { return static_cast(static_cast(lhs)); } // Return double from lhs (numeric) signed double VL_ISTOR_D_W(int lbits, WDataInP const lwp) VL_MT_SAFE; static inline double VL_ISTOR_D_I(int lbits, IData lhs) VL_MT_SAFE { if (lbits == 32) return static_cast(static_cast(lhs)); VlWide lwp; VL_SET_WI(lwp, lhs); return VL_ISTOR_D_W(lbits, lwp); } static inline double VL_ISTOR_D_Q(int lbits, QData lhs) VL_MT_SAFE { if (lbits == 64) return static_cast(static_cast(lhs)); VlWide lwp; VL_SET_WQ(lwp, lhs); return VL_ISTOR_D_W(lbits, lwp); } // Return QData from double (numeric) static inline IData VL_RTOI_I_D(double lhs) VL_PURE { return static_cast(VL_TRUNC(lhs)); } // Sign extend such that if MSB set, we get ffff_ffff, else 0s // (Requires clean input) #define VL_SIGN_I(nbits, lhs) ((lhs) >> VL_BITBIT_I((nbits)-VL_UL(1))) #define VL_SIGN_Q(nbits, lhs) ((lhs) >> VL_BITBIT_Q((nbits)-1ULL)) #define VL_SIGN_E(nbits, lhs) ((lhs) >> VL_BITBIT_E((nbits)-VL_EUL(1))) #define VL_SIGN_W(nbits, rwp) \ ((rwp)[VL_BITWORD_E((nbits)-VL_EUL(1))] >> VL_BITBIT_E((nbits)-VL_EUL(1))) #define VL_SIGNONES_E(nbits, lhs) (-(VL_SIGN_E(nbits, lhs))) // Sign bit extended up to MSB, doesn't include unsigned portion // Optimization bug in GCC 3.3 returns different bitmasks to later states for static inline IData VL_EXTENDSIGN_I(int lbits, IData lhs) VL_PURE { return (-((lhs) & (VL_UL(1) << (lbits - 1)))); } static inline QData VL_EXTENDSIGN_Q(int lbits, QData lhs) VL_PURE { return (-((lhs) & (1ULL << (lbits - 1)))); } // Debugging prints extern void _vl_debug_print_w(int lbits, WDataInP const iwp) VL_MT_SAFE; //========================================================================= // Pli macros // clang-format off #if defined(SYSTEMC_VERSION) /// Return current simulation time // Already defined: extern sc_time sc_time_stamp(); inline uint64_t vl_time_stamp64() VL_MT_SAFE { return sc_time_stamp().value(); } #else // Non-SystemC # if !defined(VL_TIME_CONTEXT) && !defined(VL_NO_LEGACY) # ifdef VL_TIME_STAMP64 // vl_time_stamp64() may be optionally defined by the user to return time. // On MSVC++ weak symbols are not supported so must be declared, or define // VL_TIME_CONTEXT. extern uint64_t vl_time_stamp64() VL_ATTR_WEAK VL_MT_SAFE; # else // sc_time_stamp() may be optionally defined by the user to return time. // On MSVC++ weak symbols are not supported so must be declared, or define // VL_TIME_CONTEXT. extern double sc_time_stamp() VL_ATTR_WEAK VL_MT_SAFE; // Verilator 4.032 and newer inline uint64_t vl_time_stamp64() VL_MT_SAFE { // clang9.0.1 requires & although we really do want the weak symbol value // cppcheck-suppress duplicateValueTernary return VL_LIKELY(&sc_time_stamp) ? static_cast(sc_time_stamp()) : 0; } # endif # endif #endif uint64_t VerilatedContext::time() const VL_MT_SAFE { // When using non-default context, fastest path is return time if (VL_LIKELY(m_s.m_time)) return m_s.m_time; #if defined(SYSTEMC_VERSION) || (!defined(VL_TIME_CONTEXT) && !defined(VL_NO_LEGACY)) // Zero time could mean really at zero, or using callback // clang9.0.1 requires & although we really do want the weak symbol value if (VL_LIKELY(&vl_time_stamp64)) { // else is weak symbol that is not defined return vl_time_stamp64(); } #endif return 0; } #define VL_TIME_Q() (Verilated::threadContextp()->time()) #define VL_TIME_D() (static_cast(VL_TIME_Q())) // Time scaled from 1-per-precision into a module's time units ("Unit"-ed, not "United") // Optimized assuming scale is always constant. // Can't use multiply in Q flavor, as might lose precision #define VL_TIME_UNITED_Q(scale) (VL_TIME_Q() / static_cast(scale)) #define VL_TIME_UNITED_D(scale) (VL_TIME_D() / static_cast(scale)) // Return time precision as multiplier of time units double vl_time_multiplier(int scale) VL_PURE; // Return power of 10. e.g. returns 100 if n==2 uint64_t vl_time_pow10(int n) VL_PURE; #ifdef VL_DEBUG /// Evaluate statement if VL_DEBUG defined # define VL_DEBUG_IFDEF(stmt) \ do { \ stmt \ } while (false) /// Evaluate statement if VL_DEBUG defined and Verilated::debug() enabled # define VL_DEBUG_IF(stmt) \ do { \ if (VL_UNLIKELY(Verilated::debug())) {stmt} \ } while (false) #else // We intentionally do not compile the stmt to improve compile speed # define VL_DEBUG_IFDEF(stmt) do {} while (false) # define VL_DEBUG_IF(stmt) do {} while (false) #endif // clang-format on //========================================================================= // Functional macros/routines // These all take the form // VL_func_IW(bits, bits, op, op) // VL_func_WW(bits, bits, out, op, op) // The I/W indicates if it's a integer or wide for the output and each operand. // The bits indicate the bit width of the output and each operand. // If wide output, a temporary storage location is specified. //=================================================================== // SETTING OPERATORS // Output clean // EMIT_RULE: VL_CLEAN: oclean=clean; obits=lbits; #define VL_CLEAN_II(obits, lbits, lhs) ((lhs)&VL_MASK_I(obits)) #define VL_CLEAN_QQ(obits, lbits, lhs) ((lhs)&VL_MASK_Q(obits)) // EMIT_RULE: VL_ASSIGNCLEAN: oclean=clean; obits==lbits; #define VL_ASSIGNCLEAN_W(obits, owp, lwp) VL_CLEAN_WW((obits), (owp), (lwp)) static inline WDataOutP _vl_clean_inplace_w(int obits, WDataOutP owp) VL_MT_SAFE { const int words = VL_WORDS_I(obits); owp[words - 1] &= VL_MASK_E(obits); return owp; } static inline WDataOutP VL_CLEAN_WW(int obits, WDataOutP owp, WDataInP const lwp) VL_MT_SAFE { const int words = VL_WORDS_I(obits); for (int i = 0; (i < (words - 1)); ++i) owp[i] = lwp[i]; owp[words - 1] = lwp[words - 1] & VL_MASK_E(obits); return owp; } static inline WDataOutP VL_ZERO_W(int obits, WDataOutP owp) VL_MT_SAFE { const int words = VL_WORDS_I(obits); for (int i = 0; i < words; ++i) owp[i] = 0; return owp; } static inline WDataOutP VL_ALLONES_W(int obits, WDataOutP owp) VL_MT_SAFE { const int words = VL_WORDS_I(obits); for (int i = 0; i < (words - 1); ++i) owp[i] = ~VL_EUL(0); owp[words - 1] = VL_MASK_E(obits); return owp; } // EMIT_RULE: VL_ASSIGN: oclean=rclean; obits==lbits; // For now, we always have a clean rhs. // Note: If a ASSIGN isn't clean, use VL_ASSIGNCLEAN instead to do the same thing. static inline WDataOutP VL_ASSIGN_W(int obits, WDataOutP owp, WDataInP const lwp) VL_MT_SAFE { const int words = VL_WORDS_I(obits); for (int i = 0; i < words; ++i) owp[i] = lwp[i]; return owp; } // EMIT_RULE: VL_ASSIGNBIT: rclean=clean; static inline void VL_ASSIGNBIT_II(int bit, CData& lhsr, IData rhs) VL_PURE { lhsr = ((lhsr & ~(VL_UL(1) << VL_BITBIT_I(bit))) | (rhs << VL_BITBIT_I(bit))); } static inline void VL_ASSIGNBIT_II(int bit, SData& lhsr, IData rhs) VL_PURE { lhsr = ((lhsr & ~(VL_UL(1) << VL_BITBIT_I(bit))) | (rhs << VL_BITBIT_I(bit))); } static inline void VL_ASSIGNBIT_II(int bit, IData& lhsr, IData rhs) VL_PURE { lhsr = ((lhsr & ~(VL_UL(1) << VL_BITBIT_I(bit))) | (rhs << VL_BITBIT_I(bit))); } static inline void VL_ASSIGNBIT_QI(int bit, QData& lhsr, QData rhs) VL_PURE { lhsr = ((lhsr & ~(1ULL << VL_BITBIT_Q(bit))) | (static_cast(rhs) << VL_BITBIT_Q(bit))); } static inline void VL_ASSIGNBIT_WI(int bit, WDataOutP owp, IData rhs) VL_MT_SAFE { const EData orig = owp[VL_BITWORD_E(bit)]; owp[VL_BITWORD_E(bit)] = ((orig & ~(VL_EUL(1) << VL_BITBIT_E(bit))) | (static_cast(rhs) << VL_BITBIT_E(bit))); } // Alternative form that is an instruction faster when rhs is constant one. static inline void VL_ASSIGNBIT_IO(int bit, CData& lhsr) VL_PURE { lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit))); } static inline void VL_ASSIGNBIT_IO(int bit, SData& lhsr) VL_PURE { lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit))); } static inline void VL_ASSIGNBIT_IO(int bit, IData& lhsr) VL_PURE { lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit))); } static inline void VL_ASSIGNBIT_QO(int bit, QData& lhsr) VL_PURE { lhsr = (lhsr | (1ULL << VL_BITBIT_Q(bit))); } static inline void VL_ASSIGNBIT_WO(int bit, WDataOutP owp) VL_MT_SAFE { const EData orig = owp[VL_BITWORD_E(bit)]; owp[VL_BITWORD_E(bit)] = (orig | (VL_EUL(1) << VL_BITBIT_E(bit))); } //=================================================================== // SYSTEMC OPERATORS // Copying verilog format to systemc integers and bit vectors. // Get a SystemC variable #define VL_ASSIGN_ISI(obits, vvar, svar) \ { (vvar) = VL_CLEAN_II((obits), (obits), (svar).read()); } #define VL_ASSIGN_QSQ(obits, vvar, svar) \ { (vvar) = VL_CLEAN_QQ((obits), (obits), (svar).read()); } #define VL_ASSIGN_ISW(obits, od, svar) \ { (od) = ((svar).read().get_word(0)) & VL_MASK_I(obits); } #define VL_ASSIGN_QSW(obits, od, svar) \ { \ (od) = ((static_cast((svar).read().get_word(1))) << VL_IDATASIZE \ | (svar).read().get_word(0)) \ & VL_MASK_Q(obits); \ } #define VL_ASSIGN_WSW(obits, owp, svar) \ { \ const int words = VL_WORDS_I(obits); \ for (int i = 0; i < words; ++i) (owp)[i] = (svar).read().get_word(i); \ (owp)[words - 1] &= VL_MASK_E(obits); \ } #define VL_ASSIGN_ISU(obits, vvar, svar) \ { (vvar) = VL_CLEAN_II((obits), (obits), (svar).read().to_uint()); } #define VL_ASSIGN_QSU(obits, vvar, svar) \ { (vvar) = VL_CLEAN_QQ((obits), (obits), (svar).read().to_uint64()); } #define VL_ASSIGN_WSB(obits, owp, svar) \ { \ const int words = VL_WORDS_I(obits); \ sc_biguint<(obits)> _butemp = (svar).read(); \ uint32_t* chunkp = _butemp.get_raw(); \ int32_t lsb = 0; \ while (lsb < obits - BITS_PER_DIGIT) { \ const uint32_t data = *chunkp; \ ++chunkp; \ _vl_insert_WI(owp.data(), data, lsb + BITS_PER_DIGIT - 1, lsb); \ lsb += BITS_PER_DIGIT; \ } \ if (lsb < obits) { \ const uint32_t msb_data = *chunkp; \ _vl_insert_WI(owp.data(), msb_data, obits - 1, lsb); \ } \ (owp)[words - 1] &= VL_MASK_E(obits); \ } // Copying verilog format from systemc integers and bit vectors. // Set a SystemC variable #define VL_ASSIGN_SII(obits, svar, vvar) \ { (svar).write(vvar); } #define VL_ASSIGN_SQQ(obits, svar, vvar) \ { (svar).write(vvar); } #define VL_ASSIGN_SWI(obits, svar, rd) \ { \ sc_bv<(obits)> _bvtemp; \ _bvtemp.set_word(0, (rd)); \ (svar).write(_bvtemp); \ } #define VL_ASSIGN_SWQ(obits, svar, rd) \ { \ sc_bv<(obits)> _bvtemp; \ _bvtemp.set_word(0, static_cast(rd)); \ _bvtemp.set_word(1, static_cast((rd) >> VL_IDATASIZE)); \ (svar).write(_bvtemp); \ } #define VL_ASSIGN_SWW(obits, svar, rwp) \ { \ sc_bv<(obits)> _bvtemp; \ for (int i = 0; i < VL_WORDS_I(obits); ++i) _bvtemp.set_word(i, (rwp)[i]); \ (svar).write(_bvtemp); \ } #define VL_ASSIGN_SUI(obits, svar, rd) \ { (svar).write(rd); } #define VL_ASSIGN_SUQ(obits, svar, rd) \ { (svar).write(rd); } #define VL_ASSIGN_SBI(obits, svar, rd) \ { (svar).write(rd); } #define VL_ASSIGN_SBQ(obits, svar, rd) \ { (svar).write(rd); } #define VL_SC_BITS_PER_DIGIT 30 // This comes from sc_nbdefs.h BITS_PER_DIGIT #define VL_ASSIGN_SBW(obits, svar, rwp) \ { \ sc_biguint<(obits)> _butemp; \ int32_t lsb = 0; \ uint32_t* chunkp = _butemp.get_raw(); \ while (lsb + VL_SC_BITS_PER_DIGIT < (obits)) { \ static_assert(std::is_same::value, "IData and EData mismatch"); \ const uint32_t data = VL_SEL_IWII(lsb + VL_SC_BITS_PER_DIGIT + 1, (rwp).data(), lsb, \ VL_SC_BITS_PER_DIGIT); \ *chunkp = data & VL_MASK_E(VL_SC_BITS_PER_DIGIT); \ ++chunkp; \ lsb += VL_SC_BITS_PER_DIGIT; \ } \ if (lsb < (obits)) { \ const uint32_t msb_data = VL_SEL_IWII((obits) + 1, (rwp).data(), lsb, (obits)-lsb); \ *chunkp = msb_data & VL_MASK_E((obits)-lsb); \ } \ (svar).write(_butemp); \ } //=================================================================== // Extending sizes // CAREFUL, we're width changing, so obits!=lbits // Right must be clean because otherwise size increase would pick up bad bits // EMIT_RULE: VL_EXTEND: oclean=clean; rclean==clean; #define VL_EXTEND_II(obits, lbits, lhs) ((lhs)) #define VL_EXTEND_QI(obits, lbits, lhs) (static_cast(lhs)) #define VL_EXTEND_QQ(obits, lbits, lhs) ((lhs)) static inline WDataOutP VL_EXTEND_WI(int obits, int, WDataOutP owp, IData ld) VL_MT_SAFE { // Note for extracts that obits != lbits owp[0] = ld; for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = 0; return owp; } static inline WDataOutP VL_EXTEND_WQ(int obits, int, WDataOutP owp, QData ld) VL_MT_SAFE { VL_SET_WQ(owp, ld); for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0; return owp; } static inline WDataOutP VL_EXTEND_WW(int obits, int lbits, WDataOutP owp, WDataInP const lwp) VL_MT_SAFE { for (int i = 0; i < VL_WORDS_I(lbits); ++i) owp[i] = lwp[i]; for (int i = VL_WORDS_I(lbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0; return owp; } // EMIT_RULE: VL_EXTENDS: oclean=*dirty*; obits=lbits; // Sign extension; output dirty static inline IData VL_EXTENDS_II(int, int lbits, IData lhs) VL_PURE { return VL_EXTENDSIGN_I(lbits, lhs) | lhs; } static inline QData VL_EXTENDS_QI(int, int lbits, QData lhs /*Q_as_need_extended*/) VL_PURE { return VL_EXTENDSIGN_Q(lbits, lhs) | lhs; } static inline QData VL_EXTENDS_QQ(int, int lbits, QData lhs) VL_PURE { return VL_EXTENDSIGN_Q(lbits, lhs) | lhs; } static inline WDataOutP VL_EXTENDS_WI(int obits, int lbits, WDataOutP owp, IData ld) VL_MT_SAFE { const EData sign = VL_SIGNONES_E(lbits, static_cast(ld)); owp[0] = ld | (sign & ~VL_MASK_E(lbits)); for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = sign; return owp; } static inline WDataOutP VL_EXTENDS_WQ(int obits, int lbits, WDataOutP owp, QData ld) VL_MT_SAFE { VL_SET_WQ(owp, ld); const EData sign = VL_SIGNONES_E(lbits, owp[1]); owp[1] |= sign & ~VL_MASK_E(lbits); for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = sign; return owp; } static inline WDataOutP VL_EXTENDS_WW(int obits, int lbits, WDataOutP owp, WDataInP const lwp) VL_MT_SAFE { for (int i = 0; i < VL_WORDS_I(lbits) - 1; ++i) owp[i] = lwp[i]; const int lmsw = VL_WORDS_I(lbits) - 1; const EData sign = VL_SIGNONES_E(lbits, lwp[lmsw]); owp[lmsw] = lwp[lmsw] | (sign & ~VL_MASK_E(lbits)); for (int i = VL_WORDS_I(lbits); i < VL_WORDS_I(obits); ++i) owp[i] = sign; return owp; } //=================================================================== // REDUCTION OPERATORS // EMIT_RULE: VL_REDAND: oclean=clean; lclean==clean; obits=1; #define VL_REDAND_II(lbits, lhs) ((lhs) == VL_MASK_I(lbits)) #define VL_REDAND_IQ(lbits, lhs) ((lhs) == VL_MASK_Q(lbits)) static inline IData VL_REDAND_IW(int lbits, WDataInP const lwp) VL_PURE { const int words = VL_WORDS_I(lbits); EData combine = lwp[0]; for (int i = 1; i < words - 1; ++i) combine &= lwp[i]; combine &= ~VL_MASK_E(lbits) | lwp[words - 1]; // cppcheck-has-bug-suppress knownConditionTrueFalse return ((~combine) == 0); } // EMIT_RULE: VL_REDOR: oclean=clean; lclean==clean; obits=1; #define VL_REDOR_I(lhs) ((lhs) != 0) #define VL_REDOR_Q(lhs) ((lhs) != 0) static inline IData VL_REDOR_W(int words, WDataInP const lwp) VL_PURE { EData equal = 0; for (int i = 0; i < words; ++i) equal |= lwp[i]; return (equal != 0); } // EMIT_RULE: VL_REDXOR: oclean=dirty; obits=1; static inline IData VL_REDXOR_2(IData r) VL_PURE { // Experiments show VL_REDXOR_2 is faster than __builtin_parityl r = (r ^ (r >> 1)); return r; } static inline IData VL_REDXOR_4(IData r) VL_PURE { #if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS) return __builtin_parityl(r); #else r = (r ^ (r >> 1)); r = (r ^ (r >> 2)); return r; #endif } static inline IData VL_REDXOR_8(IData r) VL_PURE { #if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS) return __builtin_parityl(r); #else r = (r ^ (r >> 1)); r = (r ^ (r >> 2)); r = (r ^ (r >> 4)); return r; #endif } static inline IData VL_REDXOR_16(IData r) VL_PURE { #if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS) return __builtin_parityl(r); #else r = (r ^ (r >> 1)); r = (r ^ (r >> 2)); r = (r ^ (r >> 4)); r = (r ^ (r >> 8)); return r; #endif } static inline IData VL_REDXOR_32(IData r) VL_PURE { #if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS) return __builtin_parityl(r); #else r = (r ^ (r >> 1)); r = (r ^ (r >> 2)); r = (r ^ (r >> 4)); r = (r ^ (r >> 8)); r = (r ^ (r >> 16)); return r; #endif } static inline IData VL_REDXOR_64(QData r) VL_PURE { #if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS) return __builtin_parityll(r); #else r = (r ^ (r >> 1)); r = (r ^ (r >> 2)); r = (r ^ (r >> 4)); r = (r ^ (r >> 8)); r = (r ^ (r >> 16)); r = (r ^ (r >> 32)); return static_cast(r); #endif } static inline IData VL_REDXOR_W(int words, WDataInP const lwp) VL_PURE { EData r = lwp[0]; for (int i = 1; i < words; ++i) r ^= lwp[i]; return VL_REDXOR_32(r); } // EMIT_RULE: VL_COUNTONES_II: oclean = false; lhs clean static inline IData VL_COUNTONES_I(IData lhs) VL_PURE { // This is faster than __builtin_popcountl IData r = lhs - ((lhs >> 1) & 033333333333) - ((lhs >> 2) & 011111111111); r = (r + (r >> 3)) & 030707070707; r = (r + (r >> 6)); r = (r + (r >> 12) + (r >> 24)) & 077; return r; } static inline IData VL_COUNTONES_Q(QData lhs) VL_PURE { return VL_COUNTONES_I(static_cast(lhs)) + VL_COUNTONES_I(static_cast(lhs >> 32)); } #define VL_COUNTONES_E VL_COUNTONES_I static inline IData VL_COUNTONES_W(int words, WDataInP const lwp) VL_PURE { EData r = 0; for (int i = 0; i < words; ++i) r += VL_COUNTONES_E(lwp[i]); return r; } // EMIT_RULE: VL_COUNTBITS_II: oclean = false; lhs clean static inline IData VL_COUNTBITS_I(int lbits, IData lhs, IData ctrl0, IData ctrl1, IData ctrl2) VL_PURE { const int ctrlSum = (ctrl0 & 0x1) + (ctrl1 & 0x1) + (ctrl2 & 0x1); if (ctrlSum == 3) { return VL_COUNTONES_I(lhs); } else if (ctrlSum == 0) { const IData mask = (lbits == 32) ? -1 : ((1 << lbits) - 1); return VL_COUNTONES_I(~lhs & mask); } else { return (lbits == 32) ? 32 : lbits; } } static inline IData VL_COUNTBITS_Q(int lbits, QData lhs, IData ctrl0, IData ctrl1, IData ctrl2) VL_PURE { return VL_COUNTBITS_I(32, static_cast(lhs), ctrl0, ctrl1, ctrl2) + VL_COUNTBITS_I(lbits - 32, static_cast(lhs >> 32), ctrl0, ctrl1, ctrl2); } #define VL_COUNTBITS_E VL_COUNTBITS_I static inline IData VL_COUNTBITS_W(int lbits, int words, WDataInP const lwp, IData ctrl0, IData ctrl1, IData ctrl2) VL_MT_SAFE { EData r = 0; IData wordLbits = 32; for (int i = 0; i < words; ++i) { if (i == words - 1) wordLbits = lbits % 32; r += VL_COUNTBITS_E(wordLbits, lwp[i], ctrl0, ctrl1, ctrl2); } return r; } static inline IData VL_ONEHOT_I(IData lhs) VL_PURE { return (((lhs & (lhs - 1)) == 0) & (lhs != 0)); } static inline IData VL_ONEHOT_Q(QData lhs) VL_PURE { return (((lhs & (lhs - 1)) == 0) & (lhs != 0)); } static inline IData VL_ONEHOT_W(int words, WDataInP const lwp) VL_PURE { EData one = 0; for (int i = 0; (i < words); ++i) { if (lwp[i]) { if (one) return 0; one = 1; if (lwp[i] & (lwp[i] - 1)) return 0; } } return one; } static inline IData VL_ONEHOT0_I(IData lhs) VL_PURE { return ((lhs & (lhs - 1)) == 0); } static inline IData VL_ONEHOT0_Q(QData lhs) VL_PURE { return ((lhs & (lhs - 1)) == 0); } static inline IData VL_ONEHOT0_W(int words, WDataInP const lwp) VL_PURE { bool one = false; for (int i = 0; (i < words); ++i) { if (lwp[i]) { if (one) return 0; one = true; if (lwp[i] & (lwp[i] - 1)) return 0; } } return 1; } static inline IData VL_CLOG2_I(IData lhs) VL_PURE { // There are faster algorithms, or fls GCC4 builtins, but rarely used if (VL_UNLIKELY(!lhs)) return 0; --lhs; int shifts = 0; for (; lhs != 0; ++shifts) lhs = lhs >> 1; return shifts; } static inline IData VL_CLOG2_Q(QData lhs) VL_PURE { if (VL_UNLIKELY(!lhs)) return 0; --lhs; int shifts = 0; for (; lhs != 0; ++shifts) lhs = lhs >> 1ULL; return shifts; } static inline IData VL_CLOG2_W(int words, WDataInP const lwp) VL_PURE { const EData adjust = (VL_COUNTONES_W(words, lwp) == 1) ? 