diff --git a/SAR_ADC_proposal.ipynb b/SAR_ADC_proposal.ipynb new file mode 100644 index 0000000..7f9dd3b --- /dev/null +++ b/SAR_ADC_proposal.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"markdown","metadata":{"id":"view-in-github"},"source":["\"Open"]},{"cell_type":"markdown","metadata":{"id":"aK2t7aSWNojQ"},"source":["# Lab Bench on Chip\n","## SAR ADC design for integrated oscilloscope\n","\n","```\n","AC3E-UTFSM-PUC-Chile Team, May 2023\n","SPDX-License-Identifier: Apache-2.0\n","```\n","\n","\n","|Name|Email|Affiliation|IEEE Member|SSCS Member|\n","|:--:|:--:|:----------:|:----------:|:----------:|\n","|Jorge Marín (Lead)
|jorge.marinn@usm.cl|AC3E|Yes|Yes|\n","|Christian Rojas|c.a.rojas@ieee.org|AC3E, Universidad Técnica Federico Santa María|Yes|No|\n","|Alonso Rodríguez|alonso.rodriguez.13@sansano.usm.cl|Affiliation 3|Yes/No|Yes/No|\n","|Kevin Pizarro|kevin.pizarroa@sansano.usm.cl|Universidad Técnica Federico Santa María|Yes|Yes|\n","|Vicente Osorio|vicente.osorio@usm.cl|Universidad Técnica Federico Santa María|No|No|\n","|Andrea Duarte|Email3|Universidad Técnica Federico Santa María|Yes/No|Yes/No|\n","|Mario Romero|mario.romeron@usm.cl|Universidad Técnica Federico Santa María|Yes|Yes|\n","|Felipe Torres|felipe.torreso@sansano.usm.cl|Affiliation 3|Yes/No|Yes/No|\n","|Patricio Carrasco|patricio.carrascoo@sansano.usm.cl|Affiliation 3|Yes/No|Yes/No|\n","|Sebastián Sánchez|sebastian.sanchezp@usm.cl|Universidad Técnica Federico Santa María|Yes/No|Yes/No|\n","|Jesús Ávila|jesus.avila.05@gmail.com|Affiliation 3|Yes/No|Yes/No|\n","|Martín Muñoz|martin.munozmun@usm.cl|Universidad Técnica Federico Santa María|Yes/No|Yes/No|\n","|Valeria Muñoz|valeria.munoz@usm.cl|Affiliation 4|Yes/No|Yes/No|\n","|Joaquín Saldías|joaquin.saldiasa@usm.cl|Affiliation 3|Yes/No|Yes/No|\n","|Felipe Rifo|felipe.rifo@sansano.usm.cl|Affiliation 3|Yes/No|Yes/No|"]},{"cell_type":"markdown","metadata":{"id":"W7JQJy7mvn2w"},"source":["**_Abstract_** - This work introduces a design of a n-bit SAR ADC intended for an integrated oscilloscope, targetting the open-source GlobalFoundries 180nm PDK.\n","\n","The basic architecture of a SAR ADC consists of a capacitive DAC, a comparator, and a control block. This can be seen in the figure depicted below:\n"]},{"cell_type":"markdown","source":["
\n","\n","
Figure 1: SAR ADC architecture
\n"],"metadata":{"id":"_XjW7cdZ0peq"}},{"cell_type":"markdown","source":["**_Key words_** - component; formatting; style; styling; insert (key words)\n"],"metadata":{"id":"-in8T7fH0etl"}},{"cell_type":"markdown","metadata":{"id":"4ProrWGQPJEx"},"source":["## Tool Installation\n","\n","This is where you need to install your tools. We provide here an example where conda environment is being installed and then Ngspice for simulations."]