Merge branch 'master' into develop-v5

This commit is contained in:
Wilson Snyder 2022-08-20 14:02:09 -04:00
commit ebb37b0156
9 changed files with 350 additions and 252 deletions

View File

@ -24,6 +24,7 @@ Verilator 4.225 devel
**Minor:**
* Add --future0 and --future1 options.
* Fix incorrect bit op tree optimization (#3470). [algrobman]
* Fix empty string arguments to display (#3484). [Grulfen]
* Fix table misoptimizing away display (#3488). [Stefan Post]

View File

@ -488,6 +488,30 @@ Summary:
are typically used only when recommended by a maintainer to help debug
or work around an issue.
.. option:: -future0 <option>
Rarely needed. Suppress an unknown Verilator option for an option that
takes no additional arguments. This is used to allow scripts written
with pragmas for a later version of Verilator to run under a older
version. e.g. :code:`-future0 option --option` would on older versions
that do not understand :code:`--option` or :code:`+option` suppress what
would otherwise be an invalid option error, and on newer versions that
implement :code:`--option`, :code:`-future0 option --option` would have
the :code:`-future0 option` ignored and the :code:`--option` would
function appropriately.
.. option:: -future1 <option>
Rarely needed. Suppress an unknown Verilator option for an option that
takes an additional argument. This is used to allow scripts written
with pragmas for a later version of Verilator to run under a older
version. e.g. :code:`-future1 option --option arg` would on older
versions that do not understand :code:`--option arg` or :code:`+option
arg` suppress what would otherwise be an invalid option error, and on
newer versions that implement :code:`--option arg`, :code:`-future1
option --option arg` would have the :code:`-future1 option` ignored and
the :code:`--option arg` would function appropriately.
.. option:: -G<name>=<value>
Overwrites the given parameter of the toplevel module. The value is

View File

@ -182,6 +182,14 @@ V3GraphEdge* V3GraphEdge::relinkFromp(V3GraphVertex* newFromp) {
return oldNxt;
}
V3GraphEdge* V3GraphEdge::relinkTop(V3GraphVertex* newTop) {
V3GraphEdge* oldNxt = inNextp();
m_ins.unlink(m_top->m_ins, this);
m_top = newTop;
inPushBack();
return oldNxt;
}
void V3GraphEdge::unlinkDelete() {
// Unlink from side
m_outs.unlink(m_fromp->m_outs, this);

View File

@ -57,9 +57,9 @@ public:
inline GraphWay()
: m_e{FORWARD} {}
// cppcheck-suppress noExplicitConstructor
inline GraphWay(en _e)
inline constexpr GraphWay(en _e)
: m_e{_e} {}
explicit inline GraphWay(int _e)
explicit inline constexpr GraphWay(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
const char* ascii() const {
@ -67,9 +67,9 @@ public:
return names[m_e];
}
// METHODS unique to this class
GraphWay invert() const { return m_e == FORWARD ? REVERSE : FORWARD; }
bool forward() const { return m_e == FORWARD; }
bool reverse() const { return m_e != FORWARD; }
constexpr GraphWay invert() const { return m_e == FORWARD ? REVERSE : FORWARD; }
constexpr bool forward() const { return m_e == FORWARD; }
constexpr bool reverse() const { return m_e != FORWARD; }
};
inline bool operator==(const GraphWay& lhs, const GraphWay& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const GraphWay& lhs, GraphWay::en rhs) { return lhs.m_e == rhs; }
@ -320,6 +320,7 @@ public:
}
void unlinkDelete();
V3GraphEdge* relinkFromp(V3GraphVertex* newFromp);
V3GraphEdge* relinkTop(V3GraphVertex* newTop);
// ACCESSORS
int weight() const { return m_weight; }
void weight(int weight) { m_weight = weight; }