0 : 1; for (int i = words - 1; i >= 0; --i) { if (VL_UNLIKELY(lwp[i])) { // Shorter worst case if predict not taken for (int bit = VL_EDATASIZE - 1; bit >= 0; --bit) { if (VL_UNLIKELY(VL_BITISSET_E(lwp[i], bit))) { return i * VL_EDATASIZE + bit + adjust; } } // Can't get here - one bit must be set } } return 0; } static inline IData VL_MOSTSETBITP1_W(int words, WDataInP const lwp) VL_PURE { // MSB set bit plus one; similar to FLS. 0=value is zero for (int i = words - 1; i >= 0; --i) { if (VL_UNLIKELY(lwp[i])) { // Shorter worst case if predict not taken for (int bit = VL_EDATASIZE - 1; bit >= 0; --bit) { if (VL_UNLIKELY(VL_BITISSET_E(lwp[i], bit))) return i * VL_EDATASIZE + bit + 1; } // Can't get here - one bit must be set } } return 0; } //=================================================================== // SIMPLE LOGICAL OPERATORS // EMIT_RULE: VL_AND: oclean=lclean||rclean; obits=lbits; lbits==rbits; static inline WDataOutP VL_AND_W(int words, WDataOutP owp, WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE { for (int i = 0; (i < words); ++i) owp[i] = (lwp[i] & rwp[i]); return owp; } // EMIT_RULE: VL_OR: oclean=lclean&&rclean; obits=lbits; lbits==rbits; static inline WDataOutP VL_OR_W(int words, WDataOutP owp, WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE { for (int i = 0; (i < words); ++i) owp[i] = (lwp[i] | rwp[i]); return owp; } // EMIT_RULE: VL_CHANGEXOR: oclean=1; obits=32; lbits==rbits; static inline IData VL_CHANGEXOR_W(int words, WDataInP const lwp, WDataInP const rwp) VL_PURE { IData od = 0; for (int i = 0; (i < words); ++i) od |= (lwp[i] ^ rwp[i]); return od; } // EMIT_RULE: VL_XOR: oclean=lclean&&rclean; obits=lbits; lbits==rbits; static inline WDataOutP VL_XOR_W(int words, WDataOutP owp, WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE { for (int i = 0; (i < words); ++i) owp[i] = (lwp[i] ^ rwp[i]); return owp; } // EMIT_RULE: VL_NOT: oclean=dirty; obits=lbits; static inline WDataOutP VL_NOT_W(int words, WDataOutP owp, WDataInP const lwp) VL_MT_SAFE { for (int i = 0; i < words; ++i) owp[i] = ~(lwp[i]); return owp; } //========================================================================= // Logical comparisons // EMIT_RULE: VL_EQ: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits; // EMIT_RULE: VL_NEQ: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits; // EMIT_RULE: VL_LT: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits; // EMIT_RULE: VL_GT: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits; // EMIT_RULE: VL_GTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits; // EMIT_RULE: VL_LTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits; #define VL_NEQ_W(words, lwp, rwp) (!VL_EQ_W(words, lwp, rwp)) #define VL_LT_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) < 0) #define VL_LTE_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) <= 0) #define VL_GT_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) > 0) #define VL_GTE_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) >= 0) // Output clean, AND MUST BE CLEAN static inline IData VL_EQ_W(int words, WDataInP const lwp, WDataInP const rwp) VL_PURE { EData nequal = 0; for (int i = 0; (i < words); ++i) nequal |= (lwp[i] ^ rwp[i]); return (nequal == 0); } // Internal usage static inline int _vl_cmp_w(int words, WDataInP const lwp, WDataInP const rwp) VL_PURE { for (int i = words - 1; i >= 0; --i) { if (lwp[i] > rwp[i]) return 1; if (lwp[i] < rwp[i]) return -1; } return 0; // == } #define VL_LTS_IWW(lbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) < 0) #define VL_LTES_IWW(lbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) <= 0) #define VL_GTS_IWW(lbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) > 0) #define VL_GTES_IWW(lbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) >= 0) static inline IData VL_GTS_III(int lbits, IData lhs, IData rhs) VL_PURE { // For lbits==32, this becomes just a single instruction, otherwise ~5. // GCC 3.3.4 sign extension bugs on AMD64 architecture force us to use quad logic const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc return lhs_signed > rhs_signed; } static inline IData VL_GTS_IQQ(int lbits, QData lhs, QData rhs) VL_PURE { const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); return lhs_signed > rhs_signed; } static inline IData VL_GTES_III(int lbits, IData lhs, IData rhs) VL_PURE { const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc return lhs_signed >= rhs_signed; } static inline IData VL_GTES_IQQ(int lbits, QData lhs, QData rhs) VL_PURE { const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); return lhs_signed >= rhs_signed; } static inline IData VL_LTS_III(int lbits, IData lhs, IData rhs) VL_PURE { const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc return lhs_signed < rhs_signed; } static inline IData VL_LTS_IQQ(int lbits, QData lhs, QData rhs) VL_PURE { const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); return lhs_signed < rhs_signed; } static inline IData VL_LTES_III(int lbits, IData lhs, IData rhs) VL_PURE { const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc return lhs_signed <= rhs_signed; } static inline IData VL_LTES_IQQ(int lbits, QData lhs, QData rhs) VL_PURE { const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); return lhs_signed <= rhs_signed; } static inline int _vl_cmps_w(int lbits, WDataInP const lwp, WDataInP const rwp) VL_PURE { const int words = VL_WORDS_I(lbits); int i = words - 1; // We need to flip sense if negative comparison const EData lsign = VL_SIGN_E(lbits, lwp[i]); const EData rsign = VL_SIGN_E(lbits, rwp[i]); if (!lsign && rsign) return 1; // + > - if (lsign && !rsign) return -1; // - < + for (; i >= 0; --i) { if (lwp[i] > rwp[i]) return 1; if (lwp[i] < rwp[i]) return -1; } return 0; // == } //========================================================================= // Expressions // Output NOT clean static inline WDataOutP VL_NEGATE_W(int words, WDataOutP owp, WDataInP const lwp) VL_MT_SAFE { EData carry = 1; for (int i = 0; i < words; ++i) { owp[i] = ~lwp[i] + carry; carry = (owp[i] < ~lwp[i]); } return owp; } static inline void VL_NEGATE_INPLACE_W(int words, WDataOutP owp_lwp) VL_MT_SAFE { EData carry = 1; for (int i = 0; i < words; ++i) { const EData word = ~owp_lwp[i] + carry; carry = (word < ~owp_lwp[i]); owp_lwp[i] = word; } } // EMIT_RULE: VL_MUL: oclean=dirty; lclean==clean; rclean==clean; // EMIT_RULE: VL_DIV: oclean=dirty; lclean==clean; rclean==clean; // EMIT_RULE: VL_MODDIV: oclean=dirty; lclean==clean; rclean==clean; #define VL_DIV_III(lbits, lhs, rhs) (((rhs) == 0) ? 0 : (lhs) / (rhs)) #define VL_DIV_QQQ(lbits, lhs, rhs) (((rhs) == 0) ? 0 : (lhs) / (rhs)) #define VL_DIV_WWW(lbits, owp, lwp, rwp) (_vl_moddiv_w(lbits, owp, lwp, rwp, 0)) #define VL_MODDIV_III(lbits, lhs, rhs) (((rhs) == 0) ? 0 : (lhs) % (rhs)) #define VL_MODDIV_QQQ(lbits, lhs, rhs) (((rhs) == 0) ? 0 : (lhs) % (rhs)) #define VL_MODDIV_WWW(lbits, owp, lwp, rwp) (_vl_moddiv_w(lbits, owp, lwp, rwp, 1)) static inline WDataOutP VL_ADD_W(int words, WDataOutP owp, WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE { QData carry = 0; for (int i = 0; i < words; ++i) { carry = carry + static_cast(lwp[i]) + static_cast(rwp[i]); owp[i] = (carry & 0xffffffffULL); carry = (carry >> 32ULL) & 0xffffffffULL; } // Last output word is dirty return owp; } static inline WDataOutP VL_SUB_W(int words, WDataOutP owp, WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE { QData carry = 0; for (int i = 0; i < words; ++i) { carry = (carry + static_cast(lwp[i]) + static_cast(static_cast(~rwp[i]))); if (i == 0) ++carry; // Negation of rwp owp[i] = (carry & 0xffffffffULL); carry = (carry >> 32ULL) & 0xffffffffULL; } // Last output word is dirty return owp; } static inline WDataOutP VL_MUL_W(int words, WDataOutP owp, WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE { for (int i = 0; i < words; ++i) owp[i] = 0; for (int lword = 0; lword < words; ++lword) { for (int rword = 0; rword < words; ++rword) { QData mul = static_cast(lwp[lword]) * static_cast(rwp[rword]); for (int qword = lword + rword; qword < words; ++qword) { mul += static_cast(owp[qword]); owp[qword] = (mul & 0xffffffffULL); mul = (mul >> 32ULL) & 0xffffffffULL; } } } // Last output word is dirty return owp; } static inline IData VL_MULS_III(int lbits, IData lhs, IData rhs) VL_PURE { const int32_t lhs_signed = VL_EXTENDS_II(32, lbits, lhs); const int32_t rhs_signed = VL_EXTENDS_II(32, lbits, rhs); return