2010-01-24 23:37:01 +00:00
|
|
|
// -*- SystemC -*-
|
|
|
|
//=============================================================================
|
|
|
|
//
|
|
|
|
// THIS MODULE IS PUBLICLY LICENSED
|
|
|
|
//
|
2011-01-01 23:21:19 +00:00
|
|
|
// Copyright 2001-2011 by Wilson Snyder. This program is free software;
|
2010-01-24 23:37:01 +00:00
|
|
|
// you can redistribute it and/or modify it under the terms of either the GNU
|
|
|
|
// Lesser General Public License Version 3 or the Perl Artistic License Version 2.0.
|
|
|
|
//
|
|
|
|
// This is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
// for more details.
|
|
|
|
//
|
|
|
|
//=============================================================================
|
|
|
|
///
|
|
|
|
/// \file
|
|
|
|
/// \brief C++ Tracing in VCD Format
|
|
|
|
///
|
|
|
|
/// AUTHOR: Wilson Snyder
|
|
|
|
///
|
|
|
|
//=============================================================================
|
|
|
|
// SPDIFF_OFF
|
|
|
|
|
|
|
|
#ifndef _VERILATED_VCD_C_H_
|
|
|
|
#define _VERILATED_VCD_C_H_ 1
|
|
|
|
|
|
|
|
#include "verilatedos.h"
|
|
|
|
|
|
|
|
#include <string>
|
|
|
|
#include <vector>
|
|
|
|
#include <map>
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
class VerilatedVcd;
|
|
|
|
class VerilatedVcdCallInfo;
|
|
|
|
|
|
|
|
// SPDIFF_ON
|
|
|
|
//=============================================================================
|
|
|
|
// VerilatedVcdSig
|
|
|
|
/// Internal data on one signal being traced.
|
|
|
|
|
|
|
|
class VerilatedVcdSig {
|
|
|
|
protected:
|
|
|
|
friend class VerilatedVcd;
|
|
|
|
vluint32_t m_code; ///< VCD file code number
|
|
|
|
int m_bits; ///< Size of value in bits
|
|
|
|
VerilatedVcdSig (vluint32_t code, int bits)
|
|
|
|
: m_code(code), m_bits(bits) {}
|
|
|
|
public:
|
|
|
|
~VerilatedVcdSig() {}
|
|
|
|
};
|
|
|
|
|
|
|
|
//=============================================================================
|
|
|
|
|
|
|
|
typedef void (*VerilatedVcdCallback_t)(VerilatedVcd* vcdp, void* userthis, vluint32_t code);
|
|
|
|
|
|
|
|
//=============================================================================
|
|
|
|
// VerilatedVcd
|
|
|
|
/// Create a SystemPerl VCD dump
|
|
|
|
|
|
|
|
class VerilatedVcd {
|
|
|
|
private:
|
|
|
|
bool m_isOpen; ///< True indicates open file
|
|
|
|
bool m_evcd; ///< True for evcd format
|
|
|
|
int m_fd; ///< File descriptor we're writing to
|
|
|
|
string m_filename; ///< Filename we're writing to (if open)
|
|
|
|
vluint64_t m_rolloverMB; ///< MB of file size to rollover at
|
|
|
|
char m_scopeEscape; ///< Character to separate scope components
|
|
|
|
int m_modDepth; ///< Depth of module hierarchy
|
|
|
|
bool m_fullDump; ///< True indicates dump ignoring if changed
|
|
|
|
vluint32_t m_nextCode; ///< Next code number to assign
|
|
|
|
string m_modName; ///< Module name being traced now
|
|
|
|
double m_timeRes; ///< Time resolution (ns/ms etc)
|
|
|
|
double m_timeUnit; ///< Time units (ns/ms etc)
|
|
|
|
vluint64_t m_timeLastDump; ///< Last time we did a dump
|
|
|
|
|
|
|
|
char* m_wrBufp; ///< Output buffer
|
|
|
|
char* m_writep; ///< Write pointer into output buffer
|
|
|
|
vluint64_t m_wroteBytes; ///< Number of bytes written to this file