View File

@ -27,6 +27,7 @@
#include <map>
#include <set>
#include <unordered_map>
#include <vector>
//######################################################################
// GraphStream
@ -225,11 +226,82 @@ private:
VL_UNCOPYABLE(GraphStream);
};
//######################################################################
//=================================================================================================
// GraphStreamUnordered is similar to GraphStream, but iterates un-ordered vertices (those that are
// not ordered by dependencies) in an arbitrary order. Iteration order is still deterministic.
// GraphStreamUnordered is GraphStream using a plain pointer compare to
// break ties in the graph order. This WILL return nodes in
// nondeterministic order.
using GraphStreamUnordered = GraphStream<std::less<const V3GraphVertex*>>;
class GraphStreamUnordered final {
// MEMBERS
const GraphWay m_way; // Direction of traversal
size_t m_nextIndex = 0; // Which index to return from m_nextVertices next
std::vector<const V3GraphVertex*> m_nextVertices; // List of ready vertices returned next
std::vector<const V3GraphVertex*> m_readyVertices; // List of other ready vertices
public:
// CONSTRUCTORS
VL_UNCOPYABLE(GraphStreamUnordered);
explicit GraphStreamUnordered(const V3Graph* graphp, GraphWay way = GraphWay::FORWARD)
: m_way{way} {
if (m_way == GraphWay::FORWARD) {
init<GraphWay::FORWARD>(graphp);
} else {
init<GraphWay::REVERSE>(graphp);
}
}
~GraphStreamUnordered() = default;
// METHODS
// Each call to nextp() returns a unique vertex in the graph, in dependency order. Dependencies
// alone do not specify a total ordering. Un-ordered vertices are returned in an arbitrary but
// deterministic order.
const V3GraphVertex* nextp() {
if (VL_UNLIKELY(m_nextIndex == m_nextVertices.size())) {
if (VL_UNLIKELY(m_readyVertices.empty())) return nullptr;
m_nextIndex = 0;
// Use swap to avoid reallocation
m_nextVertices.swap(m_readyVertices);
m_readyVertices.clear();
}
const V3GraphVertex* const resultp = m_nextVertices[m_nextIndex++];
if (m_way == GraphWay::FORWARD) {
return unblock<GraphWay::FORWARD>(resultp);
} else {
return unblock<GraphWay::REVERSE>(resultp);
}
}
private:
template <uint8_t T_Way> //
VL_ATTR_NOINLINE void init(const V3Graph* graphp) {
constexpr GraphWay way{T_Way};
constexpr GraphWay inv = way.invert();
// Assign every vertex without an incoming edge to ready, others to waiting
for (V3GraphVertex *vertexp = graphp->verticesBeginp(), *nextp; vertexp; vertexp = nextp) {
nextp = vertexp->verticesNextp();
uint32_t nDeps = 0;
for (V3GraphEdge* edgep = vertexp->beginp(inv); edgep; edgep = edgep->nextp(inv)) {
++nDeps;
}
vertexp->color(nDeps); // Using color instead of user, as user might be used by client
if (VL_UNLIKELY(nDeps == 0)) m_nextVertices.push_back(vertexp);
}
}
template <uint8_t T_Way> //
VL_ATTR_NOINLINE const V3GraphVertex* unblock(const V3GraphVertex* resultp) {
constexpr GraphWay way{T_Way};
for (V3GraphEdge *edgep = resultp->beginp(way), *nextp; edgep; edgep = nextp) {
nextp = edgep->nextp(way);
V3GraphVertex* const vertexp = edgep->furtherp(way);
#if VL_DEBUG
UASSERT_OBJ(vertexp->color() != 0, vertexp, "Should not be on waiting list");
#endif
vertexp->color(vertexp->color() - 1);
if (!vertexp->color()) m_readyVertices.push_back(vertexp);
}
return resultp; // Returning input so we can tail call this method
}
};
#endif // Guard

View File

@ -359,9 +359,17 @@ void V3Options::addCFlags(const string& filename) { m_cFlags.push_back(filename)
void V3Options::addLdLibs(const string& filename) { m_ldLibs.push_back(filename); }
void V3Options::addMakeFlags(const string& filename) { m_makeFlags.push_back(filename); }
void V3Options::addFuture(const string& flag) { m_futures.insert(flag); }
void V3Options::addFuture0(const string& flag) { m_future0s.insert(flag); }
void V3Options::addFuture1(const string& flag) { m_future1s.insert(flag); }
bool V3Options::isFuture(const string& flag) const {
return m_futures.find(flag) != m_futures.end();
}
bool V3Options::isFuture0(const string& flag) const {
return m_future0s.find(flag) != m_future0s.end();
}
bool V3Options::isFuture1(const string& flag) const {
return m_future1s.find(flag) != m_future1s.end();
}
bool V3Options::isLibraryFile(const string& filename) const {
return m_libraryFiles.find(filename) != m_libraryFiles.end();
}
@ -1083,6 +1091,8 @@ void V3Options::parseOptsList(FileLine* fl, const string& optdir, int argc, char
parseOptsFile(fl, parseFileArg(optdir, valp), false);
});
DECL_OPTION("-flatten", OnOff, &m_flatten);
DECL_OPTION("-future0", CbVal, [this, fl, &optdir](const char* valp) { addFuture0(valp); });
DECL_OPTION("-future1", CbVal, [this, fl, &optdir](const char* valp) { addFuture1(valp); });
DECL_OPTION("-facyc-simp", FOnOff, &m_fAcycSimp);
DECL_OPTION("-fassemble", FOnOff, &m_fAssemble);
@ -1514,8 +1524,13 @@ void V3Options::parseOptsList(FileLine* fl, const string& optdir, int argc, char
++i;
}
} else if (argv[i][0] == '-' || argv[i][0] == '+') {
const char* argvNoDashp = (argv[i][1] == '-') ? (argv[i] + 2) : (argv[i] + 1);
if (const int consumed = parser.parse(i, argc, argv)) {
i += consumed;
} else if (isFuture0(argvNoDashp)) {
++i;
} else if (isFuture1(argvNoDashp)) {
i += 2;
} else {
fl->v3fatal("Invalid option: " << argv[i] << parser.getSuggestion(argv[i]));
++i; // LCOV_EXCL_LINE