},{"cell_type":"markdown","metadata":{"id":"LLYfEdDLPJEy"},"source":["\n","**_Tool setup adopted from @proppy and @bmurmann (see this [Colab notebook](https://colab.research.google.com/gist/proppy/a0c5ed3e28e942f1621200dcf67bad5a/sky130-pyspice-playground.ipynb#scrollTo=q0XHBAt1jGmQ))_**"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"aKoPD8cKw2UL","outputId":"0959dcdf-5df0-44ba-fb67-b9c3bd7d40b4"},"outputs":[{"output_type":"stream","name":"stdout","text":["\n"," __\n"," __ ______ ___ ____ _____ ___ / /_ ____ _\n"," / / / / __ `__ \\/ __ `/ __ `__ \\/ __ \\/ __ `/\n"," / /_/ / / / / / / /_/ / / / / / / /_/ / /_/ /\n"," / .___/_/ /_/ /_/\\__,_/_/ /_/ /_/_.___/\\__,_/\n"," /_/\n","\n","Empty environment created at prefix: /content/conda-env\n","\n"," __\n"," __ ______ ___ ____ _____ ___ / /_ ____ _\n"," / / / / __ `__ \\/ __ `/ __ `__ \\/ __ \\/ __ `/\n"," / /_/ / / / / / / /_/ / / / / / / /_/ / /_/ /\n"," / .___/_/ /_/ /_/\\__,_/_/ /_/ /_/_.___/\\__,_/\n"," /_/\n","\n","\n","Pinned packages:\n"," - python 3.7*\n","\n","\n","Transaction\n","\n"," Prefix: /content/conda-env\n","\n"," Updating specs:\n","\n"," - ngspice=*\n","\n","\n"," Package Version Build Channel Size\n","─────────────────────────────────────────────────────────────────────────────────────\n"," Install:\n","─────────────────────────────────────────────────────────────────────────────────────\n","\n"," \u001b[32m+ _libgcc_mutex\u001b[0m 0.1 main main/linux-64 3kB\n"," \u001b[32m+ _openmp_mutex\u001b[0m 5.1 1_gnu main/linux-64 21kB\n"," \u001b[32m+ libgcc-ng \u001b[0m 11.2.0 h1234567_1 main/linux-64 9MB\n"," \u001b[32m+ libgomp \u001b[0m 11.2.0 h1234567_1 main/linux-64 573kB\n"," \u001b[32m+ libstdcxx-ng \u001b[0m 11.2.0 h1234567_1 main/linux-64 6MB\n"," \u001b[32m+ ngspice \u001b[0m 39.3_2_gf9ed3fd08 20230225_164303 litex-hub/linux-64 3MB\n","\n"," Summary:\n","\n"," Install: 6 packages\n","\n"," Total download: 19MB\n","\n","─────────────────────────────────────────────────────────────────────────────────────\n","\n","\n","\n","Transaction starting\n","Linking libstdcxx-ng-11.2.0-h1234567_1\n","Linking _libgcc_mutex-0.1-main\n","Linking libgomp-11.2.0-h1234567_1\n","Linking _openmp_mutex-5.1-1_gnu\n","Linking libgcc-ng-11.2.0-h1234567_1\n","Linking ngspice-39.3_2_gf9ed3fd08-20230225_164303\n","Transaction finished\n","downloading: https://github.com/efabless/globalfoundries-pdk-libs-gf180mcu_fd_pr/raw/main/models/ngspice/design.ngspice\n","downloading: https://github.com/efabless/globalfoundries-pdk-libs-gf180mcu_fd_pr/raw/main/models/ngspice/sm141064.ngspice\n","downloading: https://github.com/efabless/globalfoundries-pdk-libs-gf180mcu_fd_pr/raw/main/models/ngspice/sm141064_mim.ngspice\n","downloading: https://github.com/efabless/globalfoundries-pdk-libs-gf180mcu_fd_pr/raw/main/models/ngspice/smbb000149.ngspice\n","env: CONDA_PREFIX=/content/conda-env\n","env: PATH=/content/conda-env/bin:/opt/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/tools/node/bin:/tools/google-cloud-sdk/bin\n"]}],"source":["#@title Install dependencies {display-mode: \"form\"}\n","#@markdown - Click the ▷ button to setup the digital design environment based on [conda-eda](https://github.com/hdl/conda-eda).