|
|
|
|
|
|
|
|
vluint32_t* m_sigs_oldvalp; ///< Pointer to old signal values
|
|
|
|
vector<VerilatedVcdSig> m_sigs; ///< Pointer to signal information
|
|
|
|
vector<VerilatedVcdCallInfo*> m_callbacks; ///< Routines to perform dumping
|
|
|
|
typedef map<string,string> NameMap;
|
|
|
|
NameMap* m_namemapp; ///< List of names for the header
|
|
|
|
static vector<VerilatedVcd*> s_vcdVecp; ///< List of all created traces
|
|
|
|
|
|
|
|
inline size_t bufferSize() { return 256*1024; } // See below for slack calculation
|
|
|
|
inline size_t bufferInsertSize() { return 16*1024; }
|
|
|
|
void bufferFlush();
|
|
|
|
void bufferCheck() {
|
|
|
|
// Flush the write buffer if there's not enough space left for new information
|
|
|
|
// We only call this once per vector, so we need enough slop for a very wide "b###" line
|
2010-02-03 11:52:02 +00:00
|
|
|
if (VL_UNLIKELY(m_writep > (m_wrBufp+(bufferSize()-bufferInsertSize())))) {
|
2010-01-24 23:37:01 +00:00
|
|
|
bufferFlush();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void closePrev();
|
|
|
|
void closeErr();
|
|
|
|
void openNext();
|
2010-03-22 22:38:24 +00:00
|
|
|
void makeNameMap();
|
2010-01-24 23:37:01 +00:00
|
|
|
void printIndent (int levelchange);
|
|
|
|
void printStr (const char* str);
|
|
|
|
void printQuad (vluint64_t n);
|
|
|
|
void printTime (vluint64_t timeui);
|
|
|
|
void declare (vluint32_t code, const char* name, const char* wirep,
|
|
|
|
int arraynum, bool tri, bool bussed, int msb, int lsb);
|
|
|
|
|
|
|
|
void dumpHeader();
|
|
|
|
void dumpPrep (vluint64_t timeui);
|
|
|
|
void dumpFull (vluint64_t timeui);
|
|
|
|
void dumpDone ();
|
|
|
|
inline void printCode (vluint32_t code) {
|
|
|
|
if (code>=(94*94*94)) *m_writep++ = ((char)((code/94/94/94)%94+33));
|
|
|
|
if (code>=(94*94)) *m_writep++ = ((char)((code/94/94)%94+33));
|
|
|
|
if (code>=(94)) *m_writep++ = ((char)((code/94)%94+33));
|
|
|
|
*m_writep++ = ((char)((code)%94+33));
|
|
|
|
}
|
|
|
|
string stringCode (vluint32_t code) {
|
|
|
|
string out;
|
|
|
|
if (code>=(94*94*94)) out += ((char)((code/94/94/94)%94+33));
|
|
|
|
if (code>=(94*94)) out += ((char)((code/94/94)%94+33));
|
|
|
|
if (code>=(94)) out += ((char)((code/94)%94+33));
|
|
|
|
return out + ((char)((code)%94+33));
|
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
// METHODS
|
|
|
|
void evcd(bool flag) { m_evcd = flag; }
|
|
|
|
|
|
|
|
public:
|
|
|
|
// CREATORS
|
|
|
|
VerilatedVcd () : m_isOpen(false), m_rolloverMB(0), m_modDepth(0), m_nextCode(1) {
|
|
|
|
m_wrBufp = new char [bufferSize()];
|
|
|
|
m_writep = m_wrBufp;
|
|
|
|
m_namemapp = NULL;
|
|
|
|
m_timeRes = m_timeUnit = 1e-9;
|
|
|
|
m_timeLastDump = 0;
|
|
|
|
m_sigs_oldvalp = NULL;
|
|
|
|
m_evcd = false;
|
|
|
|
m_scopeEscape = '.'; // Backward compatibility
|
|
|
|
m_wroteBytes = 0;
|
|
|
|
}
|
|
|
|
~VerilatedVcd();
|
|
|
|
|
|
|
|
// ACCESSORS
|
|
|
|
/// Inside dumping routines, return next VCD signal code
|
|
|
|
vluint32_t nextCode() const {return m_nextCode;}
|
|
|
|
/// Set size in megabytes after which new file should be created
|
|
|
|
void rolloverMB(vluint64_t rolloverMB) { m_rolloverMB=rolloverMB; };
|
|
|
|
/// Is file open?