View File

@ -199,6 +199,8 @@ private:
V3StringList m_ldLibs; // argument: user LDFLAGS
V3StringList m_makeFlags; // argument: user MAKEFLAGS
V3StringSet m_futures; // argument: -Wfuture- list
V3StringSet m_future0s; // argument: -future list
V3StringSet m_future1s; // argument: -future1 list
V3StringSet m_libraryFiles; // argument: Verilog -v files
V3StringSet m_clockers; // argument: Verilog -clk signals
V3StringSet m_noClockers; // argument: Verilog -noclk signals
@ -370,6 +372,8 @@ private:
void addArg(const string& arg);
void addDefine(const string& defline, bool allowPlus);
void addFuture(const string& flag);
void addFuture0(const string& flag);
void addFuture1(const string& flag);
void addIncDirUser(const string& incdir); // User requested
void addIncDirFallback(const string& incdir); // Low priority if not found otherwise
void addParameter(const string& paramline, bool allowPlus);
@ -570,6 +574,8 @@ public:
void checkParameters();
bool isFuture(const string& flag) const;
bool isFuture0(const string& flag) const;
bool isFuture1(const string& flag) const;
bool isLibraryFile(const string& filename) const;
bool isClocker(const string& signame) const;
bool isNoClocker(const string& signame) const;

