verilator/src/V3Number.h

220 lines
10 KiB
C
Raw Normal View History

// -*- C++ -*-
//*************************************************************************
// DESCRIPTION: Verilator: Large 4-state numbers
//
// Code available from: http://www.veripool.org/verilator
//
// AUTHORS: Wilson Snyder with Paul Wasson, Duane Gabli
//
//*************************************************************************
//
// Copyright 2003-2008 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// General Public License or the Perl Artistic License.
//
// Verilator is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
//*************************************************************************
#ifndef _V3NUMBER_H_
#define _V3NUMBER_H_ 1
#include "config_build.h"
#include "verilatedos.h"
#include <vector>
#include "V3Error.h"
//============================================================================
class V3Number {
// Large 4-state number handling
int m_width; // Width as specified/calculated.
bool m_sized:1; // True if the user specified the width, else we track it.
bool m_signed:1; // True if signed value
bool m_autoExtend:1; // True if SystemVerilog extend-to-any-width
FileLine* m_fileline;
vector<uint32_t> m_value; // The Value, with bit 0 being in bit 0 of this vector (unless X/Z)
vector<uint32_t> m_valueX; // Each bit is true if it's X or Z, 10=z, 11=x
// METHODS
void init(FileLine* fileline, int width);
V3Number& setZero();
V3Number& setSingleBits(char value);
void opCleanThis();
public:
FileLine* fileline() const { return m_fileline; }
void fileline(FileLine* fl) { m_fileline=fl; }
V3Number& setQuad(vluint64_t value);
V3Number& setLong(uint32_t value);
void setBit (int bit, char value) { // Note must be pre-zeroed!
if (bit>=m_width) return;
if (value=='0'||value==0) m_value [bit/32] &= ~(1UL<<(bit&31));
else {
if (value=='1'||value=='x'||value==1||value==3) m_value [bit/32] |= (1UL<<(bit&31));
if (value=='z'||value=='x'||value==2||value==3) m_valueX[bit/32] |= (1UL<<(bit&31));
}
}
private:
char bitIs (int bit) const {
if (bit>=m_width) {
bit = m_width-1;
// We never sign extend
return ( "00zx"[(((m_value[bit/32] & (1UL<<(bit&31)))?1:0)
| ((m_valueX[bit/32] & (1UL<<(bit&31)))?2:0))] );
}
return ( "01zx"[(((m_value[bit/32] & (1UL<<(bit&31)))?1:0)
| ((m_valueX[bit/32] & (1UL<<(bit&31)))?2:0))] ); }
char bitIsExtend (int bit) const {
if (bit>=m_width) {
bit = m_width-1;
// We do sign extend
return ( "01zx"[(((m_value[bit/32] & (1UL<<(bit&31)))?1:0)
| ((m_valueX[bit/32] & (1UL<<(bit&31)))?2:0))] );
}
return ( "01zx"[(((m_value[bit/32] & (1UL<<(bit&31)))?1:0)
| ((m_valueX[bit/32] & (1UL<<(bit&31)))?2:0))] ); }
bool bitIs0 (int bit) const {
if (bit>=m_width) return !bitIsXZ(m_width-1);
return ( (m_value[bit/32] & (1UL<<(bit&31)))==0 && !(m_valueX[bit/32] & (1UL<<(bit&31))) ); }