|
|
|
|
bool isOpen() const { return m_isOpen; }
|
|
|
|
/// Change character that splits scopes. Note whitespace are ALWAYS escapes.
|
|
|
|
void scopeEscape(char flag) { m_scopeEscape = flag; }
|
|
|
|
/// Is this an escape?
|
|
|
|
inline bool isScopeEscape(char c) { return isspace(c) || c==m_scopeEscape; }
|
|
|
|
|
|
|
|
// METHODS
|
|
|
|
void open (const char* filename); ///< Open the file; call isOpen() to see if errors
|
|
|
|
void openNext (bool incFilename); ///< Open next data-only file
|
|
|
|
void flush() { bufferFlush(); } ///< Flush any remaining data
|
|
|
|
static void flush_all(); ///< Flush any remaining data from all files
|
|
|
|
void close (); ///< Close the file
|
|
|
|
|
|
|
|
void set_time_unit (const char* unit); ///< Set time units (s/ms, defaults to ns)
|
|
|
|
void set_time_unit (const string& unit) { set_time_unit(unit.c_str()); }
|
|
|
|
|
|
|
|
void set_time_resolution (const char* unit); ///< Set time resolution (s/ms, defaults to ns)
|
|
|
|
void set_time_resolution (const string& unit) { set_time_resolution(unit.c_str()); }
|
|
|
|
|
|
|
|
double timescaleToDouble (const char* unitp);
|
|
|
|
string doubleToTimescale (double value);
|
|
|
|
|
|
|
|
/// Inside dumping routines, called each cycle to make the dump
|
|
|
|
void dump (vluint64_t timeui);
|
|
|
|
/// Call dump with a absolute unscaled time in seconds
|
|
|
|
void dumpSeconds (double secs) { dump((vluint64_t)(secs * m_timeRes)); }
|
|
|
|
|
|
|
|
/// Inside dumping routines, declare callbacks for tracings
|
|
|
|
void addCallback (VerilatedVcdCallback_t init, VerilatedVcdCallback_t full,
|
|
|
|
VerilatedVcdCallback_t change,
|
|
|
|
void* userthis);
|
|
|
|
|
|
|
|
/// Inside dumping routines, declare a module
|
|
|
|
void module (const string name);
|
|
|
|
/// Inside dumping routines, declare a signal
|
|
|
|
void declBit (vluint32_t code, const char* name, int arraynum);
|
|
|
|
void declBus (vluint32_t code, const char* name, int arraynum, int msb, int lsb);
|
|
|
|
void declQuad (vluint32_t code, const char* name, int arraynum, int msb, int lsb);
|
|
|
|
void declArray (vluint32_t code, const char* name, int arraynum, int msb, int lsb);
|
|
|
|
void declTriBit (vluint32_t code, const char* name, int arraynum);
|
|
|
|
void declTriBus (vluint32_t code, const char* name, int arraynum, int msb, int lsb);
|
|
|
|
void declTriQuad (vluint32_t code, const char* name, int arraynum, int msb, int lsb);
|
|
|
|
void declTriArray (vluint32_t code, const char* name, int arraynum, int msb, int lsb);
|
|
|
|
void declDouble (vluint32_t code, const char* name, int arraynum);
|
|
|
|
void declFloat (vluint32_t code, const char* name, int arraynum);
|
|
|
|
// ... other module_start for submodules (based on cell name)
|
|
|
|
|
|
|
|
/// Inside dumping routines, dump one signal
|
|
|
|
void fullBit (vluint32_t code, const vluint32_t newval) {
|
|
|
|
// Note the &1, so we don't require clean input -- makes more common no change case faster
|
|
|
|
m_sigs_oldvalp[code] = newval;
|
|
|
|
*m_writep++=('0'+(char)(newval&1)); printCode(code); *m_writep++='\n';
|
|
|
|
bufferCheck();
|
|
|
|
}
|
|
|
|
void fullBus (vluint32_t code, const vluint32_t newval, int bits) {
|
|
|
|
