verilator/include/verilated_vcd_c.h

420 lines
16 KiB
C
Raw Normal View History

// -*- SystemC -*-
//=============================================================================
//
// THIS MODULE IS PUBLICLY LICENSED
//
// Copyright 2001-2010 by Wilson Snyder. This program is free software;
// you can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License Version 2.0.
//
// This is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
//=============================================================================
///
/// \file
/// \brief C++ Tracing in VCD Format
///
/// AUTHOR: Wilson Snyder
///
//=============================================================================
// SPDIFF_OFF
#ifndef _VERILATED_VCD_C_H_
#define _VERILATED_VCD_C_H_ 1
#include "verilatedos.h"
#include <string>
#include <vector>
#include <map>
using namespace std;
class VerilatedVcd;
class VerilatedVcdCallInfo;
// SPDIFF_ON
//=============================================================================
// VerilatedVcdSig
/// Internal data on one signal being traced.
class VerilatedVcdSig {
protected:
friend class VerilatedVcd;
vluint32_t m_code; ///< VCD file code number
int m_bits; ///< Size of value in bits
VerilatedVcdSig (vluint32_t code, int bits)
: m_code(code), m_bits(bits) {}
public:
~VerilatedVcdSig() {}
};
//=============================================================================
typedef void (*VerilatedVcdCallback_t)(VerilatedVcd* vcdp, void* userthis, vluint32_t code);
//=============================================================================
// VerilatedVcd
/// Create a SystemPerl VCD dump
class VerilatedVcd {
private:
bool m_isOpen; ///< True indicates open file
bool m_evcd; ///< True for evcd format
int m_fd; ///< File descriptor we're writing to
string m_filename; ///< Filename we're writing to (if open)
vluint64_t m_rolloverMB; ///< MB of file size to rollover at
char m_scopeEscape; ///< Character to separate scope components
int m_modDepth; ///< Depth of module hierarchy
bool m_fullDump; ///< True indicates dump ignoring if changed
vluint32_t m_nextCode; ///< Next code number to assign
string m_modName; ///< Module name being traced now
double m_timeRes; ///< Time resolution (ns/ms etc)
double m_timeUnit; ///< Time units (ns/ms etc)
vluint64_t m_timeLastDump; ///< Last time we did a dump
char* m_wrBufp; ///< Output buffer
char* m_writep; ///< Write pointer into output buffer
vluint64_t m_wroteBytes; ///< Number of bytes written to this file
vluint32_t* m_sigs_oldvalp; ///< Pointer to old signal values
vector<VerilatedVcdSig> m_sigs; ///< Pointer to signal information
vector<VerilatedVcdCallInfo*> m_callbacks; ///< Routines to perform dumping
typedef map<string,string> NameMap;
NameMap* m_namemapp; ///< List of names for the header
static vector<VerilatedVcd*> s_vcdVecp; ///< List of all created traces
inline size_t bufferSize() { return 256*1024; } // See below for slack calculation
inline size_t bufferInsertSize() { return 16*1024; }
void bufferFlush();
void bufferCheck() {
// Flush the write buffer if there's not enough space left for new information
// We only call this once per vector, so we need enough slop for a very wide "b###" line
2010-02-03 11:52:02 +00:00
if (VL_UNLIKELY(m_writep > (m_wrBufp+(bufferSize()-bufferInsertSize())))) {
bufferFlush();
}
}
void closePrev();
void closeErr();
void openNext();
void printIndent (int levelchange);
void printStr (const char* str);
void printQuad (vluint64_t n);
void printTime (vluint64_t timeui);
void declare (vluint32_t code, const char* name, const char* wirep,
int arraynum, bool tri, bool bussed, int msb, int lsb);
void dumpHeader();
void dumpPrep (vluint64_t timeui);
void dumpFull (vluint64_t timeui);
void dumpDone ();
inline void printCode (vluint32_t code) {
if (code>=(94*94*94)) *m_writep++ = ((char)((code/94/94/94)%94+33));
if (code>=(94*94)) *m_writep++ = ((char)((code/94/94)%94+33));
if (code>=(94)) *m_writep++ = ((char)((code/94)%94+33));
*m_writep++ = ((char)((code)%94+33));
}
string stringCode (vluint32_t code) {
string out;
if (code>=(94*94*94)) out += ((char)((code/94/94/94)%94+33));
if (code>=(94*94)) out += ((char)((code/94/94)%94+33));
if (code>=(94)) out += ((char)((code/94)%94+33));
return out + ((char)((code)%94+33));
}
protected:
// METHODS
void evcd(bool flag) { m_evcd = flag; }
public:
// CREATORS
VerilatedVcd () : m_isOpen(false), m_rolloverMB(0), m_modDepth(0), m_nextCode(1) {
m_wrBufp = new char [bufferSize()];
m_writep = m_wrBufp;
m_namemapp = NULL;
m_timeRes = m_timeUnit = 1e-9;
m_timeLastDump = 0;
m_sigs_oldvalp = NULL;
m_evcd = false;
m_scopeEscape = '.'; // Backward compatibility
m_wroteBytes = 0;
}
~VerilatedVcd();
// ACCESSORS
/// Inside dumping routines, return next VCD signal code
vluint32_t nextCode() const {return m_nextCode;}
/// Set size in megabytes after which new file should be created
void rolloverMB(vluint64_t rolloverMB) { m_rolloverMB=rolloverMB; };
/// Is file open?
