verilator/src/V3Table.cpp

746 lines
26 KiB
C++
Raw Normal View History

// $Id$
//*************************************************************************
// DESCRIPTION: Verilator: Make lookup tables
//
// Code available from: http://www.veripool.com/verilator
//
// AUTHORS: Wilson Snyder with Paul Wasson, Duane Gabli
//
//*************************************************************************
//
// Copyright 2003-2007 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// General Public License or the Perl Artistic License.
//
// Verilator is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
//*************************************************************************
// TABLE TRANSFORMATIONS:
// Look at all large always and assignments.
// Count # of input bits and # of output bits, and # of statements
// If high # of statements relative to inpbits*outbits,
// replace with lookup table
//
//*************************************************************************
#include "config_build.h"
#include "verilatedos.h"
#include <stdio.h>
#include <stdarg.h>
#include <unistd.h>
#include <math.h>
#include <deque>
#include "V3Global.h"
#include "V3Table.h"
#include "V3Stats.h"
#include "V3Ast.h"
//######################################################################
// Table class functions
// CONFIG
static const double TABLE_MAX_BYTES = 1*1024*1024; // 1MB is max table size (better be lots of instructs to be worth it!)
static const double TABLE_TOTAL_BYTES = 64*1024*1024; // 64MB is close to max memory of some systems (256MB or so), so don't get out of control
static const double TABLE_SPACE_TIME_MULT = 8; // Worth 8 bytes of data to replace a instruction
static const int TABLE_MIN_NODE_COUNT = 32; // If < 32 instructions, not worth the effort
class TableVisitor;
//######################################################################
class TableBaseVisitor : public AstNVisitor {
public:
// Note level 8&9 include debugging each simulation value
// int debug() { return 7; }
// int debug() { return 9; }
};
//######################################################################
class TableSimulateVisitor : public TableBaseVisitor {
// Simulate a node tree, returning value of variables
// Two major operating modes:
// Test the tree to see if it is conformant
// Given a set of input values, find the output values
// Both are done in this same visitor to reduce risk; if a visitor
// is missing, we will simply not apply the optimization, rather then bomb.
private:
// NODE STATE
// Cleared on each always/assignw
// Checking:
// AstVarScope::user() -> VarUsage. Set true to indicate tracking as lvalue/rvalue
// Simulating:
// AstVarScope::user3() -> V3Number*. Value of variable or node
// AstVarScope::user4() -> V3Number*. Last value output was set to
enum VarUsage { VU_NONE=0, VU_LV=1, VU_RV=2, VU_LVDLY=4 };
// STATE
bool m_checking; ///< Checking vs. simulation mode
// Checking:
TableVisitor* m_cbthis; ///< Class for callback
const char* m_whyNotOptimizable; ///< String explaining why not optimizable or NULL to optimize
bool m_anyAssignDly; ///< True if found a delayed assignment
bool m_anyAssignComb; ///< True if found a non-delayed assignment
bool m_inDlyAssign; ///< Under delayed assignment
int m_instrCount; ///< Number of nodes
int m_dataCount; ///< Bytes of data
// Simulating:
deque<V3Number*> m_numFreeps; ///< List of all numbers free and not in use
deque<V3Number*> m_numAllps; ///< List of all numbers free and in use
// Checking METHODS
public:
void varRefCb(AstVarRef* nodep); ///< Call other-this function on all new var references
void clearOptimizable(AstNode* nodep/*null ok*/, const char* why) {
if (!m_whyNotOptimizable) {
if (debug()>=5) {
UINFO(0,"Clear optimizable: "<<why);
if (nodep) cout<<": "<<nodep;
cout<<endl;
}
m_whyNotOptimizable = why;
}
}
bool optimizable() const { return m_whyNotOptimizable==NULL; }
bool isAssignDly() const { return m_anyAssignDly; }
int instrCount() const { return m_instrCount; }
int dataCount() const { return m_dataCount; }
// Simulation METHODS
public:
V3Number* newNumber(AstNode* nodep, uint32_t value=0) {
// Set a constant value for this node
if (!nodep->user3p()) {
// Save time - kept a list of allocated but unused V3Numbers
// It would be more efficient to do this by size, but the extra accounting
// slows things down more then we gain.