bool bitIs1 (int bit) const {
if (bit>=m_width) return false;
return ( (m_value[bit/32] & (1UL<<(bit&31))) && !(m_valueX[bit/32] & (1UL<<(bit&31))) ); }
bool bitIs1Extend (int bit) const {
if (bit>=m_width) return bitIs1Extend(m_width-1);
return ( (m_value[bit/32] & (1UL<<(bit&31))) && !(m_valueX[bit/32] & (1UL<<(bit&31))) ); }
bool bitIsX (int bit) const {
if (bit>=m_width) return bitIsZ(m_width-1);
return ( (m_value[bit/32] & (1UL<<(bit&31))) && (m_valueX[bit/32] & (1UL<<(bit&31))) ); }
bool bitIsXZ(int bit) const {
if (bit>=m_width) return bitIsXZ(m_width-1);
return ( (m_valueX[bit/32] & (1UL<<(bit&31))) );
}
bool bitIsZ (int bit) const {
if (bit>=m_width) return bitIsZ(m_width-1);
return ( (~m_value[bit/32] & (1UL<<(bit&31))) && (m_valueX[bit/32] & (1UL<<(bit&31))) ); }
uint32_t bitsValue(int lsb, int nbits) const {
uint32_t v=0;
for (int bitn=0; bitn<nbits; bitn++) { v |= (bitIs1(lsb+bitn)<<bitn); }
return v;
}
int words() const { return ((width()+31)/32); }
public:
class VerilogString {}; // for creator type-overload selection
// CONSTRUCTORS
V3Number(FileLine* fileline) { init(fileline, 1); }
V3Number(FileLine* fileline, int width) { init(fileline, width); }; // 0=unsized
V3Number(FileLine* fileline, int width, uint32_t value) { init(fileline, width); m_value[0]=value; }
V3Number(FileLine* fileline, const char* source); // Create from a verilog 32'hxxxx number.
V3Number(VerilogString, FileLine* fileline, const string& vvalue);
// SETTERS
V3Number& setAllBitsX();
V3Number& setAllBitsZ();
V3Number& setMask(int nbits); // IE if nbits=1, then 0b1, if 2->0b11, if 3->0b111 etc
// ACCESSORS
string ascii(bool prefixed=true, bool cleanVerilog=false) const;
string displayed(const string& format) const;
int width() const { return m_width; }
int minWidth() const; // Minimum width that can represent this number (~== log2(num)+1)
bool sized() const { return m_sized; }
bool autoExtend() const { return m_autoExtend; }
bool isSigned() const { return m_signed; } // Only correct for parsing of numbers from strings, otherwise not used (use AstConst::isSigned())
bool isNegative() const { return bitIs1(width()-1); }
bool isFourState() const { for (int i=0;i<words();i++) {if (m_valueX[i]) return true;} return false; }
bool isEqZero() const;
bool isNeqZero() const;
bool isEqOne() const;
bool isEqAllOnes(int optwidth=0) const;
bool isCaseEq(const V3Number& rhsp) const; // operator==
void width(int width, bool sized=true);
void isSigned(bool ssigned) { m_signed=ssigned; }
uint32_t asInt() const;
vlsint32_t asSInt() const;
vluint64_t asQuad() const;
vlsint64_t asSQuad() const;
uint32_t asHash() const;
uint32_t dataWord(int word) const;
uint32_t countOnes() const;
uint32_t mostSetBitP1() const; // Highest bit set plus one, IE for 16 return 5, for 0 return 0.