View File

@ -143,212 +143,6 @@ static void partCheckCachedScoreVsActual(uint32_t cached, uint32_t actual) {
#endif
}
//######################################################################
// PartPropagateCp
// Propagate increasing critical path (CP) costs through a graph.
//
// Usage:
// * Client increases the cost and/or CP at a node or small set of nodes
// (often a pair in practice, eg. edge contraction.)
// * Client instances a PartPropagateCp object
// * Client calls PartPropagateCp::cpHasIncreased() one or more times.
// Each call indicates that the inclusive CP of some "seed" vertex
// has increased to a given value.
// * NOTE: PartPropagateCp will neither read nor modify the cost
// or CPs at the seed vertices, it only accesses and modifies
// vertices wayward from the seeds.
// * Client calls PartPropagateCp::go(). Internally, this iteratively
// propagates the new CPs wayward through the graph.
//
template <class T_CostAccessor>
class PartPropagateCp final : GraphAlg<> {
private:
// MEMBERS
const GraphWay m_way; // CPs oriented in this direction: either FORWARD
// // from graph-start to current node, or REVERSE
// // from graph-end to current node.
T_CostAccessor* const m_accessp; // Access cost and CPs on V3GraphVertex's.
// // confirm we only process each vertex once.
const bool m_slowAsserts; // Enable nontrivial asserts
SortByValueMap<V3GraphVertex*, uint32_t> m_pending; // Pending rescores
public:
// CONSTRUCTORS
PartPropagateCp(V3Graph* graphp, GraphWay way, T_CostAccessor* accessp, bool slowAsserts,
V3EdgeFuncP edgeFuncp = &V3GraphEdge::followAlwaysTrue)
: GraphAlg<>{graphp, edgeFuncp}
, m_way{way}
, m_accessp{accessp}
, m_slowAsserts{slowAsserts} {}
// METHODS
void cpHasIncreased(V3GraphVertex* vxp, uint32_t newInclusiveCp) {
// For *vxp, whose CP-inclusive has just increased to
// newInclusiveCp, iterate to all wayward nodes, update the edges
// of each, and add each to m_pending if its overall CP has grown.
for (V3GraphEdge* edgep = vxp->beginp(m_way); edgep; edgep = edgep->nextp(m_way)) {
if (!m_edgeFuncp(edgep)) continue;
V3GraphVertex* const relativep = edgep->furtherp(m_way);
m_accessp->notifyEdgeCp(relativep, m_way, vxp, newInclusiveCp);
if (m_accessp->critPathCost(relativep, m_way) < newInclusiveCp) {
// relativep's critPathCost() is out of step with its
// longest !wayward edge. Schedule that to be resolved.
const uint32_t newPendingVal
= newInclusiveCp - m_accessp->critPathCost(relativep, m_way);
const auto pair = m_pending.emplace(relativep, newPendingVal);
if (!pair.second && (newPendingVal > pair.first->second)) {
m_pending.update(pair.first, newPendingVal);
}
}
}
}
void go() {
// m_pending maps each pending vertex to the amount that it wayward
// CP will grow.
//
// We can iterate over the pending set in reverse order, always
// choosing the nodes with the largest pending CP-growth.
//
// The intuition is: if the original seed node had its CP grow by
// 50, the most any wayward node can possibly grow is also 50. So
// for anything pending to grow by 50, we know we can process it
// once and we won't have to grow its CP again on the current pass.
// After we're done with all the grow-by-50s, nothing else will
// grow by 50 again on the current pass, and we can process the
// grow-by-49s and we know we'll only have to process each one
// once. And so on.
//
// This generalizes to multiple seed nodes also.
while (!m_pending.empty()) {
const auto it = m_pending.rbegin();
V3GraphVertex* const updateMep = it->first;
const uint32_t cpGrowBy = it->second;
m_pending.erase(it);
// For *updateMep, whose critPathCost was out-of-date with respect
// to its edges, update the critPathCost.
const uint32_t startCp = m_accessp->critPathCost(updateMep, m_way);
const uint32_t newCp = startCp + cpGrowBy;
if (m_slowAsserts) m_accessp->checkNewCpVersusEdges(updateMep, m_way, newCp);
m_accessp->setCritPathCost(updateMep, m_way, newCp);
cpHasIncreased(updateMep, newCp + m_accessp->cost(updateMep));
}
}
private:
VL_DEBUG_FUNC;
VL_UNCOPYABLE(PartPropagateCp);
};
class PartPropagateCpSelfTest final {