V3Number* nump;
if (!m_numFreeps.empty()) {
//UINFO(7,"Num Reuse "<<nodep->width()<<endl);
nump = m_numFreeps.back(); m_numFreeps.pop_back();
nump->width(nodep->width());
nump->fileline(nodep->fileline());
nump->setLong(value); // We do support more then 32 bit numbers, just valuep=0 in that case
} else {
//UINFO(7,"Num New "<<nodep->width()<<endl);
nump = new V3Number (nodep->fileline(), nodep->width(), value);
m_numAllps.push_back(nump);
}
setNumber(nodep, nump);
}
return (fetchNumber(nodep));
}
V3Number* fetchNumberNull(AstNode* nodep) {
return ((V3Number*)nodep->user3p());
}
V3Number* fetchNumber(AstNode* nodep) {
V3Number* nump = fetchNumberNull(nodep);
if (!nump) nodep->v3fatalSrc("No value found for node.");
return nump;
}
private:
void setNumber(AstNode* nodep, const V3Number* nump) {
UINFO(9," set num "<<*nump<<" on "<<nodep<<endl);
nodep->user3p((AstNUser*)nump);
}
void checkNodeInfo(AstNode* nodep) {
m_instrCount += nodep->instrCount();
m_dataCount += nodep->width();
if (!nodep->isPredictOptimizable()) {
//UINFO(9," !predictopt "<<nodep<<endl);
clearOptimizable(nodep,"!predictOptimzable");
}
}
// VISITORS
virtual void visit(AstAlways* nodep, AstNUser*) {
if (m_checking) checkNodeInfo(nodep);
nodep->iterateChildren(*this);
}
virtual void visit(AstSenTree* nodep, AstNUser*) {
// Sensitivities aren't inputs per se; we'll keep our tree under the same sens.
}
virtual void visit(AstVarRef* nodep, AstNUser*) {
AstVarScope* vscp = nodep->varScopep();
if (!vscp) nodep->v3fatalSrc("Not linked");
if (m_checking) {
if (m_checking && !optimizable()) return; // Accelerate
// We can't have non-delayed assignments with same value on LHS and RHS
// as we don't figure out variable ordering.
// Delayed is OK though, as we'll decode the next state separately.
if (nodep->varp()->arraysp()) clearOptimizable(nodep,"Array references");
if (nodep->lvalue()) {
if (m_inDlyAssign) {
if (!(vscp->user() & VU_LVDLY)) {
vscp->user( vscp->user() | VU_LVDLY);
varRefCb (nodep);
}
} else { // nondly asn
if (!(vscp->user() & VU_LV)) {
if (vscp->user() & VU_RV) clearOptimizable(nodep,"Var read & write");
vscp->user( vscp->user() | VU_LV);
varRefCb (nodep);
}
}
} else {
if (!(vscp->user() & VU_RV)) {
if (vscp->user() & VU_LV) clearOptimizable(nodep,"Var write & read");
vscp->user( vscp->user() | VU_RV);
varRefCb (nodep);
}
}
}
else { // simulating
if (nodep->lvalue()) {
nodep->v3fatalSrc("LHS varref should be handled in AstAssign visitor.");
} else {
// Return simulation value
V3Number* nump = fetchNumberNull(vscp);
if (!nump) nodep->v3fatalSrc("Variable value should have been set before any visitor called.");
setNumber(nodep, nump);
}
}
}
virtual void visit(AstNodeIf* nodep, AstNUser*) {
if (m_checking) {
checkNodeInfo(nodep);
nodep->iterateChildren(*this);
} else {
nodep->condp()->iterateAndNext(*this);
if (fetchNumber(nodep->condp())->isNeqZero()) {
nodep->ifsp()->iterateAndNext(*this);