bool isOpen() const { return m_isOpen; }
/// Change character that splits scopes. Note whitespace are ALWAYS escapes.
void scopeEscape(char flag) { m_scopeEscape = flag; }
/// Is this an escape?
inline bool isScopeEscape(char c) { return isspace(c) || c==m_scopeEscape; }
// METHODS
void open (const char* filename); ///< Open the file; call isOpen() to see if errors
void openNext (bool incFilename); ///< Open next data-only file
void flush() { bufferFlush(); } ///< Flush any remaining data
static void flush_all(); ///< Flush any remaining data from all files
void close (); ///< Close the file
void set_time_unit (const char* unit); ///< Set time units (s/ms, defaults to ns)
void set_time_unit (const string& unit) { set_time_unit(unit.c_str()); }
void set_time_resolution (const char* unit); ///< Set time resolution (s/ms, defaults to ns)
void set_time_resolution (const string& unit) { set_time_resolution(unit.c_str()); }
double timescaleToDouble (const char* unitp);
string doubleToTimescale (double value);
/// Inside dumping routines, called each cycle to make the dump
void dump (vluint64_t timeui);
/// Call dump with a absolute unscaled time in seconds
void dumpSeconds (double secs) { dump((vluint64_t)(secs * m_timeRes)); }
/// Inside dumping routines, declare callbacks for tracings
void addCallback (VerilatedVcdCallback_t init, VerilatedVcdCallback_t full,
VerilatedVcdCallback_t change,
void* userthis);
/// Inside dumping routines, declare a module
void module (const string name);
/// Inside dumping routines, declare a signal
void declBit (vluint32_t code, const char* name, int arraynum);
void declBus (vluint32_t code, const char* name, int arraynum, int msb, int lsb);
void declQuad (vluint32_t code, const char* name, int arraynum, int msb, int lsb);
void declArray (vluint32_t code, const char* name, int arraynum, int msb, int lsb);
void declTriBit (vluint32_t code, const char* name, int arraynum);
void declTriBus (vluint32_t code, const char* name, int arraynum, int msb, int lsb);
void declTriQuad (vluint32_t code, const char* name, int arraynum, int msb, int lsb);
void declTriArray (vluint32_t code, const char* name, int arraynum, int msb, int lsb);
void declDouble (vluint32_t code, const char* name, int arraynum);
void declFloat (vluint32_t code, const char* name, int arraynum);
// ... other module_start for submodules (based on cell name)
/// Inside dumping routines, dump one signal
void fullBit (vluint32_t code, const vluint32_t newval) {
// Note the &1, so we don't require clean input -- makes more common no change case faster
m_sigs_oldvalp[code] = newval;
*m_writep++=('0'+(char)(newval&1)); printCode(code); *m_writep++='\n';
bufferCheck();
}
void fullBus (vluint32_t code, const vluint32_t newval, int bits) {
m_sigs_oldvalp[code] = newval;
*m_writep++='b';
for (int bit=bits-1; bit>=0; --bit) {
*m_writep++=((newval&(1L<<bit))?'1':'0');
}
*m_writep++=' '; printCode(code); *m_writep++='\n';
bufferCheck();
}
void fullQuad (vluint32_t code, const vluint64_t newval, int bits) {
(*((vluint64_t*)&m_sigs_oldvalp[code])) = newval;
*m_writep++='b';
for (int bit=bits-1; bit>=0; --bit) {
*m_writep++=((newval&(1ULL<<bit))?'1':'0');