lhs_signed * rhs_signed; } static inline QData VL_MULS_QQQ(int lbits, QData lhs, QData rhs) VL_PURE { const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); return lhs_signed * rhs_signed; } static inline WDataOutP VL_MULS_WWW(int lbits, WDataOutP owp, WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE { const int words = VL_WORDS_I(lbits); // cppcheck-suppress variableScope WData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here // cppcheck-suppress variableScope WData rwstore[VL_MULS_MAX_WORDS]; WDataInP lwusp = lwp; WDataInP rwusp = rwp; const EData lneg = VL_SIGN_E(lbits, lwp[words - 1]); if (lneg) { // Negate lhs lwusp = lwstore; VL_NEGATE_W(words, lwstore, lwp); // cppcheck-has-bug-suppress unreadVariable lwstore[words - 1] &= VL_MASK_E(lbits); // Clean it } const EData rneg = VL_SIGN_E(lbits, rwp[words - 1]); if (rneg) { // Negate rhs rwusp = rwstore; VL_NEGATE_W(words, rwstore, rwp); // cppcheck-has-bug-suppress unreadVariable rwstore[words - 1] &= VL_MASK_E(lbits); // Clean it } VL_MUL_W(words, owp, lwusp, rwusp); owp[words - 1] &= VL_MASK_E( lbits); // Clean. Note it's ok for the multiply to overflow into the sign bit if ((lneg ^ rneg) & 1) { // Negate output (not using NEGATE, as owp==lwp) QData carry = 0; for (int i = 0; i < words; ++i) { carry = carry + static_cast(static_cast(~owp[i])); if (i == 0) ++carry; // Negation of temp2 owp[i] = (carry & 0xffffffffULL); carry = (carry >> 32ULL) & 0xffffffffULL; } // Not needed: owp[words-1] |= 1< 0) power = power * power; if (rhs & (1ULL << i)) out *= power; } return out; } static inline QData VL_POW_QQQ(int, int, int rbits, QData lhs, QData rhs) VL_PURE { if (VL_UNLIKELY(rhs == 0)) return 1; if (VL_UNLIKELY(lhs == 0)) return 0; QData power = lhs; QData out = 1ULL; for (int i = 0; i < rbits; ++i) { if (i > 0) power = power * power; if (rhs & (1ULL << i)) out *= power; } return out; } WDataOutP VL_POW_WWW(int obits, int, int rbits, WDataOutP owp, WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE; WDataOutP VL_POW_WWQ(int obits, int, int rbits, WDataOutP owp, WDataInP const lwp, QData rhs) VL_MT_SAFE; QData VL_POW_QQW(int obits, int, int rbits, QData lhs, WDataInP const rwp) VL_MT_SAFE; #define VL_POWSS_IIQ(obits, lbits, rbits, lhs, rhs, lsign, rsign) \ VL_POWSS_QQQ(obits, lbits, rbits, lhs, rhs, lsign, rsign) #define VL_POWSS_IIQ(obits, lbits, rbits, lhs, rhs, lsign, rsign) \ VL_POWSS_QQQ(obits, lbits, rbits, lhs, rhs, lsign, rsign) #define VL_POWSS_IIW(obits, lbits, rbits, lhs, rwp, lsign, rsign) \ VL_POWSS_QQW(obits, lbits, rbits, lhs, rwp, lsign, rsign) #define VL_POWSS_QQI(obits, lbits, rbits, lhs, rhs, lsign, rsign) \ VL_POWSS_QQQ(obits, lbits, rbits, lhs, rhs, lsign, rsign) #define VL_POWSS_WWI(obits, lbits, rbits, owp, lwp, rhs, lsign, rsign) \ VL_POWSS_WWQ(obits, lbits, rbits, owp, lwp, rhs, lsign, rsign) static inline IData VL_POWSS_III(int obits, int, int rbits, IData lhs, IData rhs, bool lsign, bool rsign) VL_MT_SAFE { if (VL_UNLIKELY(rhs == 0)) return 1; if (rsign && VL_SIGN_I(rbits, rhs)) { if (lhs == 0) { return 0; // "X" } else if (lhs == 1) { return 1; } else if (lsign && lhs == VL_MASK_I(obits)) { // -1 if (rhs & 1) { return VL_MASK_I(obits); // -1^odd=-1 } else { return 1; // -1^even=1 } } return 0; } return VL_POW_III(obits, rbits, rbits, lhs, rhs); } static inline QData VL_POWSS_QQQ(int obits, int, int rbits, QData lhs, QData rhs, bool lsign, bool rsign) VL_MT_SAFE { if (VL_UNLIKELY(rhs == 0)) return 1; if (rsign && VL_SIGN_Q(rbits, rhs)) { if (lhs == 0) { return 0; // "X" } else if (lhs == 1) { return 1; } else if (lsign && lhs == VL_MASK_Q(obits)) { // -1 if (rhs & 1) { return VL_MASK_Q(obits); // -1^odd=-1 } else { return 1; // -1^even=1 } } return 0; } return VL_POW_QQQ(obits, rbits, rbits, lhs, rhs); } WDataOutP VL_POWSS_WWW(int obits, int, int rbits, WDataOutP owp, WDataInP const lwp, WDataInP const rwp, bool lsign, bool rsign) VL_MT_SAFE; WDataOutP VL_POWSS_WWQ(int obits, int, int rbits, WDataOutP owp, WDataInP const lwp, QData rhs, bool lsign, bool rsign) VL_MT_SAFE; QData VL_POWSS_QQW(int obits, int, int rbits, QData lhs, WDataInP const rwp, bool lsign, bool rsign) VL_MT_SAFE; //=================================================================== // Concat/replication // INTERNAL: Stuff LHS bit 0++ into OUTPUT at specified offset // ld may be "dirty", output is clean static inline void _vl_insert_II(CData& lhsr, IData ld, int hbit, int lbit, int rbits) VL_PURE { const IData cleanmask = VL_MASK_I(rbits); const IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit; lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask)); } static inline void _vl_insert_II(SData& lhsr, IData ld, int hbit, int lbit, int rbits) VL_PURE { const IData cleanmask = VL_MASK_I(rbits); const IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit; lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask)); } static inline void _vl_insert_II(IData& lhsr, IData ld, int hbit, int lbit, int rbits) VL_PURE { const IData cleanmask = VL_MASK_I(rbits); const IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit; lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask)); } static inline void _vl_insert_QQ(QData& lhsr, QData ld, int hbit, int lbit, int rbits) VL_PURE { const QData cleanmask = VL_MASK_Q(rbits); const QData insmask = (VL_MASK_Q(hbit - lbit + 1)) << lbit; lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask)); } static inline void _vl_insert_WI(WDataOutP iowp, IData ld, int hbit, int lbit, int rbits = 0) VL_MT_SAFE { const int hoffset = VL_BITBIT_E(hbit); const int loffset = VL_BITBIT_E(lbit); const int roffset = VL_BITBIT_E(rbits); const int hword = VL_BITWORD_E(hbit); const int lword = VL_BITWORD_E(lbit); const int rword = VL_BITWORD_E(rbits); const EData cleanmask = hword == rword ? VL_MASK_E(roffset) : VL_MASK_E(0); if (hoffset == VL_SIZEBITS_E && loffset == 0) { // Fast and common case, word based insertion iowp[VL_BITWORD_E(lbit)] = ld & cleanmask; } else { const EData lde = static_cast(ld); if (hword == lword) { // know < EData bits because above checks it // Assignment is contained within one word of destination const EData insmask = (VL_MASK_E(hoffset - loffset + 1)) << loffset; iowp[lword] = (iowp[lword] & ~insmask) | ((lde << loffset) & (insmask & cleanmask)); } else { // Assignment crosses a word boundary in destination const EData hinsmask = (VL_MASK_E(hoffset - 0 + 1)) << 0; const EData linsmask = (VL_MASK_E((VL_EDATASIZE - 1) - loffset + 1)) << loffset; const int nbitsonright = VL_EDATASIZE - loffset; // bits that end up in lword iowp[lword] = (iowp[lword] & ~linsmask) | ((lde << loffset) & linsmask); iowp[hword] = (iowp[hword] & ~hinsmask) | ((lde >> nbitsonright) & (hinsmask & cleanmask)); } } } // INTERNAL: Stuff large LHS bit 0++ into OUTPUT at specified offset // lwp may be "dirty" static inline void _vl_insert_WW(WDataOutP iowp, WDataInP const lwp, int hbit, int lbit, int rbits = 0) VL_MT_SAFE { const int hoffset = VL_BITBIT_E(hbit); const int loffset = VL_BITBIT_E(lbit); const int roffset = VL_BITBIT_E(rbits); const int lword = VL_BITWORD_E(lbit); const int hword = VL_BITWORD_E(hbit); const int rword = VL_BITWORD_E(rbits); const int words = VL_WORDS_I(hbit - lbit + 1); // Cleaning mask, only applied to top word of the assignment. Is a no-op // if we don't assign to the top word of the destination. const EData cleanmask = hword == rword ? VL_MASK_E(roffset) : VL_MASK_E(0); if (hoffset == VL_SIZEBITS_E && loffset == 0) { // Fast and common case, word based insertion for (int i = 0; i < (words - 1); ++i) iowp[lword + i] = lwp[i]; iowp[hword] = lwp[words - 1] & cleanmask; } else if (loffset == 0) { // Non-32bit, but nicely aligned, so stuff all but the last word for (int i = 0; i < (words - 1); ++i) iowp[lword + i] = lwp[i]; // Know it's not a full word as above fast case handled it const EData hinsmask = (VL_MASK_E(hoffset - 0 + 1)); iowp[hword] = (iowp[hword] & ~hinsmask) | (lwp[words - 1] & (hinsmask & cleanmask)); } else { const EData hinsmask = (VL_MASK_E(hoffset - 0 + 1)) << 0; const EData linsmask = (VL_MASK_E((VL_EDATASIZE - 1) - loffset + 1)) << loffset; const int nbitsonright = VL_EDATASIZE - loffset; // bits that end up in lword (know loffset!