} else {
nodep->elsesp()->iterateAndNext(*this);
}
}
}
virtual void visit(AstConst* nodep, AstNUser*) {
if (m_checking) {
checkNodeInfo(nodep);
} else {
setNumber(nodep, &(nodep->num()));
}
}
virtual void visit(AstNodeUniop* nodep, AstNUser*) {
if (m_checking) {
if (!optimizable()) return; // Accelerate
checkNodeInfo(nodep);
nodep->iterateChildren(*this);
} else {
nodep->iterateChildren(*this);
nodep->numberOperate(*newNumber(nodep), *fetchNumber(nodep->lhsp()));
}
}
virtual void visit(AstNodeBiop* nodep, AstNUser*) {
if (m_checking) {
if (!optimizable()) return; // Accelerate
checkNodeInfo(nodep);
nodep->iterateChildren(*this);
} else {
nodep->iterateChildren(*this);
nodep->numberOperate(*newNumber(nodep), *fetchNumber(nodep->lhsp()), *fetchNumber(nodep->rhsp()));
}
}
virtual void visit(AstNodeTriop* nodep, AstNUser*) {
if (m_checking) {
if (!optimizable()) return; // Accelerate
checkNodeInfo(nodep);
nodep->iterateChildren(*this);
} else {
nodep->iterateChildren(*this);
nodep->numberOperate(*newNumber(nodep),
*fetchNumber(nodep->lhsp()),
*fetchNumber(nodep->rhsp()),
*fetchNumber(nodep->thsp()));
}
}
virtual void visit(AstNodeCond* nodep, AstNUser*) {
// We could use above visit(AstNodeTriop), but it's slower to evaluate
// both sides when we really only need to evaluate one side.
if (m_checking) {
if (!optimizable()) return; // Accelerate
checkNodeInfo(nodep);
nodep->iterateChildren(*this);
} else {
nodep->condp()->accept(*this);
if (fetchNumber(nodep->condp())->isNeqZero()) {
nodep->expr1p()->accept(*this);
newNumber(nodep)->opAssign(*fetchNumber(nodep->expr1p()));
} else {
nodep->expr2p()->accept(*this);
newNumber(nodep)->opAssign(*fetchNumber(nodep->expr2p()));
}
}
}
virtual void visit(AstNodeAssign* nodep, AstNUser*) {
if (m_checking) {
if (!optimizable()) return; // Accelerate
if (nodep->castAssignDly()) {
if (m_anyAssignComb) clearOptimizable(nodep, "Mix of dly/non dly assigns");
m_anyAssignDly = true;
m_inDlyAssign = true;
} else {
if (m_anyAssignDly) clearOptimizable(nodep, "Mix of dly/non dly assigns");
m_anyAssignComb = true;
}
nodep->iterateChildren(*this);
}
if (!nodep->lhsp()->castVarRef()) {
clearOptimizable(nodep, "LHS isn't simple variable");
}
else if (!m_checking) {
nodep->rhsp()->iterateAndNext(*this);
AstVarScope* vscp = nodep->lhsp()->castVarRef()->varScopep();
setNumber(vscp, fetchNumber(nodep->rhsp()));
}
m_inDlyAssign = false;
}
virtual void visit(AstComment*, AstNUser*) {}
// default
// These types are definately not reducable
// AstCoverInc, AstNodePli, AstArraySel, AstStop, AstFinish,
// AstRand, AstTime, AstUCFunc, AstCCall, AstCStmt, AstUCStmt
// In theory, we could follow the loop, but might be slow
// AstFor, AstWhile
virtual void visit(AstNode* nodep, AstNUser*) {
if (m_checking) {
checkNodeInfo(nodep);
if (optimizable()) {
// Hmm, what is this then?
// In production code, we'll just not optimize. It should be fixed though.