}
*m_writep++=' '; printCode(code); *m_writep++='\n';
bufferCheck();
}
void fullArray (vluint32_t code, const vluint32_t* newval, int bits) {
for (int word=0; word<(((bits-1)/32)+1); ++word) {
m_sigs_oldvalp[code+word] = newval[word];
}
*m_writep++='b';
for (int bit=bits-1; bit>=0; --bit) {
*m_writep++=((newval[(bit/32)]&(1L<<(bit&0x1f)))?'1':'0');
}
*m_writep++=' '; printCode(code); *m_writep++='\n';
bufferCheck();
}
void fullTriBit (vluint32_t code, const vluint32_t newval, const vluint32_t newtri) {
m_sigs_oldvalp[code] = newval;
m_sigs_oldvalp[code+1] = newtri;
*m_writep++ = "01zz"[m_sigs_oldvalp[code]
| (m_sigs_oldvalp[code+1]<<1)];
printCode(code); *m_writep++='\n';
bufferCheck();
}
void fullTriBus (vluint32_t code, const vluint32_t newval, const vluint32_t newtri, int bits) {
m_sigs_oldvalp[code] = newval;
m_sigs_oldvalp[code+1] = newtri;
*m_writep++='b';
for (int bit=bits-1; bit>=0; --bit) {
*m_writep++ = "01zz"[((newval >> bit)&1)
| (((newtri >> bit)&1)<<1)];
}
*m_writep++=' '; printCode(code); *m_writep++='\n';
bufferCheck();
}
void fullTriQuad (vluint32_t code, const vluint64_t newval, const vluint32_t newtri, int bits) {
(*((vluint64_t*)&m_sigs_oldvalp[code])) = newval;
(*((vluint64_t*)&m_sigs_oldvalp[code+1])) = newtri;
*m_writep++='b';
for (int bit=bits-1; bit>=0; --bit) {
*m_writep++ = "01zz"[((newval >> bit)&1ULL)
| (((newtri >> bit)&1ULL)<<1ULL)];
}
*m_writep++=' '; printCode(code); *m_writep++='\n';
bufferCheck();
}
void fullTriArray (vluint32_t code, const vluint32_t* newvalp, const vluint32_t* newtrip, int bits) {
for (int word=0; word<(((bits-1)/32)+1); ++word) {
m_sigs_oldvalp[code+word*2] = newvalp[word];
m_sigs_oldvalp[code+word*2+1] = newtrip[word];
}
*m_writep++='b';
for (int bit=bits-1; bit>=0; --bit) {
vluint32_t valbit = (newvalp[(bit/32)]>>(bit&0x1f)) & 1;
vluint32_t tribit = (newtrip[(bit/32)]>>(bit&0x1f)) & 1;
*m_writep++ = "01zz"[valbit | (tribit<<1)];
}
*m_writep++=' '; printCode(code); *m_writep++='\n';
bufferCheck();
}
void fullDouble (vluint32_t code, const double newval);
void fullFloat (vluint32_t code, const float newval);
/// Inside dumping routines, dump one signal as unknowns
/// Presently this code doesn't change the oldval vector.
/// Thus this is for special standalone applications that after calling
/// fullBitX, must when then value goes non-X call fullBit.
inline void fullBitX (vluint32_t code) {
*m_writep++='x'; printCode(code); *m_writep++='\n';
bufferCheck();
}
inline void fullBusX (vluint32_t code, int bits) {
*m_writep++='b';
for (int bit=bits-1; bit>=0; --bit) {
*m_writep++='x';
}
*m_writep++=' '; printCode(code); *m_writep++='\n';
bufferCheck();
}
inline void fullQuadX (vluint32_t code, int bits) { fullBusX (code, bits); }
inline void fullArrayX (vluint32_t code, int bits) { fullBusX (code, bits); }
/// Inside dumping routines, dump one signal if it has changed
inline void chgBit (vluint32_t code, const vluint32_t newval) {
vluint32_t diff = m_sigs_oldvalp[code] ^ newval;
if (VL_UNLIKELY(diff)) {
// Verilator 3.510 and newer provide clean input, so the below is only for back compatibility
if (VL_UNLIKELY(diff & 1)) { // Change after clean?