private:
// MEMBERS
V3Graph m_graph; // A graph
V3GraphVertex* m_vx[50]; // All vertices within the graph
using CpMap = std::unordered_map<V3GraphVertex*, uint32_t>;
CpMap m_cp; // Vertex-to-CP map
CpMap m_seen; // Set of vertices we've seen
// CONSTRUCTORS
PartPropagateCpSelfTest() = default;
~PartPropagateCpSelfTest() = default;
// METHODS
protected:
friend class PartPropagateCp<PartPropagateCpSelfTest>;
void notifyEdgeCp(V3GraphVertex* /*vxp*/, GraphWay way, V3GraphVertex* throughp,
uint32_t cp) const {
const uint32_t throughCost = critPathCost(throughp, way);
UASSERT_SELFTEST(uint32_t, cp, (1 + throughCost));
}
private:
void checkNewCpVersusEdges(V3GraphVertex* vxp, GraphWay way, uint32_t cp) const {
// Don't need to check this in the self test; it supports an assert
// that runs in production code.
}
void setCritPathCost(V3GraphVertex* vxp, GraphWay /*way*/, uint32_t cost) {
m_cp[vxp] = cost;
// Confirm that we only set each node's CP once. That's an
// important property of PartPropagateCp which allows it to be far
// faster than a recursive algorithm on some graphs.
const auto it = m_seen.find(vxp);
UASSERT_OBJ(it == m_seen.end(), vxp, "Set CP on node twice");
m_seen[vxp] = cost;
}
uint32_t critPathCost(V3GraphVertex* vxp, GraphWay /*way*/) const {
const auto it = m_cp.find(vxp);
if (it != m_cp.end()) return it->second;
return 0;
}
static uint32_t cost(const V3GraphVertex*) { return 1; }
void partInitCriticalPaths(bool checkOnly) {
// Set up the FORWARD cp's only. This test only looks in one
// direction, it assumes REVERSE is symmetrical and would be
// redundant to test.
GraphStreamUnordered order(&m_graph);
while (const V3GraphVertex* const cvxp = order.nextp()) {
V3GraphVertex* const vxp = const_cast<V3GraphVertex*>(cvxp);
uint32_t cpCost = 0;
for (V3GraphEdge* edgep = vxp->inBeginp(); edgep; edgep = edgep->inNextp()) {
V3GraphVertex* const parentp = edgep->fromp();
cpCost = std::max(cpCost, critPathCost(parentp, GraphWay::FORWARD) + 1);
}
if (checkOnly) {
UASSERT_SELFTEST(uint32_t, cpCost, critPathCost(vxp, GraphWay::FORWARD));
} else {
setCritPathCost(vxp, GraphWay::FORWARD, cpCost);
}
}
}
void go() {
// Generate a pseudo-random graph
std::array<uint64_t, 2> rngState
= {{0x12345678ULL, 0x9abcdef0ULL}}; // GCC 3.8.0 wants {{}}
// Create 50 vertices
for (auto& i : m_vx) i = new V3GraphVertex(&m_graph);
// Create 250 edges at random. Edges must go from
// lower-to-higher index vertices, so we get a DAG.
for (unsigned i = 0; i < 250; ++i) {
const unsigned idx1 = V3Os::rand64(rngState) % 50;
const unsigned idx2 = V3Os::rand64(rngState) % 50;
if (idx1 > idx2) {
new V3GraphEdge(&m_graph, m_vx[idx2], m_vx[idx1], 1);
} else if (idx2 > idx1) {
new V3GraphEdge(&m_graph, m_vx[idx1], m_vx[idx2], 1);
}
}
partInitCriticalPaths(false);
// This SelfTest class is also the T_CostAccessor
PartPropagateCp<PartPropagateCpSelfTest> prop(&m_graph, GraphWay::FORWARD, this, true);
// Seed the propagator with every input node;
// This should result in the complete graph getting all CP's assigned.
for (const auto& i : m_vx) {
if (!i->inBeginp()) prop.cpHasIncreased(i, 1 /* inclusive CP starts at 1 */);
}
// Run the propagator.
// * The setCritPathCost() routine checks that each node's CP changes
// at most once.
// * The notifyEdgeCp routine is also self checking.
m_seen.clear();
prop.go();
// Finally, confirm that the entire graph appears to have correct CPs.
partInitCriticalPaths(true);
}
public:
static void selfTest() { PartPropagateCpSelfTest().go(); }
};
//######################################################################
// LogicMTask
@ -738,6 +532,7 @@ public:
bool removedFromSb() const { return (m_id & REMOVED_MASK) != 0; }
void removedFromSb(bool /*removed*/) { m_id |= REMOVED_MASK; }
void clearRemovedFromSb() { m_id &= ~REMOVED_MASK; }
bool operator<(const MergeCandidate& other) const { return m_id < other.m_id; }
};
@ -852,8 +647,8 @@ bool MergeCandidate::mergeWouldCreateCycle() const {
: static_cast<const MTaskEdge*>(this)->mergeWouldCreateCycle();
}