clearOptimizable(nodep, "Unknown node type, perhaps missing visitor in TableSimulateVisitor");
#ifdef VL_DEBUG
UINFO(0,"Unknown node type in TableSimulateVisitor: "<<nodep->typeName()<<endl);
#endif
}
} else { // simulating
nodep->v3fatalSrc("Optimizable should have been cleared in check step, and never reach simulation.");
}
}
public:
// CONSTRUCTORS
TableSimulateVisitor(TableVisitor* cbthis, bool checking) {
m_cbthis = cbthis;
m_checking = checking;
clear(); // We reuse this structure in the main loop, so put initializers inside clear()
}
void clear() {
m_whyNotOptimizable = NULL;
m_anyAssignComb = false;
m_anyAssignDly = false;
m_inDlyAssign = false;
m_instrCount = 0;
m_dataCount = 0;
AstNode::userClearTree(); // userp() used on entire tree
AstNode::user3ClearTree(); // user3p() used on entire tree
AstNode::user4ClearTree(); // user4p() used on entire tree
// Move all allocated numbers to the free pool
m_numFreeps = m_numAllps;
}
void main (AstNode* nodep) {
nodep->accept(*this);
}
virtual ~TableSimulateVisitor() {
for (deque<V3Number*>::iterator it = m_numAllps.begin(); it != m_numAllps.end(); ++it) {
delete (*it);
}
m_numFreeps.clear();
m_numAllps.clear();
}
};
//######################################################################
// Table class functions
class TableVisitor : public TableBaseVisitor {
private:
// NODE STATE
// Cleared on each always/assignw
// STATE
double m_totalBytes; // Total bytes in tables created
V3Double0 m_statTablesCre; // Statistic tracking
// State cleared on each module
AstModule* m_modp; // Current MODULE
int m_modTables; // Number of tables created in this module
deque<AstVarScope*> m_modTableVscs; // All tables created
// State cleared on each scope
AstScope* m_scopep; // Current SCOPE
// State cleared on each always/assignw
bool m_assignDly; // Consists of delayed assignments instead of normal assignments
int m_inWidth; // Input table width
int m_outWidth; // Output table width
deque<AstVarScope*> m_inVarps; // Input variable list
deque<AstVarScope*> m_outVarps; // Output variable list
deque<bool> m_outNotSet; // True if output variable is not set at some point
// When creating a table
deque<AstVarScope*> m_tableVarps; // Table being created
// METHODS
bool treeTest(AstAlways* nodep) {
// Process alw/assign tree
m_inWidth = 0;
m_outWidth = 0;
m_inVarps.clear();
m_outVarps.clear();
m_outNotSet.clear();
// Collect stats
TableSimulateVisitor chkvis (this, true);
chkvis.main(nodep);
m_assignDly = chkvis.isAssignDly();
// Also sets m_inWidth
// Also sets m_outWidth
// Also sets m_inVarps
// Also sets m_outVarps
// Calc data storage in bytes
int chgWidth = m_outVarps.size(); // Width of one change-it-vector
if (chgWidth<8) chgWidth = 8;
double space = (pow((double)2,((double)(m_inWidth)))
*(double)(m_outWidth+chgWidth));
// Instruction count bytes (ok, it's space also not time :)
double bytesPerInst = 4;
double time = (chkvis.instrCount()*bytesPerInst + chkvis.dataCount()) + 1; // +1 so won't div by zero
if (chkvis.instrCount() < TABLE_MIN_NODE_COUNT) {
chkvis.clearOptimizable(nodep,"Too few nodes involved");
}
if (space > TABLE_MAX_BYTES) {
chkvis.clearOptimizable(nodep,"Too much space");
}
if (space > time * TABLE_SPACE_TIME_MULT) {
chkvis.clearOptimizable(nodep,"Bad tradeoff");
}
if (m_totalBytes > TABLE_TOTAL_BYTES) {
chkvis.clearOptimizable(nodep,"Out of memory");
}
if (!m_outWidth || !m_inWidth) {
chkvis.clearOptimizable(nodep,"No I/O");
}
UINFO(4, " Test: Opt="<<(chkvis.optimizable()?"OK":"NO")
<<", Instrs="<<chkvis.instrCount()<<" Data="<<chkvis.dataCount()
<<" inw="<<m_inWidth<<" outw="<<m_outWidth
<<" Spacetime="<<(space/time)<<"("<<space<<"/"<<time<<")"
<<": "<<nodep<<endl);
if (chkvis.optimizable()) {
UINFO(3, " Table Optimize spacetime="<<(space/time)<<" "<<nodep<<endl);
m_totalBytes += space;
}
return chkvis.optimizable();
}
public:
void simulateVarRefCb(AstVarRef* nodep) {
// Called by TableSimulateVisitor on each unique varref enountered
UINFO(9," SimVARREF "<<nodep<<endl);
AstVarScope* vscp = nodep->varScopep();
if (nodep->lvalue()) {
m_outWidth += nodep->varp()->widthTotalBytes();
m_outVarps.push_back(vscp);
} else {
// We'll make the table with a separate natural alignment for each
// output var, so always have char, 16 or 32 bit widths, so use widthTotalBytes
m_inWidth += nodep->varp()->width(); // Space for var
m_inVarps.push_back(vscp);
}
}
private:
void createTable(AstAlways* nodep) {
// We've determined this table of nodes is optimizable, do it.