// STATICS
static int log2b(uint32_t num);
typedef V3Number& (*UniopFuncp)(V3Number&);
typedef V3Number& (*BiopFuncp) (V3Number&, V3Number&);
// MATH
// "this" is the output, as we need the output width before some computations
V3Number& isTrue (const V3Number& lhs);
V3Number& opBitsNonX(const V3Number& lhs); // 0/1->1, X/Z->0
V3Number& opBitsOne (const V3Number& lhs); // 1->1, 0/X/Z->0
V3Number& opBitsXZ (const V3Number& lhs); // 0/1->0, X/Z->1
//
V3Number& opAssign (const V3Number& lhs);
V3Number& opExtendS (const V3Number& lhs); // Sign extension
V3Number& opRedOr (const V3Number& lhs);
V3Number& opRedAnd (const V3Number& lhs);
V3Number& opRedXor (const V3Number& lhs);
V3Number& opRedXnor (const V3Number& lhs);
V3Number& opCountOnes(const V3Number& lhs);
V3Number& opIsUnknown(const V3Number& lhs);
V3Number& opOneHot (const V3Number& lhs);
V3Number& opOneHot0 (const V3Number& lhs);
V3Number& opCLog2 (const V3Number& lhs);
V3Number& opClean (const V3Number& lhs, uint32_t bits);
V3Number& opConcat (const V3Number& lhs, const V3Number& rhs);
V3Number& opRepl (const V3Number& lhs, const V3Number& rhs);
V3Number& opRepl (const V3Number& lhs, uint32_t rhs);
V3Number& opRange (const V3Number& lhs, const V3Number& rhs, const V3Number& ths);
V3Number& opRange (const V3Number& lhs, uint32_t rhs, uint32_t ths);
V3Number& opCond (const V3Number& lhs, const V3Number& rhs, const V3Number& ths);
V3Number& opCaseEq (const V3Number& lhs, const V3Number& rhs);
V3Number& opCaseNeq (const V3Number& lhs, const V3Number& rhs);
V3Number& opWildEq (const V3Number& lhs, const V3Number& rhs);
V3Number& opWildNeq (const V3Number& lhs, const V3Number& rhs);
// "standard" math
V3Number& opNot (const V3Number& lhs);
V3Number& opLogNot (const V3Number& lhs);
V3Number& opLogAnd (const V3Number& lhs, const V3Number& rhs);
V3Number& opLogOr (const V3Number& lhs, const V3Number& rhs);
V3Number& opUnaryMin(const V3Number& lhs);
V3Number& opAdd (const V3Number& lhs, const V3Number& rhs);
V3Number& opSub (const V3Number& lhs, const V3Number& rhs);
V3Number& opMul (const V3Number& lhs, const V3Number& rhs);
V3Number& opMulS (const V3Number& lhs, const V3Number& rhs); // Signed
V3Number& opDiv (const V3Number& lhs, const V3Number& rhs);
V3Number& opDivS (const V3Number& lhs, const V3Number& rhs); // Signed
V3Number& opModDiv (const V3Number& lhs, const V3Number& rhs);
V3Number& opModDivS (const V3Number& lhs, const V3Number& rhs); // Signed
V3Number& opPow (const V3Number& lhs, const V3Number& rhs);
V3Number& opPowS (const V3Number& lhs, const V3Number& rhs); // Signed
V3Number& opAnd (const V3Number& lhs, const V3Number& rhs);
V3Number& opChangeXor(const V3Number& lhs, const V3Number& rhs);
V3Number& opXor (const V3Number& lhs, const V3Number& rhs);
V3Number& opXnor (const V3Number& lhs, const V3Number& rhs);
V3Number& opOr (const V3Number& lhs, const V3Number& rhs);
V3Number& opShiftR (const V3Number& lhs, const V3Number& rhs);
V3Number& opShiftRS (const V3Number& lhs, const V3Number& rhs); // Arithmetic w/carry
V3Number& opShiftL (const V3Number& lhs, const V3Number& rhs);
// Comparisons
V3Number& opEq (const V3Number& lhs, const V3Number& rhs);
V3Number& opNeq (const V3Number& lhs, const V3Number& rhs);
V3Number& opGt (const V3Number& lhs, const V3Number& rhs);
V3Number& opGtS (const V3Number& lhs, const V3Number& rhs); // Signed
V3Number& opGte (const V3Number& lhs, const V3Number& rhs);
V3Number& opGteS (const V3Number& lhs, const V3Number& rhs); // Signed
V3Number& opLt (const V3Number& lhs, const V3Number& rhs);
V3Number& opLtS (const V3Number& lhs, const V3Number& rhs); // Signed
V3Number& opLte (const V3Number& lhs, const V3Number& rhs);
V3Number& opLteS (const V3Number& lhs, const V3Number& rhs); // Signed
};
inline ostream& operator<<(ostream& os, V3Number rhs) { return os<<rhs.ascii(); }
#endif // Guard