//######################################################################
// Vertex utility classes
// ######################################################################
// Vertex utility classes
class OrderByPtrId final {
PartPtrIdMap m_ids;
@ -1010,12 +805,174 @@ static void partCheckCriticalPaths(V3Graph* mtasksp) {
}
}
// Advance to nextp(way) and delete edge
static V3GraphEdge* partBlastEdgep(GraphWay way, V3GraphEdge* edgep) {
V3GraphEdge* const nextp = edgep->nextp(way);
VL_DO_DANGLING(edgep->unlinkDelete(), edgep);
return nextp;
}
// ######################################################################
// PartPropagateCp
// Propagate increasing critical path (CP) costs through a graph.
//
// Usage:
// * Client increases the cost and/or CP at a node or small set of nodes
// (often a pair in practice, eg. edge contraction.)
// * Client instances a PartPropagateCp object
// * Client calls PartPropagateCp::cpHasIncreased() one or more times.
// Each call indicates that the inclusive CP of some "seed" vertex
// has increased to a given value.
// * NOTE: PartPropagateCp will neither read nor modify the cost
// or CPs at the seed vertices, it only accesses and modifies
// vertices wayward from the seeds.
// * Client calls PartPropagateCp::go(). Internally, this iteratively
// propagates the new CPs wayward through the graph.
//
class PartPropagateCp final : GraphAlg<> {
private:
// MEMBERS
const GraphWay m_way; // CPs oriented in this direction: either FORWARD
// // from graph-start to current node, or REVERSE
// // from graph-end to current node.
LogicMTask::CpCostAccessor m_access; // Access cost and CPs on V3GraphVertex's.
// // confirm we only process each vertex once.
const bool m_slowAsserts; // Enable nontrivial asserts
// Pending rescores
SortByValueMap<LogicMTask*, uint32_t, LogicMTask::CmpLogicMTask> m_pending;
std::set<LogicMTask*> m_seen; // Used only with slow asserts to check mtasks visited only once
public:
// CONSTRUCTORS
PartPropagateCp(V3Graph* graphp, GraphWay way, bool slowAsserts,
V3EdgeFuncP edgeFuncp = &V3GraphEdge::followAlwaysTrue)
: GraphAlg<>{graphp, edgeFuncp}
, m_way{way}
, m_slowAsserts{slowAsserts} {}
// METHODS
void cpHasIncreased(V3GraphVertex* vxp, uint32_t newInclusiveCp) {
// For *vxp, whose CP-inclusive has just increased to
// newInclusiveCp, iterate to all wayward nodes, update the edges
// of each, and add each to m_pending if its overall CP has grown.
for (V3GraphEdge* edgep = vxp->beginp(m_way); edgep; edgep = edgep->nextp(m_way)) {
if (!m_edgeFuncp(edgep)) continue;
LogicMTask* const relativep = static_cast<LogicMTask*>(edgep->furtherp(m_way));
m_access.notifyEdgeCp(relativep, m_way, vxp, newInclusiveCp);
if (m_access.critPathCost(relativep, m_way) < newInclusiveCp) {
// relativep's critPathCost() is out of step with its
// longest !wayward edge. Schedule that to be resolved.
const uint32_t newPendingVal
= newInclusiveCp - m_access.critPathCost(relativep, m_way);
const auto pair = m_pending.emplace(relativep, newPendingVal);
if (!pair.second && (newPendingVal > pair.first->second)) {
m_pending.update(pair.first, newPendingVal);
}
}
}
}
void go() {
// m_pending maps each pending vertex to the amount that it wayward
// CP will grow.
//
// We can iterate over the pending set in reverse order, always
// choosing the nodes with the largest pending CP-growth.
//
// The intuition is: if the original seed node had its CP grow by
// 50, the most any wayward node can possibly grow is also 50. So
// for anything pending to grow by 50, we know we can process it
// once and we won't have to grow its CP again on the current pass.
// After we're done with all the grow-by-50s, nothing else will
// grow by 50 again on the current pass, and we can process the
// grow-by-49s and we know we'll only have to process each one
// once. And so on.
//
// This generalizes to multiple seed nodes also.
while (!m_pending.empty()) {
const auto it = m_pending.rbegin();
LogicMTask* const updateMep = it->first;
const uint32_t cpGrowBy = it->second;
m_pending.erase(it);
// For *updateMep, whose critPathCost was out-of-date with respect