m_modTables++;
m_statTablesCre++;
// Index into our table
AstVar* indexVarp = new AstVar (nodep->fileline(), AstVarType::BLOCKTEMP,
"__Vtableidx_" + cvtToStr(m_modTables),
new AstRange (nodep->fileline(), m_inWidth-1, 0));
m_modp->addStmtp(indexVarp);
AstVarScope* indexVscp = new AstVarScope (indexVarp->fileline(), m_scopep, indexVarp);
m_scopep->addVarp(indexVscp);
// Change it variable
AstVar* chgVarp = new AstVar (nodep->fileline(), AstVarType::MODULETEMP,
"__Vtablechg_" + cvtToStr(m_modTables),
new AstRange (nodep->fileline(), m_outVarps.size()-1, 0),
new AstRange (nodep->fileline(), VL_MASK_I(m_inWidth), 0));
chgVarp->isConst(true);
chgVarp->initp(new AstInitArray (nodep->fileline(), NULL));
m_modp->addStmtp(chgVarp);
AstVarScope* chgVscp = new AstVarScope (chgVarp->fileline(), m_scopep, chgVarp);
m_scopep->addVarp(chgVscp);
createTableVars(nodep);
AstNode* stmtsp = createLookupInput(nodep, indexVscp);
createTableValues(nodep, chgVscp);
// Collapse duplicate tables
chgVscp = findDuplicateTable(chgVscp);
for (deque<AstVarScope*>::iterator it = m_tableVarps.begin(); it!=m_tableVarps.end(); ++it) {
*it = findDuplicateTable(*it);
}
createOutputAssigns(nodep, stmtsp, indexVscp, chgVscp);
// Link it in.
if (AstAlways* nodeap = nodep->castAlways()) {
// Keep sensitivity list, but delete all else
nodeap->bodysp()->unlinkFrBackWithNext()->deleteTree();
nodeap->addStmtp(stmtsp);
if (debug()>=6) nodeap->dumpTree(cout," table_new: ");
} else {
nodep->v3fatalSrc("Creating table under unknown node type");
}
// Cleanup internal structures
m_tableVarps.clear();
}
void createTableVars(AstNode* nodep) {
// Create table for each output
for (deque<AstVarScope*>::iterator it = m_outVarps.begin(); it!=m_outVarps.end(); ++it) {
AstVarScope* outvscp = *it;
AstVar* outvarp = outvscp->varp();
AstVar* tablevarp
= new AstVar (nodep->fileline(), AstVarType::MODULETEMP,
"__Vtable_" + cvtToStr(m_modTables) +"_"+outvarp->name(),
new AstRange (nodep->fileline(), outvarp->widthMin()-1, 0),
new AstRange (nodep->fileline(), VL_MASK_I(m_inWidth), 0));
tablevarp->isConst(true);
tablevarp->isStatic(true);
tablevarp->initp(new AstInitArray (nodep->fileline(), NULL));
m_modp->addStmtp(tablevarp);
AstVarScope* tablevscp = new AstVarScope(tablevarp->fileline(), m_scopep, tablevarp);
m_scopep->addVarp(tablevscp);
m_tableVarps.push_back(tablevscp);
}
}
AstNode* createLookupInput(AstNode* nodep, AstVarScope* indexVscp) {
// Concat inputs into a single temp variable (inside always)
// First var in inVars becomes the LSB of the concat
AstNode* concatp = NULL;
for (deque<AstVarScope*>::iterator it = m_inVarps.begin(); it!=m_inVarps.end(); ++it) {
AstVarScope* invscp = *it;
AstVarRef* refp = new AstVarRef (nodep->fileline(), invscp, false);
if (concatp) {
concatp = new AstConcat (nodep->fileline(), refp, concatp);
} else concatp = refp;
}
AstNode* stmtsp = new AstAssign
(nodep->fileline(),
new AstVarRef (nodep->fileline(), indexVscp, true),
concatp);
return stmtsp;
}
void createTableValues(AstAlways* nodep, AstVarScope* chgVscp) {
// Create table
// There may be a simulation path by which the output doesn't change value.