m_sigs_oldvalp[code] = newval;
|
|
|
|
*m_writep++='b';
|
|
|
|
for (int bit=bits-1; bit>=0; --bit) {
|
|
|
|
*m_writep++=((newval&(1L<<bit))?'1':'0');
|
|
|
|
}
|
|
|
|
*m_writep++=' '; printCode(code); *m_writep++='\n';
|
|
|
|
bufferCheck();
|
|
|
|
}
|
|
|
|
void fullQuad (vluint32_t code, const vluint64_t newval, int bits) {
|
|
|
|
(*((vluint64_t*)&m_sigs_oldvalp[code])) = newval;
|
|
|
|
*m_writep++='b';
|
|
|
|
for (int bit=bits-1; bit>=0; --bit) {
|
|
|
|
*m_writep++=((newval&(1ULL<<bit))?'1':'0');
|
|
|
|
}
|
|
|
|
*m_writep++=' '; printCode(code); *m_writep++='\n';
|
|
|
|
bufferCheck();
|
|
|
|
}
|
|
|
|
void fullArray (vluint32_t code, const vluint32_t* newval, int bits) {
|
|
|
|
for (int word=0; word<(((bits-1)/32)+1); ++word) {
|
|
|
|
m_sigs_oldvalp[code+word] = newval[word];
|
|
|
|
}
|
|
|
|
*m_writep++='b';
|
|
|
|
for (int bit=bits-1; bit>=0; --bit) {
|
|
|
|
*m_writep++=((newval[(bit/32)]&(1L<<(bit&0x1f)))?'1':'0');
|
|
|
|
}
|
|
|
|
*m_writep++=' '; printCode(code); *m_writep++='\n';
|
|
|
|
bufferCheck();
|
|
|
|
}
|
|
|
|
void fullTriBit (vluint32_t code, const vluint32_t newval, const vluint32_t newtri) {
|
|
|
|
m_sigs_oldvalp[code] = newval;
|
|
|
|
m_sigs_oldvalp[code+1] = newtri;
|
|
|
|
*m_writep++ = "01zz"[m_sigs_oldvalp[code]
|
|
|
|
| (m_sigs_oldvalp[code+1]<<1)];
|
|
|
|
printCode(code); *m_writep++='\n';
|
|
|
|
bufferCheck();
|
|
|
|
}
|
|
|
|
void fullTriBus (vluint32_t code, const vluint32_t newval, const vluint32_t newtri, int bits) {
|
|
|
|
m_sigs_oldvalp[code] = newval;
|
|
|
|
m_sigs_oldvalp[code+1] = newtri;
|
|
|
|
*m_writep++='b';
|
|
|
|
for (int bit=bits-1; bit>=0; --bit) {
|
|
|
|
*m_writep++ = "01zz"[((newval >> bit)&1)
|
|
|
|
| (((newtri >> bit)&1)<<1)];
|
|
|
|
}
|
|
|
|
*m_writep++=' '; printCode(code); *m_writep++='\n';
|
|
|
|
bufferCheck();
|
|
|
|
}
|
|
|
|
void fullTriQuad (vluint32_t code, const vluint64_t newval, const vluint32_t newtri, int bits) {
|
|
|
|
(*((vluint64_t*)&m_sigs_oldvalp[code])) = newval;
|
|
|
|
(*((vluint64_t*)&m_sigs_oldvalp[code+1])) = newtri;
|
|
|
|
*m_writep++='b';
|
|
|
|
for (int bit=bits-1; bit>=0; --bit) {
|
|
|
|
*m_writep++ = "01zz"[((newval >> bit)&1ULL)
|
|
|
|
| (((newtri >> bit)&1ULL)<<1ULL)];
|
|
|
|
}
|
|
|
|
*m_writep++=' '; printCode(code); *m_writep++='\n';
|
|
|
|
bufferCheck();
|
|
|
|
}
|
|
|
|
void fullTriArray (vluint32_t code, const vluint32_t* newvalp, const vluint32_t* newtrip, int bits) {
|
|
|
|
for (int word=0; word<(((bits-1)/32)+1); ++word) {
|
|
|
|
m_sigs_oldvalp[code+word*2] = newvalp[word];
|
|
|
|
m_sigs_oldvalp[code+word*2+1] = newtrip[word];
|
|
|
|
}
|
|
|
|
*m_writep++='b';
|
|
|
|
for (int bit=bits-1; bit>=0; --bit) {
|
|
|
|
vluint32_t valbit = (newvalp[(bit/32)]>>(bit&0x1f)) & 1;
|
|
|
|
vluint32_t tribit = (newtrip[(bit/32)]>>(bit&0x1f)) & 1;
|
|
|
|
*m_writep++ = "01zz"[valbit | (tribit<<1)];
|
|
|
|
}
|
|
|
|
*m_writep++=' '; printCode(code); *m_writep++='\n';
|
|
|
|
bufferCheck();
|
|
|
|
}
|
|
|
|
void fullDouble (vluint32_t code, const double newval);
|
|
|
|
void fullFloat (vluint32_t code, const float newval);
|
|
|
|
|
|
|
|
/// Inside dumping routines, dump one signal as unknowns
|
|
|
|
/// Presently this code doesn't change the oldval vector.