// to its edges, update the critPathCost.
const uint32_t startCp = m_access.critPathCost(updateMep, m_way);
const uint32_t newCp = startCp + cpGrowBy;
if (VL_UNLIKELY(m_slowAsserts)) {
m_access.checkNewCpVersusEdges(updateMep, m_way, newCp);
// Confirm that we only set each node's CP once. That's an
// important property of PartPropagateCp which allows it to be far
// faster than a recursive algorithm on some graphs.
const bool first = m_seen.insert(updateMep).second;
UASSERT_OBJ(first, updateMep, "Set CP on node twice");
}
m_access.setCritPathCost(updateMep, m_way, newCp);
cpHasIncreased(updateMep, newCp + m_access.cost(updateMep));
}
}
private:
VL_DEBUG_FUNC;
VL_UNCOPYABLE(PartPropagateCp);
};
class PartPropagateCpSelfTest final {
private:
// MEMBERS
V3Graph m_graph; // A graph
LogicMTask* m_vx[50]; // All vertices within the graph
// CONSTRUCTORS
PartPropagateCpSelfTest() = default;
~PartPropagateCpSelfTest() = default;
void go() {
// Generate a pseudo-random graph
std::array<uint64_t, 2> rngState
= {{0x12345678ULL, 0x9abcdef0ULL}}; // GCC 3.8.0 wants {{}}
// Create 50 vertices
for (auto& i : m_vx) {
i = new LogicMTask{&m_graph, nullptr};
i->setCost(1);
}
// Create 250 edges at random. Edges must go from
// lower-to-higher index vertices, so we get a DAG.
for (unsigned i = 0; i < 250; ++i) {
const unsigned idx1 = V3Os::rand64(rngState) % 50;
const unsigned idx2 = V3Os::rand64(rngState) % 50;
if (idx1 > idx2) {
if (!m_vx[idx2]->hasRelative(GraphWay::FORWARD, m_vx[idx1])) {
new MTaskEdge{&m_graph, m_vx[idx2], m_vx[idx1], 1};
}
} else if (idx2 > idx1) {
if (!m_vx[idx1]->hasRelative(GraphWay::FORWARD, m_vx[idx2])) {
new MTaskEdge{&m_graph, m_vx[idx1], m_vx[idx2], 1};
}
}
}
partInitCriticalPaths(&m_graph);
// This SelfTest class is also the T_CostAccessor
PartPropagateCp prop(&m_graph, GraphWay::FORWARD, true);
// Seed the propagator with every input node;
// This should result in the complete graph getting all CP's assigned.
for (const auto& i : m_vx) {
if (!i->inBeginp()) prop.cpHasIncreased(i, 1 /* inclusive CP starts at 1 */);
}
// Run the propagator.
// * The setCritPathCost() routine checks that each node's CP changes
// at most once.
// * The notifyEdgeCp routine is also self checking.
prop.go();
// Finally, confirm that the entire graph appears to have correct CPs.
partCheckCriticalPaths(&m_graph);
}
public:
static void selfTest() { PartPropagateCpSelfTest().go(); }
};
// Merge edges from a LogicMtask.
//
@ -1050,31 +1007,48 @@ static V3GraphEdge* partBlastEdgep(GraphWay way, V3GraphEdge* edgep) {
//
// Another way of stating this: this code ensures that scores of
// non-transitive edges only ever increase.
static void partMergeEdgesFrom(V3Graph* mtasksp, LogicMTask* recipientp, LogicMTask* donorp,
V3Scoreboard<MergeCandidate, uint32_t>* sbp) {
static void partRedirectEdgesFrom(LogicMTask* recipientp, LogicMTask* donorp,
V3Scoreboard<MergeCandidate, uint32_t>* sbp) {
for (const auto& way : {GraphWay::FORWARD, GraphWay::REVERSE}) {
for (V3GraphEdge* edgep = donorp->beginp(way); edgep; edgep = partBlastEdgep(way, edgep)) {
const MTaskEdge* const tedgep = MTaskEdge::cast(edgep);
if (sbp && !tedgep->removedFromSb()) sbp->removeElem(tedgep);
// Existing edge; mark it in need of a rescore
if (recipientp->hasRelative(way, tedgep->furtherMTaskp(way))) {
for (V3GraphEdge *edgep = donorp->beginp(way), *nextp; edgep; edgep = nextp) {
nextp = edgep->nextp(way);
MTaskEdge* const tedgep = MTaskEdge::cast(edgep);
LogicMTask* const relativep = tedgep->furtherMTaskp(way);
if (recipientp->hasRelative(way, relativep)) {
// An edge already exists between recipient and relative of donor.
// Mark it in need of a rescore
if (sbp) {
const MTaskEdge* const existMTaskEdgep = MTaskEdge::cast(
recipientp->findConnectingEdgep(way, tedgep->furtherMTaskp(way)));
if (!tedgep->removedFromSb()) sbp->removeElem(tedgep);
const MTaskEdge* const existMTaskEdgep
= MTaskEdge::cast(recipientp->findConnectingEdgep(way, relativep));
UASSERT(existMTaskEdgep, "findConnectingEdge didn't find edge");
