This allows compiling the run-time library with optimization even when OPT_FAST is not used in order to imporove model build speed, possibly during debug cycles.
Instead of __ALLfast.cpp and __ALLslow.cpp, we now create only a single
__ALL.cpp and compile it with OPT_FAST, this speeds up small builds
where the C compiler does not dominate. A separate patch will follow
turning VM_PARALLEL_BUILDS on by default at a certain size.
Given this change to the build there is now no point in emitting both
fast and slow routines into the same .cpp file when --output-split is
not set as they will be just included in the same __ALL.cpp file. To
keep things simpler and the output easier to comprehend, V3EmitC has
also been changed to always emit the fast and slow files separately.
Also change verilated.mk to apply OPT_SLOW to all slow files, not just
ones called *__Slow.cpp. This change in particular ensures __Syms.cpp
is build as slow.
Part of #2360.
The main goal of this patch is to enable splitting the full and
incremental tracing functions into multiple functions, which can then be
run in parallel at a later stage. It also simplifies further
experimentation as all of the interesting trace code construction now
happens in V3Trace. No functional change is intended by this patch, but
there are some implementation changes in the generated code.
Highlights:
- Pass symbol table directly to trace callbacks for simplicity.
- A new traceRegister function is generated which adds each trace
function as an individual callback, which means we can have multiple
callbacks for each trace function type.
- A new traceCleanup function is generated which clears the activity
flags, as the trace callbacks might be implemented as multiple functions.
- Re-worked sub-function handling so there is no separate sub-function
for each trace activity class. Sub-functions are generate when required
by splitting.
- traceFull/traceChg are now created in V3Trace rather than V3TraceDecl,
this requires carrying the trace value tree in TraceDecl until it
reaches V3Trace where the TraceInc nodes are created (previously a
TraceInc was also created in V3TraceDecl which carries the value).
- Allow arbitrary number of open array dimensions, not just 3. Note
right now this only works with the array querying functions specified
in IEEE 1800-2017 H.12.2
- Issue error when passing dynamic array or queue as DPI open array
(currently unsupported)
- Also tweaked AstVar::vlArgTypeRecurse, which should now error or fail
for unsupported types.
Use SIMD intrinsics to render VCD traces.
I have measured 10-40% single threaded performance increase with VCD
tracing on SweRV EH1 and lowRISC Ibex using SSE2 intrinsics to render
the trace. Also helps a tiny bit with FST, but now almost all of the FST
overhead is in the FST library.
I have reworked the tracing routines to use more precisely sized
arguments. The nice thing about this is that the performance without the
intrinsics is pretty much the same as it was before, as we do at most 2x
as much work as necessary, but in exchange there are no data dependent
branches at all.
Convert trace buffer to 32-bit entries, rather than a union containing a
pointer type. Also tweaked trace entry layouts for a bit more
performance. This gains another 10% on SweRV EH1 CoreMark.