// We could bail on these cases, or we can have a "change it" boolean.
// We've choosen the later route, since recirc is common in large FSMs.
for (deque<AstVarScope*>::iterator it = m_outVarps.begin(); it!=m_outVarps.end(); ++it) {
m_outNotSet.push_back(false);
}
uint32_t inValueNextInitArray=0;
TableSimulateVisitor simvis (this, false);
for (uint32_t inValue=0; inValue <= VL_MASK_I(m_inWidth); inValue++) {
// Make a new simulation structure so we can set new input values
UINFO(8," Simulating "<<hex<<inValue<<endl);
// Above simulateVisitor clears user 3, so
// all outputs default to NULL to mean 'recirculating'.
simvis.clear();
// Set all inputs to the constant
uint32_t shift = 0;
for (deque<AstVarScope*>::iterator it = m_inVarps.begin(); it!=m_inVarps.end(); ++it) {
AstVarScope* invscp = *it;
// LSB is first variable, so extract it that way
simvis.newNumber(invscp, VL_MASK_I(invscp->width()) & (inValue>>shift));
shift += invscp->width();
// We're just using32 bit arithmetic, because there's no way the input table can be 2^32 bytes!
if (shift>31) nodep->v3fatalSrc("shift overflow");
UINFO(8," Input "<<invscp->name()<<" = "<<*(simvis.fetchNumber(invscp))<<endl);
}
// Simulate
simvis.main(nodep);
// If a output changed, add it to table
int outnum = 0;
V3Number outputChgMask (nodep->fileline(), m_outVarps.size(), 0);
for (deque<AstVarScope*>::iterator it = m_outVarps.begin(); it!=m_outVarps.end(); ++it) {
AstVarScope* outvscp = *it;
V3Number* outnump = simvis.fetchNumberNull(outvscp);
AstNode* setp;
if (!outnump) {
UINFO(8," Output "<<outvscp->name()<<" never set\n");
m_outNotSet[outnum] = true;
// Value in table is arbitrary, but we need something
setp = new AstConst (outvscp->fileline(),
V3Number(outvscp->fileline(), outvscp->width(), 0));
} else {
UINFO(8," Output "<<outvscp->name()<<" = "<<*outnump<<endl);
// m_tableVarps[inValue] = num;
// Mark changed bit, too
outputChgMask.setBit(outnum, 1);
setp = new AstConst (outnump->fileline(), *outnump);
}
// Note InitArray requires us to have the values in inValue order
m_tableVarps[outnum]->varp()->initp()->castInitArray()->addInitsp(setp);
outnum++;
}
{ // Set changed table
if (inValue != inValueNextInitArray++)
nodep->v3fatalSrc("InitArray requires us to have the values in inValue order");
AstNode* setp = new AstConst (nodep->fileline(), outputChgMask);
chgVscp->varp()->initp()->castInitArray()->addInitsp(setp);
}
} // each value
}
AstVarScope* findDuplicateTable(AstVarScope* vsc1p) {
// See if another table we've created is identical, if so use it for both.