=0) // Middle words for (int i = 0; i < words; ++i) { { // Lower word const int oword = lword + i; const EData d = lwp[i] << loffset; const EData od = (iowp[oword] & ~linsmask) | (d & linsmask); if (oword == hword) { iowp[oword] = (iowp[oword] & ~hinsmask) | (od & (hinsmask & cleanmask)); } else { iowp[oword] = od; } } { // Upper word const int oword = lword + i + 1; if (oword <= hword) { const EData d = lwp[i] >> nbitsonright; const EData od = (d & ~linsmask) | (iowp[oword] & linsmask); if (oword == hword) { iowp[oword] = (iowp[oword] & ~hinsmask) | (od & (hinsmask & cleanmask)); } else { iowp[oword] = od; } } } } } } static inline void _vl_insert_WQ(WDataOutP iowp, QData ld, int hbit, int lbit, int rbits = 0) VL_MT_SAFE { VlWide lwp; VL_SET_WQ(lwp, ld); _vl_insert_WW(iowp, lwp, hbit, lbit, rbits); } // EMIT_RULE: VL_REPLICATE: oclean=clean>width32, dirty<=width32; lclean=clean; rclean==clean; // RHS MUST BE CLEAN CONSTANT. #define VL_REPLICATE_IOI(lbits, ld, rep) (-(ld)) // Iff lbits==1 #define VL_REPLICATE_QOI(lbits, ld, rep) (-(static_cast(ld))) // Iff lbits==1 static inline IData VL_REPLICATE_III(int lbits, IData ld, IData rep) VL_PURE { IData returndata = ld; for (unsigned i = 1; i < rep; ++i) { returndata = returndata << lbits; returndata |= ld; } return returndata; } static inline QData VL_REPLICATE_QII(int lbits, IData ld, IData rep) VL_PURE { QData returndata = ld; for (unsigned i = 1; i < rep; ++i) { returndata = returndata << lbits; returndata |= static_cast(ld); } return returndata; } static inline WDataOutP VL_REPLICATE_WII(int lbits, WDataOutP owp, IData ld, IData rep) VL_MT_SAFE { owp[0] = ld; // Zeroing all words isn't strictly needed but allows compiler to know // it does not need to preserve data in word(s) not being written for (unsigned i = 1; i < VL_WORDS_I(static_cast(lbits) * rep); ++i) owp[i] = 0; for (unsigned i = 1; i < rep; ++i) { _vl_insert_WI(owp, ld, i * lbits + lbits - 1, i * lbits); } return owp; } static inline WDataOutP VL_REPLICATE_WQI(int lbits, WDataOutP owp, QData ld, IData rep) VL_MT_SAFE { VL_SET_WQ(owp, ld); // Zeroing all words isn't strictly needed but allows compiler to know // it does not need to preserve data in word(s) not being written for (unsigned i = 2; i < VL_WORDS_I(static_cast(lbits) * rep); ++i) owp[i] = 0; for (unsigned i = 1; i < rep; ++i) { _vl_insert_WQ(owp, ld, i * lbits + lbits - 1, i * lbits); } return owp; } static inline WDataOutP VL_REPLICATE_WWI(int lbits, WDataOutP owp, WDataInP const lwp, IData rep) VL_MT_SAFE { for (unsigned i = 0; i < VL_WORDS_I(static_cast(lbits)); ++i) owp[i] = lwp[i]; // Zeroing all words isn't strictly needed but allows compiler to know // it does not need to preserve data in word(s) not being written for (unsigned i = VL_WORDS_I(static_cast(lbits)); i < VL_WORDS_I(static_cast(lbits * rep)); ++i) owp[i] = 0; for (unsigned i = 1; i < rep; ++i) { _vl_insert_WW(owp, lwp, i * lbits + lbits - 1, i * lbits); } return owp; } // Left stream operator. Output will always be clean. LHS and RHS must be clean. // Special "fast" versions for slice sizes that are a power of 2. These use // shifts and masks to execute faster than the slower for-loop approach where a // subset of bits is copied in during each iteration. static inline IData VL_STREAML_FAST_III(int lbits, IData ld, IData rd_log2) VL_PURE { // Pre-shift bits in most-significant slice: // // If lbits is not a multiple of the slice size (i.e., lbits % rd != 0), // then we end up with a "gap" in our reversed result. For example, if we // have a 5-bit Verilog signal (lbits=5) in an 8-bit C data type: // // ld = ---43210 // // (where numbers are the Verilog signal bit numbers and '-' is an unused bit). // Executing the switch statement below with a slice size of two (rd=2, // rd_log2=1) produces: // // ret = 1032-400 // // Pre-shifting the bits in the most-significant slice allows us to avoid // this gap in the shuffled data: // // ld_adjusted = --4-3210 // ret = 10324--- IData ret = ld; if (rd_log2) { const uint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2); // max multiple of rd <= lbits const uint32_t lbitsRem = lbits - lbitsFloor; // number of bits in most-sig slice (MSS) const IData msbMask = VL_MASK_I(lbitsRem) << lbitsFloor; // mask to sel only bits in MSS ret = (ret & ~msbMask) | ((ret & msbMask) << ((VL_UL(1) << rd_log2) - lbitsRem)); } switch (rd_log2) { case 0: ret = ((ret >> 1) & VL_UL(0x55555555)) | ((ret & VL_UL(0x55555555)) << 1); // FALLTHRU case 1: ret = ((ret >> 2) & VL_UL(0x33333333)) | ((ret & VL_UL(0x33333333)) << 2); // FALLTHRU case 2: ret = ((ret >> 4) & VL_UL(0x0f0f0f0f)) | ((ret & VL_UL(0x0f0f0f0f)) << 4); // FALLTHRU case 3: ret = ((ret >> 8) & VL_UL(0x00ff00ff)) | ((ret & VL_UL(0x00ff00ff)) << 8); // FALLTHRU case 4: ret = ((ret >> 16) | (ret << 16)); // FALLTHRU default:; } return ret >> (VL_IDATASIZE - lbits); } static inline QData VL_STREAML_FAST_QQI(int lbits, QData ld, IData rd_log2) VL_PURE { // Pre-shift bits in most-significant slice (see comment in VL_STREAML_FAST_III) QData ret = ld; if (rd_log2) { const uint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2); const uint32_t lbitsRem = lbits - lbitsFloor; const QData msbMask = lbitsFloor == 64 ? 0ULL : VL_MASK_Q(lbitsRem) << lbitsFloor; ret = (ret & ~msbMask) | ((ret & msbMask) << ((1ULL << rd_log2) - lbitsRem)); } switch (rd_log2) { case 0: ret = (((ret >> 1) & 0x5555555555555555ULL) | ((ret & 0x5555555555555555ULL) << 1)); // FALLTHRU case 1: ret = (((ret >> 2) & 0x3333333333333333ULL) | ((ret & 0x3333333333333333ULL) << 2)); // FALLTHRU case 2: ret = (((ret >> 4) & 0x0f0f0f0f0f0f0f0fULL) | ((ret & 0x0f0f0f0f0f0f0f0fULL) << 4)); // FALLTHRU case 3: ret = (((ret >> 8) & 0x00ff00ff00ff00ffULL) | ((ret & 0x00ff00ff00ff00ffULL) << 8)); // FALLTHRU case 4: ret = (((ret >> 16) & 0x0000ffff0000ffffULL) | ((ret & 0x0000ffff0000ffffULL) << 16)); // FALLTHRU case 5: ret = ((ret >> 32) | (ret << 32)); // FALLTHRU default:; } return ret >> (VL_QUADSIZE - lbits); } // Regular "slow" streaming operators static inline IData VL_STREAML_III(int lbits, IData ld, IData rd) VL_PURE { IData ret = 0; // Slice size should never exceed the lhs width const IData mask = VL_MASK_I(rd); for (int istart = 0; istart < lbits; istart += rd) { int ostart = lbits - rd - istart; ostart = ostart > 0 ? ostart : 0; ret |= ((ld >> istart) & mask) << ostart; } return ret; } static inline QData VL_STREAML_QQI(int lbits, QData ld, IData rd) VL_PURE { QData ret = 0; // Slice size should never exceed the lhs width const QData mask = VL_MASK_Q(rd); for (int istart = 0; istart < lbits; istart += rd) { int ostart = lbits - rd - istart; ostart = ostart > 0 ? ostart : 0; ret |= ((ld >> istart) & mask) << ostart; } return ret; } static inline WDataOutP VL_STREAML_WWI(int lbits, WDataOutP owp, WDataInP const lwp, IData rd) VL_MT_SAFE { VL_ZERO_W(lbits, owp); // Slice size should never exceed the lhs width const int ssize = (rd < static_cast(lbits)) ? rd : (static_cast(lbits)); for (int istart = 0; istart < lbits; istart += rd) { int ostart = lbits - rd - istart; ostart = ostart > 0 ? ostart : 0; for (int sbit = 0; sbit < ssize && sbit < lbits - istart; ++sbit) { // Extract a single bit from lwp and shift it to the correct // location for owp. const EData bit = (VL_BITRSHIFT_W(lwp, (istart + sbit)) & 1) << VL_BITBIT_E(ostart + sbit); owp[VL_BITWORD_E(ostart + sbit)] |= bit; } } return owp; } // Because concats are common and wide, it's valuable to always have a clean output. // Thus we specify inputs must be clean, so we don't need to clean the output. // Note the bit shifts are always constants, so the adds in these constify out. // Casts required, as args may be 8 bit entities, and need to shift to appropriate output size #define VL_CONCAT_III(obits, lbits, rbits, ld, rd) \ (static_cast(ld) << (rbits) | static_cast(rd)) #define VL_CONCAT_QII(obits, lbits, rbits, ld, rd) \ (static_cast(ld) << (rbits) | static_cast(rd)) #define VL_CONCAT_QIQ(obits, lbits, rbits, ld, rd) \ (static_cast(ld) << (rbits) | static_cast(rd)) #define VL_CONCAT_QQI(obits, lbits, rbits, ld, rd) \ (static_cast(ld) << (rbits) | static_cast(rd)) #define VL_CONCAT_QQQ(obits, lbits, rbits, ld, rd) \ (static_cast(ld) << (rbits) | static_cast(rd)) static inline WDataOutP VL_CONCAT_WII(int obits, int lbits, int rbits, WDataOutP owp, IData ld, IData rd) VL_MT_SAFE { owp[0] = rd; for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = 0; _vl_insert_WI(owp, ld, rbits + lbits - 1, rbits); return owp; } static inline WDataOutP VL_CONCAT_WWI(int obits, int lbits, int rbits, WDataOutP owp, WDataInP const lwp, IData rd) VL_MT_SAFE { owp[0] = rd; for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = 0; _vl_insert_WW(owp, lwp, rbits + lbits - 1, rbits); return owp; } static inline WDataOutP VL_CONCAT_WIW(int obits, int lbits, int rbits, WDataOutP owp, IData ld, WDataInP const rwp) VL_MT_SAFE { for (int i = 0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i]; for (int i = VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0; _vl_insert_WI(owp, ld, rbits + lbits - 1, rbits); return owp; } static inline WDataOutP VL_CONCAT_WIQ(int obits, int lbits, int rbits, WDataOutP owp, IData ld, QData rd) VL_MT_SAFE { VL_SET_WQ(owp, rd); for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0; _vl_insert_WI(owp, ld, rbits + lbits - 1, rbits); return owp; } static inline WDataOutP VL_CONCAT_WQI(int obits, int lbits, int rbits, WDataOutP owp, QData ld, IData rd) VL_MT_SAFE { owp[0] = rd; for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = 0; _vl_insert_WQ(owp, ld, rbits + lbits - 1, rbits); return owp; } static inline WDataOutP VL_CONCAT_WQQ(int obits, int lbits, int rbits, WDataOutP owp, QData ld, QData rd) VL_MT_SAFE { VL_SET_WQ(owp, rd); for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0; _vl_insert_WQ(owp, ld, rbits + lbits - 1, rbits); return owp; } static inline WDataOutP VL_CONCAT_WWQ(int obits, int lbits, int rbits, WDataOutP owp, WDataInP const lwp, QData rd) VL_MT_SAFE { VL_SET_WQ(owp, rd); for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0; _vl_insert_WW(owp, lwp, rbits + lbits - 1, rbits); return owp; } static inline WDataOutP VL_CONCAT_WQW(int obits, int lbits, int rbits, WDataOutP owp, QData ld, WDataInP const rwp) VL_MT_SAFE { for (int i = 0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i]; for (int i = VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0; _vl_insert_WQ(owp, ld, rbits + lbits - 1, rbits); return owp; } static inline WDataOutP VL_CONCAT_WWW(int obits, int lbits, int rbits, WDataOutP owp, WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE { for (int i = 0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i]; for (int i = VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0; _vl_insert_WW(owp, lwp, rbits + lbits - 1, rbits); return owp; } //=================================================================== // Shifts // Static shift, used by internal functions // The output is the same as the input - it overlaps! static inline void _vl_shiftl_inplace_w(int obits, WDataOutP iowp, IData rd /*1 or 4*/) VL_MT_SAFE { const int words = VL_WORDS_I(obits); const EData linsmask = VL_MASK_E(rd); for (int i = words - 1; i >= 1; --i) { iowp[i] = ((iowp[i] << rd) & ~linsmask) | ((iowp[i - 1] >> (VL_EDATASIZE - rd)) & linsmask); } iowp[0] = ((iowp[0] << rd) & ~linsmask); iowp[VL_WORDS_I(obits) - 1] &= VL_MASK_E(obits); } // EMIT_RULE: VL_SHIFTL: oclean=lclean; rclean==clean; // Important: Unlike most other funcs, the shift might well be a computed // expression. Thus consider this when optimizing. (And perhaps have 2 funcs?) static inline WDataOutP VL_SHIFTL_WWI(int obits, int, int, WDataOutP owp, WDataInP const lwp, IData rd) VL_MT_SAFE { const int word_shift = VL_BITWORD_E(rd); const int bit_shift = VL_BITBIT_E(rd); if (rd >= static_cast(obits)) { // rd may be huge with MSB set for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0; } else if (bit_shift == 0) { // Aligned word shift (<<0,<<32,<<64 etc) for (int i = 0; i < word_shift; ++i) owp[i] = 0; for (int i = word_shift; i < VL_WORDS_I(obits); ++i) owp[i] = lwp[i - word_shift]; } else { for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0; _vl_insert_WW(owp, lwp, obits - 1, rd); } return owp; } static inline WDataOutP VL_SHIFTL_WWW(int obits, int lbits, int rbits, WDataOutP owp, WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE { for (int i = 1; i < VL_WORDS_I(rbits); ++i) { if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more return VL_ZERO_W(obits, owp); } } return VL_SHIFTL_WWI(obits, lbits, 32, owp, lwp, rwp[0]); } static inline WDataOutP VL_SHIFTL_WWQ(int obits, int lbits, int rbits, WDataOutP owp, WDataInP const lwp, QData rd) VL_MT_SAFE { VlWide rwp; VL_SET_WQ(rwp, rd); return VL_SHIFTL_WWW(obits, lbits, rbits, owp, lwp, rwp); } static inline IData VL_SHIFTL_IIW(int obits, int, int rbits, IData lhs, WDataInP const rwp) VL_MT_SAFE { for (int i = 1; i < VL_WORDS_I(rbits); ++i) { if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more return 0; } } return VL_CLEAN_II(obits, obits, lhs << rwp[0]); } static inline IData VL_SHIFTL_IIQ(int obits, int, int, IData lhs, QData rhs) VL_MT_SAFE { if (VL_UNLIKELY(rhs >= VL_IDATASIZE)) return 0; return VL_CLEAN_II(obits, obits, lhs << rhs); } static inline QData VL_SHIFTL_QQW(int obits, int, int rbits, QData lhs, WDataInP const rwp) VL_MT_SAFE { for (int i = 1; i < VL_WORDS_I(rbits); ++i) { if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more return 0; } } // Above checks rwp[1]==0 so not needed in below shift return VL_CLEAN_QQ(obits, obits, lhs << (static_cast(rwp[0]))); } static inline QData VL_SHIFTL_QQQ(int obits, int, int, QData lhs, QData rhs) VL_MT_SAFE { if (VL_UNLIKELY(rhs >= VL_QUADSIZE)) return 0; return VL_CLEAN_QQ(obits, obits, lhs << rhs); } // EMIT_RULE: VL_SHIFTR: oclean=lclean; rclean==clean; // Important: Unlike most other funcs, the shift might well be a computed // expression. Thus consider this when optimizing. (And perhaps have 2 funcs?) static inline WDataOutP VL_SHIFTR_WWI(int obits, int, int, WDataOutP owp, WDataInP const lwp, IData rd) VL_MT_SAFE { const int word_shift = VL_BITWORD_E(rd); // Maybe 0 const int bit_shift = VL_BITBIT_E(rd); if (rd >= static_cast(obits)) { // rd may be huge with MSB set for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0; } else if (bit_shift == 0) { // Aligned word shift (>>0,>>32,>>64 etc) const int copy_words = (VL_WORDS_I(obits) - word_shift); for (int i = 0; i < copy_words; ++i) owp[i] = lwp[i + word_shift]; for (int i = copy_words; i < VL_WORDS_I(obits); ++i) owp[i] = 0; } else { const int loffset = rd & VL_SIZEBITS_E; const int nbitsonright = VL_EDATASIZE - loffset; // bits that end up in lword (know // loffset!=0) Middle words const int words = VL_WORDS_I(obits - rd); for (int i = 0; i < words; ++i) { owp[i] = lwp[i + word_shift] >> loffset; const int upperword = i + word_shift + 1; if (upperword < VL_WORDS_I(obits)) owp[i] |= lwp[upperword] << nbitsonright; } for (int i = words; i < VL_WORDS_I(obits); ++i) owp[i] = 0; } return owp; } static inline WDataOutP VL_SHIFTR_WWW(int obits, int lbits, int rbits, WDataOutP owp, WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE { for (int i = 1; i < VL_WORDS_I(rbits); ++i) { if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more return VL_ZERO_W(obits, owp); } } return VL_SHIFTR_WWI(obits, lbits, 32, owp, lwp, rwp[0]); } static inline WDataOutP VL_SHIFTR_WWQ(int obits, int lbits, int rbits, WDataOutP owp, WDataInP const lwp, QData rd) VL_MT_SAFE { VlWide rwp; VL_SET_WQ(rwp, rd); return VL_SHIFTR_WWW(obits, lbits, rbits, owp, lwp, rwp); } static inline IData VL_SHIFTR_IIW(int obits, int, int rbits, IData lhs, WDataInP const rwp) VL_PURE { for (int i = 1; i < VL_WORDS_I(rbits); ++i) { if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more return 0; } } return VL_CLEAN_II(obits, obits, lhs >> rwp[0]); } static inline QData VL_SHIFTR_QQW(int obits, int, int rbits, QData lhs, WDataInP const rwp) VL_PURE { for (int i = 1; i < VL_WORDS_I(rbits); ++i) { if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more return 0; } } // Above checks rwp[1]==0 so not needed in below shift return VL_CLEAN_QQ(obits, obits, lhs >> (static_cast(rwp[0]))); } static inline IData VL_SHIFTR_IIQ(int obits, int, int, IData lhs, QData rhs) VL_PURE { if (VL_UNLIKELY(rhs >= VL_IDATASIZE)) return 0; return VL_CLEAN_QQ(obits, obits, lhs >> rhs); } static inline QData VL_SHIFTR_QQQ(int obits, int, int, QData lhs, QData rhs) VL_PURE { if (VL_UNLIKELY(rhs >= VL_QUADSIZE)) return 0; return VL_CLEAN_QQ(obits, obits, lhs >> rhs); } // EMIT_RULE: VL_SHIFTRS: oclean=false; lclean=clean, rclean==clean; static inline IData VL_SHIFTRS_III(int obits, int lbits, int, IData lhs, IData rhs) VL_PURE { // Note the C standard does not specify the >> operator as a arithmetic shift! // IEEE says signed if output signed, but bit position from lbits; // must use lbits for sign; lbits might != obits, // an EXTEND(SHIFTRS(...)) can became a SHIFTRS(...) within same 32/64 bit word length const IData sign = -(lhs >> (lbits - 1)); // ffff_ffff if negative const IData signext = ~(VL_MASK_I(lbits) >> rhs); // One with bits where we've shifted "past" return (lhs >> rhs) | (sign & VL_CLEAN_II(obits, obits, signext)); } static inline QData VL_SHIFTRS_QQI(int obits, int lbits, int, QData lhs, IData rhs) VL_PURE { const QData sign = -(lhs >> (lbits - 1)); const QData signext = ~(VL_MASK_Q(lbits) >> rhs); return (lhs >> rhs) | (sign & VL_CLEAN_QQ(obits, obits, signext)); } static inline IData VL_SHIFTRS_IQI(int obits, int lbits, int rbits, QData lhs, IData rhs) VL_PURE { return static_cast(VL_SHIFTRS_QQI(obits, lbits, rbits, lhs, rhs)); } static inline WDataOutP VL_SHIFTRS_WWI(int obits, int lbits, int, WDataOutP owp, WDataInP const lwp, IData rd) VL_MT_SAFE { const int word_shift = VL_BITWORD_E(rd); const int bit_shift = VL_BITBIT_E(rd); const int lmsw = VL_WORDS_I(obits) - 1; const EData sign = VL_SIGNONES_E(lbits, lwp[lmsw]); if (rd >= static_cast(obits)) { // Shifting past end, sign in all of lbits for (int i = 0; i <= lmsw; ++i) owp[i] = sign; owp[lmsw] &= VL_MASK_E(lbits); } else if (bit_shift == 0) { // Aligned word shift (>>0,>>32,>>64 etc) const int copy_words = (VL_WORDS_I(obits) - word_shift); for (int i = 0; i < copy_words; ++i) owp[i] = lwp[i + word_shift]; if (copy_words >= 0) owp[copy_words - 1] |= ~VL_MASK_E(obits) & sign; for (int i = copy_words; i < VL_WORDS_I(obits); ++i) owp[i] = sign; owp[lmsw] &= VL_MASK_E(lbits); } else { const int loffset = rd & VL_SIZEBITS_E; const int nbitsonright = VL_EDATASIZE - loffset; // bits that end up in lword (know loffset!