|
|
|
|
/// Thus this is for special standalone applications that after calling
|
|
|
|
/// fullBitX, must when then value goes non-X call fullBit.
|
|
|
|
inline void fullBitX (vluint32_t code) {
|
|
|
|
*m_writep++='x'; printCode(code); *m_writep++='\n';
|
|
|
|
bufferCheck();
|
|
|
|
}
|
|
|
|
inline void fullBusX (vluint32_t code, int bits) {
|
|
|
|
*m_writep++='b';
|
|
|
|
for (int bit=bits-1; bit>=0; --bit) {
|
|
|
|
*m_writep++='x';
|
|
|
|
}
|
|
|
|
*m_writep++=' '; printCode(code); *m_writep++='\n';
|
|
|
|
bufferCheck();
|
|
|
|
}
|
|
|
|
inline void fullQuadX (vluint32_t code, int bits) { fullBusX (code, bits); }
|
|
|
|
inline void fullArrayX (vluint32_t code, int bits) { fullBusX (code, bits); }
|
|
|
|
|
|
|
|
/// Inside dumping routines, dump one signal if it has changed
|
|
|
|
inline void chgBit (vluint32_t code, const vluint32_t newval) {
|
|
|
|
vluint32_t diff = m_sigs_oldvalp[code] ^ newval;
|
|
|
|
if (VL_UNLIKELY(diff)) {
|
|
|
|
// Verilator 3.510 and newer provide clean input, so the below is only for back compatibility
|
|
|
|
if (VL_UNLIKELY(diff & 1)) { // Change after clean?
|
|
|
|
fullBit (code, newval);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
inline void chgBus (vluint32_t code, const vluint32_t newval, int bits) {
|
|
|
|
vluint32_t diff = m_sigs_oldvalp[code] ^ newval;
|
|
|
|
if (VL_UNLIKELY(diff)) {
|
|
|
|
if (VL_UNLIKELY(bits==32 || (diff & ((1U<<bits)-1) ))) {
|
|
|
|
fullBus (code, newval, bits);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
inline void chgQuad (vluint32_t code, const vluint64_t newval, int bits) {
|
|
|
|
vluint64_t diff = (*((vluint64_t*)&m_sigs_oldvalp[code])) ^ newval;
|
|
|
|
if (VL_UNLIKELY(diff)) {
|
|
|
|
if (VL_UNLIKELY(bits==64 || (diff & ((1ULL<<bits)-1) ))) {
|
|
|
|
fullQuad(code, newval, bits);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
inline void chgArray (vluint32_t code, const vluint32_t* newval, int bits) {
|
|
|
|
for (int word=0; word<(((bits-1)/32)+1); ++word) {
|
|
|
|
if (VL_UNLIKELY(m_sigs_oldvalp[code+word] ^ newval[word])) {
|
|
|
|
fullArray (code,newval,bits);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
inline void chgTriBit (vluint32_t code, const vluint32_t newval, const vluint32_t newtri) {
|
|
|
|
vluint32_t diff = ((m_sigs_oldvalp[code] ^ newval)
|
|
|
|
| (m_sigs_oldvalp[code+1] ^ newtri));
|
|
|
|
if (VL_UNLIKELY(diff)) {
|
|
|
|
// Verilator 3.510 and newer provide clean input, so the below is only for back compatibility
|
|
|
|
if (VL_UNLIKELY(diff & 1)) { // Change after clean?