AstVar* var1p = vsc1p->varp();
for (deque<AstVarScope*>::iterator it = m_modTableVscs.begin(); it!=m_modTableVscs.end(); ++it) {
AstVarScope* vsc2p= *it;
AstVar* var2p = vsc2p->varp();
if (var1p->width() == var2p->width()
&& var1p->arrayElements() == var2p->arrayElements()) {
AstNode* init1p = var1p->initp()->castInitArray();
AstNode* init2p = var2p->initp()->castInitArray();
if (init1p->sameTree(init2p)) {
UINFO(8," Duplicate table var "<<vsc2p<<" == "<<vsc1p<<endl);
vsc1p->unlinkFrBack()->deleteTree();
return vsc2p;
}
}
}
m_modTableVscs.push_back(vsc1p);
return vsc1p;
}
void createOutputAssigns(AstNode* nodep, AstNode* stmtsp, AstVarScope* indexVscp, AstVarScope* chgVscp) {
// We walk through the changemask table, and if all ones know
// the output is set on all branches and therefore eliminate the
// if. If all uses of the changemask disappear, dead code
// elimination will remove it for us.
// Set each output from array ref into our table
int outnum = 0;
for (deque<AstVarScope*>::iterator it = m_outVarps.begin(); it!=m_outVarps.end(); ++it) {
AstVarScope* outvscp = *it;
AstNode* alhsp = new AstVarRef(nodep->fileline(), outvscp, true);
AstNode* arhsp = new AstArraySel(nodep->fileline(),
new AstVarRef(nodep->fileline(), m_tableVarps[outnum], false),
new AstVarRef(nodep->fileline(), indexVscp, false));
AstNode* outasnp = (m_assignDly
? (AstNode*)(new AstAssignDly (nodep->fileline(), alhsp, arhsp))
: (AstNode*)(new AstAssign (nodep->fileline(), alhsp, arhsp)));
AstNode* outsetp = outasnp;
// Is the value set in only some branches of the table?
if (m_outNotSet[outnum]) {
V3Number outputChgMask (nodep->fileline(), m_outVarps.size(), 0);
outputChgMask.setBit(outnum,1);
outsetp = new AstIf (nodep->fileline(),
new AstAnd(nodep->fileline(),
new AstArraySel(nodep->fileline(),
new AstVarRef(nodep->fileline(), chgVscp, false),
new AstVarRef(nodep->fileline(), indexVscp, false)),
new AstConst(nodep->fileline(), outputChgMask)),
outsetp, NULL);
}
stmtsp->addNext(outsetp);
outnum++;
}
}
// VISITORS
virtual void visit(AstNetlist* nodep, AstNUser*) {
nodep->iterateChildren(*this);
}
virtual void visit(AstModule* nodep, AstNUser*) {
m_modTables = 0;
m_modTableVscs.clear();
m_modp = nodep;
nodep->iterateChildren(*this);
m_modp = NULL;
}
virtual void visit(AstScope* nodep, AstNUser*) {
UINFO(4," SCOPE "<<nodep<<endl);
m_scopep = nodep;
nodep->iterateChildren(*this);
m_scopep = NULL;
}
virtual void visit(AstAlways* nodep, AstNUser*) {
UINFO(4," ALWAYS "<<nodep<<endl);
if (treeTest(nodep)) {
// Well, then, I'll be a memory hog.
createTable(nodep); nodep=NULL;
}
}
virtual void visit(AstAssignAlias* nodep, AstNUser*) {}
virtual void visit(AstAssignW* nodep, AstNUser*) {
// It's nearly impossible to have a large enough assign to make this worthwhile
// For now we won't bother.
// Accelerated: no iterate
}
// default
virtual void visit(AstNode* nodep, AstNUser*) {
nodep->iterateChildren(*this);
}
public:
// CONSTRUCTORS
TableVisitor(AstNetlist* nodep) {
m_modp = NULL;
m_modTables = 0;
m_scopep = NULL;
m_assignDly = 0;
m_inWidth = 0;
m_outWidth = 0;
m_totalBytes = 0;
nodep->accept(*this);
}
virtual ~TableVisitor() {
V3Stats::addStat("Optimizations, Tables created", m_statTablesCre);
}
};
//######################################################################
void TableSimulateVisitor::varRefCb(AstVarRef* nodep) {
// Called by checking on each new varref encountered
// We cross-call into a TableVisitor function.
m_cbthis->simulateVarRefCb(nodep);
}
//######################################################################
// Table class functions
void V3Table::tableAll(AstNetlist* nodep) {
UINFO(2,__FUNCTION__<<": "<<endl);
TableVisitor visitor (nodep);
}