=0) // Middle words const int words = VL_WORDS_I(obits - rd); for (int i = 0; i < words; ++i) { owp[i] = lwp[i + word_shift] >> loffset; const int upperword = i + word_shift + 1; if (upperword < VL_WORDS_I(obits)) owp[i] |= lwp[upperword] << nbitsonright; } if (words) owp[words - 1] |= sign & ~VL_MASK_E(obits - loffset); for (int i = words; i < VL_WORDS_I(obits); ++i) owp[i] = sign; owp[lmsw] &= VL_MASK_E(lbits); } return owp; } static inline WDataOutP VL_SHIFTRS_WWW(int obits, int lbits, int rbits, WDataOutP owp, WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE { EData overshift = 0; // Huge shift 1>>32 or more for (int i = 1; i < VL_WORDS_I(rbits); ++i) overshift |= rwp[i]; if (VL_UNLIKELY(overshift || rwp[0] >= static_cast(obits))) { const int lmsw = VL_WORDS_I(obits) - 1; const EData sign = VL_SIGNONES_E(lbits, lwp[lmsw]); for (int j = 0; j <= lmsw; ++j) owp[j] = sign; owp[lmsw] &= VL_MASK_E(lbits); return owp; } return VL_SHIFTRS_WWI(obits, lbits, 32, owp, lwp, rwp[0]); } static inline WDataOutP VL_SHIFTRS_WWQ(int obits, int lbits, int rbits, WDataOutP owp, WDataInP const lwp, QData rd) VL_MT_SAFE { VlWide rwp; VL_SET_WQ(rwp, rd); return VL_SHIFTRS_WWW(obits, lbits, rbits, owp, lwp, rwp); } static inline IData VL_SHIFTRS_IIW(int obits, int lbits, int rbits, IData lhs, WDataInP const rwp) VL_PURE { EData overshift = 0; // Huge shift 1>>32 or more for (int i = 1; i < VL_WORDS_I(rbits); ++i) overshift |= rwp[i]; if (VL_UNLIKELY(overshift || rwp[0] >= static_cast(obits))) { const IData sign = -(lhs >> (lbits - 1)); // ffff_ffff if negative return VL_CLEAN_II(obits, obits, sign); } return VL_SHIFTRS_III(obits, lbits, 32, lhs, rwp[0]); } static inline QData VL_SHIFTRS_QQW(int obits, int lbits, int rbits, QData lhs, WDataInP const rwp) VL_PURE { EData overshift = 0; // Huge shift 1>>32 or more for (int i = 1; i < VL_WORDS_I(rbits); ++i) overshift |= rwp[i]; if (VL_UNLIKELY(overshift || rwp[0] >= static_cast(obits))) { const QData sign = -(lhs >> (lbits - 1)); // ffff_ffff if negative return VL_CLEAN_QQ(obits, obits, sign); } return VL_SHIFTRS_QQI(obits, lbits, 32, lhs, rwp[0]); } static inline IData VL_SHIFTRS_IIQ(int obits, int lbits, int rbits, IData lhs, QData rhs) VL_PURE { VlWide rwp; VL_SET_WQ(rwp, rhs); return VL_SHIFTRS_IIW(obits, lbits, rbits, lhs, rwp); } static inline QData VL_SHIFTRS_QQQ(int obits, int lbits, int rbits, QData lhs, QData rhs) VL_PURE { VlWide rwp; VL_SET_WQ(rwp, rhs); return VL_SHIFTRS_QQW(obits, lbits, rbits, lhs, rwp); } //=================================================================== // Bit selection // EMIT_RULE: VL_BITSEL: oclean=dirty; rclean==clean; #define VL_BITSEL_IIII(lbits, lhs, rhs) ((lhs) >> (rhs)) #define VL_BITSEL_QIII(lbits, lhs, rhs) ((lhs) >> (rhs)) #define VL_BITSEL_QQII(lbits, lhs, rhs) ((lhs) >> (rhs)) #define VL_BITSEL_IQII(lbits, lhs, rhs) (static_cast((lhs) >> (rhs))) static inline IData VL_BITSEL_IWII(int lbits, WDataInP const lwp, IData rd) VL_MT_SAFE { const int word = VL_BITWORD_E(rd); if (VL_UNLIKELY(rd > static_cast(lbits))) { return ~0; // Spec says you can go outside the range of a array. Don't coredump if so. // We return all 1's as that's more likely to find bugs (?) than 0's. } else { return (lwp[word] >> VL_BITBIT_E(rd)); } } // EMIT_RULE: VL_RANGE: oclean=lclean; out=dirty // & MUST BE CLEAN (currently constant) #define VL_SEL_IIII(lbits, lhs, lsb, width) ((lhs) >> (lsb)) #define VL_SEL_QQII(lbits, lhs, lsb, width) ((lhs) >> (lsb)) #define VL_SEL_IQII(lbits, lhs, lsb, width) (static_cast((lhs) >> (lsb))) static inline IData VL_SEL_IWII(int lbits, WDataInP const lwp, IData lsb, IData width) VL_MT_SAFE { const int msb = lsb + width - 1; if (VL_UNLIKELY(msb >= lbits)) { return ~0; // Spec says you can go outside the range of a array. Don't coredump if so. } else if (VL_BITWORD_E(msb) == VL_BITWORD_E(static_cast(lsb))) { return VL_BITRSHIFT_W(lwp, lsb); } else { // 32 bit extraction may span two words const int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb); // bits that come from low word return ((lwp[VL_BITWORD_E(msb)] << nbitsfromlow) | VL_BITRSHIFT_W(lwp, lsb)); } } static inline QData VL_SEL_QWII(int lbits, WDataInP const lwp, IData lsb, IData width) VL_MT_SAFE { const int msb = lsb + width - 1; if (VL_UNLIKELY(msb > lbits)) { return ~0; // Spec says you can go outside the range of a array. Don't coredump if so. } else if (VL_BITWORD_E(msb) == VL_BITWORD_E(static_cast(lsb))) { return VL_BITRSHIFT_W(lwp, lsb); } else if (VL_BITWORD_E(msb) == 1 + VL_BITWORD_E(static_cast(lsb))) { const int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb); const QData hi = (lwp[VL_BITWORD_E(msb)]); const QData lo = VL_BITRSHIFT_W(lwp, lsb); return (hi << nbitsfromlow) | lo; } else { // 64 bit extraction may span three words const int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb); const QData hi = (lwp[VL_BITWORD_E(msb)]); const QData mid = (lwp[VL_BITWORD_E(lsb) + 1]); const QData lo = VL_BITRSHIFT_W(lwp, lsb); return (hi << (nbitsfromlow + VL_EDATASIZE)) | (mid << nbitsfromlow) | lo; } } static inline WDataOutP VL_SEL_WWII(int obits, int lbits, WDataOutP owp, WDataInP const lwp, IData lsb, IData width) VL_MT_SAFE { const int msb = lsb + width - 1; const int word_shift = VL_BITWORD_E(lsb); if (VL_UNLIKELY(msb > lbits)) { // Outside bounds, for (int i = 0; i < VL_WORDS_I(obits) - 1; ++i) owp[i] = ~0; owp[VL_WORDS_I(obits) - 1] = VL_MASK_E(obits); } else if (VL_BITBIT_E(lsb) == 0) { // Just a word extract for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = lwp[i + word_shift]; } else { // Not a _vl_insert because the bits come from any bit number and goto bit 0 const int loffset = lsb & VL_SIZEBITS_E; const int nbitsfromlow = VL_EDATASIZE - loffset; // bits that end up in lword (know // loffset!=0) Middle words const int words = VL_WORDS_I(msb - lsb + 1); for (int i = 0; i < words; ++i) { owp[i] = lwp[i + word_shift] >> loffset; const int upperword = i + word_shift + 1; if (upperword <= static_cast(VL_BITWORD_E(msb))) { owp[i] |= lwp[upperword] << nbitsfromlow; } } for (int i = words; i < VL_WORDS_I(obits); ++i) owp[i] = 0; } return owp; } //====================================================================== // Expressions needing insert/select // Return QData from double (numeric) // EMIT_RULE: VL_RTOIROUND_Q_D: oclean=dirty; lclean==clean/real static inline QData VL_RTOIROUND_Q_D(double lhs) VL_PURE { // IEEE format: [63]=sign [62:52]=exp+1023 [51:0]=mantissa // This does not need to support subnormals as they are sub-integral lhs = VL_ROUND(lhs); if (lhs == 0.0) return 0; const QData q = VL_CVT_Q_D(lhs); const int lsb = static_cast((q >> 52ULL) & VL_MASK_Q(11)) - 1023 - 52; const uint64_t mantissa = (q & VL_MASK_Q(52)) | (1ULL << 52); uint64_t out = 0; if (lsb < 0) { out = mantissa >> -lsb; } else if (lsb < 64) { out = mantissa << lsb; } if (lhs < 0) out = -out; return out; } static inline IData VL_RTOIROUND_I_D(double lhs) VL_PURE { return static_cast(VL_RTOIROUND_Q_D(lhs)); } static inline WDataOutP VL_RTOIROUND_W_D(int obits, WDataOutP owp, double lhs) VL_MT_SAFE { // IEEE format: [63]=sign [62:52]=exp+1023 [51:0]=mantissa // This does not need to support subnormals as they are sub-integral lhs = VL_ROUND(lhs); VL_ZERO_W(obits, owp); if (lhs == 0.0) return owp; const QData q = VL_CVT_Q_D(lhs); const int lsb = static_cast((q >> 52ULL) & VL_MASK_Q(11)) - 1023 - 52; const uint64_t mantissa = (q & VL_MASK_Q(52)) | (1ULL << 52); if (lsb < 0) { VL_SET_WQ(owp, mantissa >> -lsb); } else if (lsb < obits) { _vl_insert_WQ(owp, mantissa, lsb + 52, lsb); } if (lhs < 0) VL_NEGATE_INPLACE_W(VL_WORDS_I(obits), owp); return owp; } //====================================================================== // Range assignments // EMIT_RULE: VL_ASSIGNRANGE: rclean=dirty; static inline void VL_ASSIGNSEL_II(int rbits, int obits, int lsb, CData& lhsr, IData rhs) VL_PURE { _vl_insert_II(lhsr, rhs, lsb + obits - 1, lsb, rbits); } static inline void VL_ASSIGNSEL_II(int rbits, int obits, int lsb, SData& lhsr, IData rhs) VL_PURE { _vl_insert_II(lhsr, rhs, lsb + obits - 1, lsb, rbits); } static inline void VL_ASSIGNSEL_II(int rbits, int obits, int lsb, IData& lhsr, IData rhs) VL_PURE { _vl_insert_II(lhsr, rhs, lsb + obits - 1, lsb, rbits); } static inline void VL_ASSIGNSEL_QI(int rbits, int obits, int lsb, QData& lhsr, IData rhs) VL_PURE { _vl_insert_QQ(lhsr, rhs, lsb + obits - 1, lsb, rbits); } static inline void VL_ASSIGNSEL_QQ(int rbits, int obits, int lsb, QData& lhsr, QData rhs) VL_PURE { _vl_insert_QQ(lhsr, rhs, lsb + obits - 1, lsb, rbits); } // static inline void VL_ASSIGNSEL_IIIW(int obits, int lsb, IData& lhsr, WDataInP const rwp) // VL_MT_SAFE { Illegal, as lhs width >= rhs width static inline void VL_ASSIGNSEL_WI(int rbits, int obits, int lsb, WDataOutP iowp, IData rhs) VL_MT_SAFE { _vl_insert_WI(iowp, rhs, lsb + obits - 1, lsb, rbits); } static inline void VL_ASSIGNSEL_WQ(int rbits, int obits, int lsb, WDataOutP iowp, QData rhs) VL_MT_SAFE { _vl_insert_WQ(iowp, rhs, lsb + obits - 1, lsb, rbits); } static inline void VL_ASSIGNSEL_WW(int rbits, int obits, int lsb, WDataOutP iowp, WDataInP const rwp) VL_MT_SAFE { _vl_insert_WW(iowp, rwp, lsb + obits - 1, lsb, rbits); } //====================================================================== // Triops static inline WDataOutP VL_COND_WIWW(int obits, WDataOutP owp, int cond, WDataInP const w1p, WDataInP const w2p) VL_MT_SAFE { const int words = VL_WORDS_I(obits); for (int i = 0; i < words; ++i) owp[i] = cond ? w1p[i] : w2p[i]; return owp; } //====================================================================== // Constification // VL_CONST_W_#X(int obits, WDataOutP owp, IData data0, .... IData data(#-1)) // Sets wide vector words to specified constant words. // These macros are used when o might represent more words then are given as constants, // hence all upper words must be zeroed. // If changing the number of functions here, also change EMITCINLINES_NUM_CONSTW #define VL_C_END_(obits, wordsSet) \ for (int i = (wordsSet); i < VL_WORDS_I(obits); ++i) o[i] = 0; \ return o // clang-format off static inline WDataOutP VL_CONST_W_1X(int obits, WDataOutP o, EData d0) VL_MT_SAFE { o[0] = d0; VL_C_END_(obits, 1); } static inline WDataOutP VL_CONST_W_2X(int obits, WDataOutP o, EData d1, EData d0) VL_MT_SAFE { o[0] = d0; o[1] = d1; VL_C_END_(obits, 2); } static inline WDataOutP VL_CONST_W_3X(int obits, WDataOutP o, EData d2, EData d1, EData d0) VL_MT_SAFE { o[0] = d0; o[1] = d1; o[2] = d2; VL_C_END_(obits, 3); } static inline WDataOutP VL_CONST_W_4X(int obits, WDataOutP o, EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE { o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3; VL_C_END_(obits, 4); } static inline WDataOutP VL_CONST_W_5X(int obits, WDataOutP o, EData d4, EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE { o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3; o[4] = d4; VL_C_END_(obits, 5); } static inline WDataOutP VL_CONST_W_6X(int obits, WDataOutP o, EData d5, EData d4, EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE { o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3; o[4] = d4; o[5] = d5; VL_C_END_(obits, 6); } static inline WDataOutP VL_CONST_W_7X(int obits, WDataOutP o, EData d6, EData d5, EData d4, EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE { o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3; o[4] = d4; o[5] = d5; o[6] = d6; VL_C_END_(obits, 7); } static inline WDataOutP VL_CONST_W_8X(int obits, WDataOutP o, EData d7, EData d6, EData d5, EData d4, EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE { o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3; o[4] = d4; o[5] = d5; o[6] = d6; o[7] = d7; VL_C_END_(obits, 8); } // static inline WDataOutP VL_CONSTHI_W_1X(int obits, int lsb, WDataOutP obase, EData d0) VL_MT_SAFE { WDataOutP o = obase + VL_WORDS_I(lsb); o[0] = d0; VL_C_END_(obits, VL_WORDS_I(lsb) + 1); } static inline WDataOutP VL_CONSTHI_W_2X(int obits, int lsb, WDataOutP obase, EData d1, EData d0) VL_MT_SAFE { WDataOutP o = obase + VL_WORDS_I(lsb); o[0] = d0; o[1] = d1; VL_C_END_(obits, VL_WORDS_I(lsb) + 2); } static inline WDataOutP VL_CONSTHI_W_3X(int obits, int lsb, WDataOutP obase, EData d2, EData d1, EData d0) VL_MT_SAFE { WDataOutP o = obase + VL_WORDS_I(lsb); o[0] = d0; o[1] = d1; o[2] = d2; VL_C_END_(obits, VL_WORDS_I(lsb) + 3); } static inline WDataOutP VL_CONSTHI_W_4X(int obits, int lsb, WDataOutP obase, EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE { WDataOutP o = obase + VL_WORDS_I(lsb); o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3; VL_C_END_(obits, VL_WORDS_I(lsb) + 4); } static inline WDataOutP VL_CONSTHI_W_5X(int obits, int lsb, WDataOutP obase, EData d4, EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE { WDataOutP o = obase + VL_WORDS_I(lsb); o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3; o[4] = d4; VL_C_END_(obits, VL_WORDS_I(lsb) + 5); } static inline WDataOutP VL_CONSTHI_W_6X(int obits, int lsb, WDataOutP obase, EData d5, EData d4, EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE { WDataOutP o = obase + VL_WORDS_I(lsb); o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3; o[4] = d4; o[5] = d5; VL_C_END_(obits, VL_WORDS_I(lsb) + 6); } static inline WDataOutP VL_CONSTHI_W_7X(int obits, int lsb, WDataOutP obase, EData d6, EData d5, EData d4, EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE { WDataOutP o = obase + VL_WORDS_I(lsb); o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3; o[4] = d4; o[5] = d5; o[6] = d6; VL_C_END_(obits, VL_WORDS_I(lsb) + 7); } static inline WDataOutP VL_CONSTHI_W_8X(int obits, int lsb, WDataOutP obase, EData d7, EData d6, EData d5, EData d4, EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE { WDataOutP o = obase + VL_WORDS_I(lsb); o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3; o[4] = d4; o[5] = d5; o[6] = d6; o[7] = d7; VL_C_END_(obits, VL_WORDS_I(lsb) + 8); } #undef VL_C_END_ // Partial constant, lower words of vector wider than 8*32, starting at bit number lsb static inline void VL_CONSTLO_W_8X(int lsb, WDataOutP obase, EData d7, EData d6, EData d5, EData d4, EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE { WDataOutP o = obase + VL_WORDS_I(lsb); o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3; o[4] = d4; o[5] = d5; o[6] = d6; o[7] = d7; } // clang-format on //====================================================================== // Strings extern std::string VL_PUTC_N(const std::string& lhs, IData rhs, CData ths) VL_PURE; extern CData VL_GETC_N(const std::string& lhs, IData rhs) VL_PURE; extern std::string VL_SUBSTR_N(const std::string& lhs, IData rhs, IData ths) VL_PURE; inline IData VL_CMP_NN(const std::string& lhs, const std::string& rhs, bool ignoreCase) VL_PURE { // SystemVerilog does not allow a string variable to contain '\0'. // So C functions such as strcmp() can correctly compare strings. if (ignoreCase) { return VL_STRCASECMP(lhs.c_str(), rhs.c_str()); } else { return std::strcmp(lhs.c_str(), rhs.c_str()); } } extern IData VL_ATOI_N(const std::string& str, int base) VL_PURE; extern IData VL_NTOI_I(int obits, const std::string& str) VL_PURE; extern QData VL_NTOI_Q(int obits, const std::string& str) VL_PURE; extern void VL_NTOI_W(int obits, WDataOutP owp, const std::string& str) VL_PURE; extern IData VL_FGETS_NI(std::string& dest, IData fpi) VL_MT_SAFE; //====================================================================== // Dist functions extern IData VL_DIST_CHI_SQUARE(IData& seedr, IData udeg_of_free) VL_MT_SAFE; extern IData VL_DIST_ERLANG(IData& seedr, IData uk, IData umean) VL_MT_SAFE; extern IData VL_DIST_EXPONENTIAL(IData& seedr, IData umean) VL_MT_SAFE; extern IData VL_DIST_NORMAL(IData& seedr, IData umean, IData udeviation) VL_MT_SAFE; extern IData VL_DIST_POISSON(IData& seedr, IData umean) VL_MT_SAFE; extern IData VL_DIST_T(IData& seedr, IData udeg_of_free) VL_MT_SAFE; extern IData VL_DIST_UNIFORM(IData& seedr, IData ustart, IData uend) VL_MT_SAFE; //====================================================================== // Conversion functions extern std::string VL_CVT_PACK_STR_NW(int lwords, const WDataInP lwp) VL_PURE; inline std::string VL_CVT_PACK_STR_NQ(QData lhs) VL_PURE { VlWide lw; VL_SET_WQ(lw, lhs); return VL_CVT_PACK_STR_NW(VL_WQ_WORDS_E, lw); } inline std::string VL_CVT_PACK_STR_NN(const std::string& lhs) VL_PURE { return lhs; } inline std::string& VL_CVT_PACK_STR_NN(std::string& lhs) VL_PURE { return lhs; } inline std::string VL_CVT_PACK_STR_NI(IData lhs) VL_PURE { VlWide lw; VL_SET_WI(lw, lhs); return VL_CVT_PACK_STR_NW(1, lw); } inline std::string VL_CONCATN_NNN(const std::string& lhs, const std::string& rhs) VL_PURE { return lhs + rhs; } inline std::string VL_REPLICATEN_NNQ(const std::string& lhs, IData rep) VL_PURE { std::string out; out.reserve(lhs.length() * rep); for (unsigned times = 0; times < rep; ++times) out += lhs; return out; } inline std::string VL_REPLICATEN_NNI(const std::string& lhs, IData rep) VL_PURE { return VL_REPLICATEN_NNQ(lhs, rep); } inline IData VL_LEN_IN(const std::string& ld) { return static_cast(ld.length()); } extern std::string VL_TOLOWER_NN(const std::string& ld) VL_PURE; extern std::string VL_TOUPPER_NN(const std::string& ld) VL_PURE; extern IData VL_FERROR_IN(IData fpi, std::string& outputr) VL_MT_SAFE; extern IData VL_FERROR_IW(IData fpi, int obits, WDataOutP outwp) VL_MT_SAFE; extern IData VL_FOPEN_NN(const std::string& filename, const std::string& mode) VL_MT_SAFE; extern IData VL_FOPEN_MCD_N(const std::string& filename) VL_MT_SAFE; extern void VL_READMEM_N(bool hex, int bits, QData depth, int array_lsb, const std::string& filename, void* memp, QData start, QData end) VL_MT_SAFE; extern void VL_WRITEMEM_N(bool hex, int bits, QData depth, int array_lsb, const std::string& filename, const void* memp, QData start, QData end) VL_MT_SAFE; extern IData VL_SSCANF_INX(int lbits, const std::string& ld, const char* formatp, ...) VL_MT_SAFE; extern void VL_SFORMAT_X(int obits_ignored, std::string& output, const char* formatp, ...) VL_MT_SAFE; extern std::string VL_SFORMATF_NX(const char* formatp, ...) VL_MT_SAFE; extern void VL_TIMEFORMAT_IINI(int units, int precision, const std::string& suffix, int width, VerilatedContext* contextp) VL_MT_SAFE; extern IData VL_VALUEPLUSARGS_INW(int rbits, const std::string& ld, WDataOutP rwp) VL_MT_SAFE; inline IData VL_VALUEPLUSARGS_INI(int rbits, const std::string& ld, CData& rdr) VL_MT_SAFE { VlWide<2> rwp; const IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp); if (got) rdr = rwp[0]; return got; } inline IData VL_VALUEPLUSARGS_INI(int rbits, const std::string& ld, SData& rdr) VL_MT_SAFE { VlWide<2> rwp; const IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp); if (got) rdr = rwp[0]; return got; } inline IData VL_VALUEPLUSARGS_INI(int rbits, const std::string& ld, IData& rdr) VL_MT_SAFE { VlWide<2> rwp; const IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp); if (got) rdr = rwp[0]; return got; } inline IData VL_VALUEPLUSARGS_INQ(int rbits, const std::string& ld, QData& rdr) VL_MT_SAFE { VlWide<2> rwp; const IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp); if (got) rdr = VL_SET_QW(rwp); return got; } inline IData VL_VALUEPLUSARGS_INQ(int rbits, const std::string& ld, double& rdr) VL_MT_SAFE { VlWide<2> rwp; const IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp); if (got) rdr = VL_CVT_D_Q(VL_SET_QW(rwp)); return got; } extern IData VL_VALUEPLUSARGS_INN(int, const std::string& ld, std::string& rdr) VL_MT_SAFE; //====================================================================== #endif // Guard