if (!existMTaskEdgep->removedFromSb()) {
sbp->hintScoreChanged(existMTaskEdgep);
}
}
VL_DO_DANGLING(edgep->unlinkDelete(), edgep);
} else {
// No existing edge into *this, make one.
const MTaskEdge* newEdgep;
// No existing edge between recipient and relative of donor.
// Redirect the edge from donor<->relative to recipient<->relative.
if (way == GraphWay::REVERSE) {
newEdgep = new MTaskEdge(mtasksp, tedgep->fromMTaskp(), recipientp, 1);
tedgep->relinkTop(recipientp);
relativep->removeRelative(GraphWay::FORWARD, donorp);
relativep->addRelative(GraphWay::FORWARD, recipientp);
recipientp->addRelative(GraphWay::REVERSE, relativep);
} else {
newEdgep = new MTaskEdge(mtasksp, recipientp, tedgep->toMTaskp(), 1);
tedgep->relinkFromp(recipientp);
relativep->removeRelative(GraphWay::REVERSE, donorp);
relativep->addRelative(GraphWay::REVERSE, recipientp);
recipientp->addRelative(GraphWay::FORWARD, relativep);
}
if (sbp) {
if (tedgep->removedFromSb()) {
tedgep->clearRemovedFromSb();
sbp->addElem(tedgep);
} else {
sbp->hintScoreChanged(tedgep);
}
}
if (sbp) sbp->addElem(newEdgep);
}
}
}
@ -1330,7 +1304,7 @@ private:
}
// Merge the smaller mtask into the larger mtask. If one of them
// is much larger, this will save time in partMergeEdgesFrom().
// is much larger, this will save time in partRedirectEdgesFrom().
// Assume the more costly mtask has more edges.
//
// [TODO: now that we have edge maps, we could count the edges
@ -1379,11 +1353,8 @@ private:
<< (donorNewCpFwd.propagate ? " true " : " false ")
<< donorNewCpFwd.propagateCp << endl);
LogicMTask::CpCostAccessor cpAccess;
PartPropagateCp<LogicMTask::CpCostAccessor> forwardPropagator(m_mtasksp, GraphWay::FORWARD,
&cpAccess, m_slowAsserts);
PartPropagateCp<LogicMTask::CpCostAccessor> reversePropagator(m_mtasksp, GraphWay::REVERSE,
&cpAccess, m_slowAsserts);
PartPropagateCp forwardPropagator(m_mtasksp, GraphWay::FORWARD, m_slowAsserts);
PartPropagateCp reversePropagator(m_mtasksp, GraphWay::REVERSE, m_slowAsserts);
recipientp->setCritPathCost(GraphWay::FORWARD, recipientNewCpFwd.cp);
if (recipientNewCpFwd.propagate) {
@ -1410,8 +1381,8 @@ private:
// to a bounded number.
removeSiblingMCsWith(recipientp);
// Merge all edges
partMergeEdgesFrom(m_mtasksp, recipientp, donorp, &m_sb);
// Redirect all edges
partRedirectEdgesFrom(recipientp, donorp, &m_sb);
// Delete the donorp mtask from the graph
VL_DO_CLEAR(donorp->unlinkDelete(m_mtasksp), donorp = nullptr);
@ -1540,8 +1511,8 @@ private:
if (shortestPrereqs.size() <= 1) return;
const auto cmp = [way](const LogicMTask* ap, const LogicMTask* bp) {
const uint32_t aCp = ap->critPathCost(way) + ap->stepCost();
const uint32_t bCp = bp->critPathCost(way) + bp->stepCost();
const uint32_t aCp = ap->critPathCost(way) + ap->cost();
const uint32_t bCp = bp->critPathCost(way) + bp->cost();
if (aCp != bCp) return aCp < bCp;
return ap->id() < bp->id();
};
@ -1849,7 +1820,7 @@ private:
++rankIt) {
// Find the largest node at this rank, merge into it. (If we
// happen to find a huge node, this saves time in
// partMergeEdgesFrom() versus merging into an arbitrary node.)
// partRedirectEdgesFrom() versus merging into an arbitrary node.)
LogicMTask* mergedp = nullptr;
for (LogicMTaskSet::iterator it = rankIt->second.begin(); it != rankIt->second.end();
++it) {
@ -1877,8 +1848,8 @@ private:
}
// Move all vertices from donorp to mergedp
mergedp->moveAllVerticesFrom(donorp);
// Move edges from donorp to recipientp
partMergeEdgesFrom(m_mtasksp, mergedp, donorp, nullptr);
// Redirect edges from donorp to recipientp
partRedirectEdgesFrom(mergedp, donorp, nullptr);
// Remove donorp from the graph
VL_DO_DANGLING(donorp->unlinkDelete(m_mtasksp), donorp);
++m_mergesDone;

View File

@ -11,7 +11,7 @@ if (!$::Driver) { use FindBin; exec("$FindBin::Bin/bootstrap.pl", @ARGV, $0); di
scenarios(vlt => 1);
lint(
verilator_flags2 => [qw(--lint-only -Wfuture-FUTURE1 -Wfuture-FUTURE2)],
verilator_flags2 => [qw(--lint-only --future0 thefuture --future1 thefuturei --thefuture -thefuture +thefuture --thefuturei 1 -Wfuture-FUTURE1 -Wfuture-FUTURE2)],
);
ok(1);