fullBit (code, newval);
}
}
}
inline void chgBus (vluint32_t code, const vluint32_t newval, int bits) {
vluint32_t diff = m_sigs_oldvalp[code] ^ newval;
if (VL_UNLIKELY(diff)) {
if (VL_UNLIKELY(bits==32 || (diff & ((1U<<bits)-1) ))) {
fullBus (code, newval, bits);
}
}
}
inline void chgQuad (vluint32_t code, const vluint64_t newval, int bits) {
vluint64_t diff = (*((vluint64_t*)&m_sigs_oldvalp[code])) ^ newval;
if (VL_UNLIKELY(diff)) {
if (VL_UNLIKELY(bits==64 || (diff & ((1ULL<<bits)-1) ))) {
fullQuad(code, newval, bits);
}
}
}
inline void chgArray (vluint32_t code, const vluint32_t* newval, int bits) {
for (int word=0; word<(((bits-1)/32)+1); ++word) {
if (VL_UNLIKELY(m_sigs_oldvalp[code+word] ^ newval[word])) {
fullArray (code,newval,bits);
return;
}
}
}
inline void chgTriBit (vluint32_t code, const vluint32_t newval, const vluint32_t newtri) {
vluint32_t diff = ((m_sigs_oldvalp[code] ^ newval)
| (m_sigs_oldvalp[code+1] ^ newtri));
if (VL_UNLIKELY(diff)) {
// Verilator 3.510 and newer provide clean input, so the below is only for back compatibility
if (VL_UNLIKELY(diff & 1)) { // Change after clean?
fullTriBit (code, newval, newtri);
}
}
}
inline void chgTriBus (vluint32_t code, const vluint32_t newval, const vluint32_t newtri, int bits) {
vluint32_t diff = ((m_sigs_oldvalp[code] ^ newval)
| (m_sigs_oldvalp[code+1] ^ newtri));
if (VL_UNLIKELY(diff)) {
if (VL_UNLIKELY(bits==32 || (diff & ((1U<<bits)-1) ))) {
fullTriBus (code, newval, newtri, bits);
}
}
}
inline void chgTriQuad (vluint32_t code, const vluint64_t newval, const vluint32_t newtri, int bits) {
vluint64_t diff = ( ((*((vluint64_t*)&m_sigs_oldvalp[code])) ^ newval)
| ((*((vluint64_t*)&m_sigs_oldvalp[code+1])) ^ newtri));
if (VL_UNLIKELY(diff)) {
if (VL_UNLIKELY(bits==64 || (diff & ((1ULL<<bits)-1) ))) {
fullTriQuad(code, newval, newtri, bits);
}
}
}
inline void chgTriArray (vluint32_t code, const vluint32_t* newvalp, const vluint32_t* newtrip, int bits) {
for (int word=0; word<(((bits-1)/32)+1); ++word) {
if (VL_UNLIKELY((m_sigs_oldvalp[code+word*2] ^ newvalp[word])
| (m_sigs_oldvalp[code+word*2+1] ^ newtrip[word]))) {
fullTriArray (code,newvalp,newtrip,bits);
return;
}
}
}
inline void chgDouble (vluint32_t code, const double newval) {
if (VL_UNLIKELY((*((double*)&m_sigs_oldvalp[code])) != newval)) {
fullDouble (code, newval);
}
}
inline void chgFloat (vluint32_t code, const float newval) {
if (VL_UNLIKELY((*((float*)&m_sigs_oldvalp[code])) != newval)) {
fullFloat (code, newval);
}
}
};
//=============================================================================
// VerilatedVcdC
/// Create a VCD dump file in C standalone (no SystemC) simulations.
class VerilatedVcdC {
VerilatedVcd m_sptrace; ///< SystemPerl trace file being created
public:
// CONSTRUCTORS
VerilatedVcdC() {}
~VerilatedVcdC() {}
// ACCESSORS
/// Is file open?
bool isOpen() const { return m_sptrace.isOpen(); }
// METHODS
/// Open a new VCD file
void open (const char* filename) { m_sptrace.open(filename); }
/// Continue a VCD dump by rotating to a new file name
void openNext (bool incFilename=true) { m_sptrace.openNext(incFilename); }
/// Set size in megabytes after which new file should be created
void rolloverMB(size_t rolloverMB) { m_sptrace.rolloverMB(rolloverMB); };
/// Close dump
void close() { m_sptrace.close(); }
/// Flush dump
void flush() { m_sptrace.flush(); }
/// Write one cycle of dump data
void dump (vluint64_t timeui) { m_sptrace.dump(timeui); }
/// Write one cycle of dump data - backward compatible and to reduce
/// conversion warnings. It's better to use a vluint64_t time instead.
void dump (double timestamp) { dump((vluint64_t)timestamp); }
void dump (vluint32_t timestamp) { dump((vluint64_t)timestamp); }
void dump (int timestamp) { dump((vluint64_t)timestamp); }
/// Internal class access
inline VerilatedVcd* spTrace () { return &m_sptrace; };
};
#endif // guard