|
|
|
|
fullTriBit (code, newval, newtri);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
inline void chgTriBus (vluint32_t code, const vluint32_t newval, const vluint32_t newtri, int bits) {
|
|
|
|
vluint32_t diff = ((m_sigs_oldvalp[code] ^ newval)
|
|
|
|
| (m_sigs_oldvalp[code+1] ^ newtri));
|
|
|
|
if (VL_UNLIKELY(diff)) {
|
|
|
|
if (VL_UNLIKELY(bits==32 || (diff & ((1U<<bits)-1) ))) {
|
|
|
|
fullTriBus (code, newval, newtri, bits);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
inline void chgTriQuad (vluint32_t code, const vluint64_t newval, const vluint32_t newtri, int bits) {
|
|
|
|
vluint64_t diff = ( ((*((vluint64_t*)&m_sigs_oldvalp[code])) ^ newval)
|
|
|
|
| ((*((vluint64_t*)&m_sigs_oldvalp[code+1])) ^ newtri));
|
|
|
|
if (VL_UNLIKELY(diff)) {
|
|
|
|
if (VL_UNLIKELY(bits==64 || (diff & ((1ULL<<bits)-1) ))) {
|
|
|
|
fullTriQuad(code, newval, newtri, bits);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
inline void chgTriArray (vluint32_t code, const vluint32_t* newvalp, const vluint32_t* newtrip, int bits) {
|
|
|
|
for (int word=0; word<(((bits-1)/32)+1); ++word) {
|
|
|
|
if (VL_UNLIKELY((m_sigs_oldvalp[code+word*2] ^ newvalp[word])
|
|
|
|
| (m_sigs_oldvalp[code+word*2+1] ^ newtrip[word]))) {
|
|
|
|
fullTriArray (code,newvalp,newtrip,bits);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
inline void chgDouble (vluint32_t code, const double newval) {
|
|
|
|
if (VL_UNLIKELY((*((double*)&m_sigs_oldvalp[code])) != newval)) {
|
|
|
|
fullDouble (code, newval);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
inline void chgFloat (vluint32_t code, const float newval) {
|
|
|
|
if (VL_UNLIKELY((*((float*)&m_sigs_oldvalp[code])) != newval)) {
|
|
|
|
fullFloat (code, newval);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
//=============================================================================
|
|
|
|
// VerilatedVcdC
|
|
|
|
/// Create a VCD dump file in C standalone (no SystemC) simulations.
|
|
|
|
|
|
|
|
class VerilatedVcdC {
|
|
|
|
VerilatedVcd m_sptrace; ///< SystemPerl trace file being created
|
|
|
|
public:
|
|
|
|
// CONSTRUCTORS
|
|
|
|
VerilatedVcdC() {}
|
|
|
|
~VerilatedVcdC() {}
|
|
|
|
// ACCESSORS
|
|
|
|
/// Is file open?
|
|
|
|
bool isOpen() const { return m_sptrace.isOpen(); }
|
|
|
|
// METHODS
|
|
|
|
/// Open a new VCD file
|
|
|
|
void open (const char* filename) { m_sptrace.open(filename); }
|
|
|
|
/// Continue a VCD dump by rotating to a new file name
|
|
|
|
void openNext (bool incFilename=true) { m_sptrace.openNext(incFilename); }
|
|
|
|
/// Set size in megabytes after which new file should be created
|
|
|
|
void rolloverMB(size_t rolloverMB) { m_sptrace.rolloverMB(rolloverMB); };
|
|
|
|
/// Close dump
|
|
|
|
void close() { m_sptrace.close(); }
|
|
|
|
/// Flush dump
|
|
|
|
void flush() { m_sptrace.flush(); }
|
|
|
|
/// Write one cycle of dump data
|
|
|
|
void dump (vluint64_t timeui) { m_sptrace.dump(timeui); }
|
|
|
|
/// Write one cycle of dump data - backward compatible and to reduce
|
|
|
|
/// conversion warnings. It's better to use a vluint64_t time instead.
|
|
|
|
void dump (double timestamp) { dump((vluint64_t)timestamp); }
|
|
|
|
void dump (vluint32_t timestamp) { dump((vluint64_t)timestamp); }
|
|
|
|
void dump (int timestamp) { dump((vluint64_t)timestamp); }
|
|
|
|
/// Internal class access
|
|
|
|
inline VerilatedVcd* spTrace () { return &m_sptrace; };
|
|
|
|
};
|
|
|
|
|
|
|
|
#endif // guard
|