\n","\n","ngspice_version = 'latest' #@param {type:\"string\"}\n","gf180mcu_fd_pr_version = 'latest' #@param {type:\"string\"}\n","\n","if ngspice_version == 'latest':\n"," ngspice_version = ''\n","\n","if gf180mcu_fd_pr_version == 'latest':\n"," gf180mcu_fd_pr_version = 'main'\n","\n","import os\n","import pathlib\n","import urllib.request\n","\n","!curl -Ls https://micro.mamba.pm/api/micromamba/linux-64/latest | tar -xj bin/micromamba\n","conda_prefix_path = pathlib.Path('conda-env')\n","CONDA_PREFIX = str(conda_prefix_path.resolve())\n","!bin/micromamba create --yes --prefix $CONDA_PREFIX\n","!echo 'python ==3.7*' >> {CONDA_PREFIX}/conda-meta/pinned\n","!CI=0 bin/micromamba install --yes --prefix $CONDA_PREFIX \\\n"," --channel litex-hub \\\n"," --channel main \\\n"," ngspice={ngspice_version} \\\n"," iverilog \n","\n","ngspice_models_dir = pathlib.Path('globalfoundries-pdk-libs-gf180mcu_fd_pr/models/ngspice')\n","ngspice_models_dir.mkdir(exist_ok=True, parents=True)\n","models = ['design.ngspice', 'sm141064.ngspice', 'sm141064_mim.ngspice', 'smbb000149.ngspice']\n","for m in models:\n"," url = f'https://github.com/efabless/globalfoundries-pdk-libs-gf180mcu_fd_pr/raw/{gf180mcu_fd_pr_version}/models/ngspice/{m}'\n"," print('downloading:', url)\n"," with urllib.request.urlopen(url) as src:\n"," with (ngspice_models_dir / m).open('wb') as dst:\n"," dst.write(src.read())\n","\n","PATH = os.environ['PATH']\n","%env CONDA_PREFIX={CONDA_PREFIX}\n","%env PATH={CONDA_PREFIX}/bin:{PATH}"]},{"cell_type":"markdown","metadata":{"id":"Qnn9H_oowEgQ"},"source":["## I. Introduction\n","\n","Please Introduce your idea here. Feel free to add subsections and figures."]},{"cell_type":"markdown","metadata":{"id":"QNj3rwejPJE7"},"source":["## II. Implementation Details of your Idea\n","\n","This is where you should describe your idea in more details. Circuit diagrams, Flow chart, Simulations, etc.. are expected.\n","\n"]},{"cell_type":"markdown","metadata":{"id":"l145R7JJPJE7"},"source":["**Example of a Simulation Flow using Ngspice**"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"J0k4CykG8wui","outputId":"8b69d99a-4b1c-42b5-f860-53e0b43a2701"},"outputs":[{"output_type":"stream","name":"stdout","text":["Writing .spiceinit\n"]}],"source":["%%writefile .spiceinit\n","set ngbehavior=hs"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"d4381uZZ1dbj","outputId":"ae4c2403-439f-4d55-a2a1-9338f712449c"},"outputs":[{"output_type":"stream","name":"stdout","text":["Writing netlist.spice\n"]}],"source":["%%writefile netlist.spice\n","* PMOS VGS sweep\n","\n",".include \"globalfoundries-pdk-libs-gf180mcu_fd_pr/models/ngspice/design.ngspice\"\n",".lib \"globalfoundries-pdk-libs-gf180mcu_fd_pr/models/ngspice/sm141064.ngspice\" typical\n","\n",".param width=10u\n","X1 vdp vgp 0 vbp pfet_03v3 w=width l=0.28u AD={width*0.24u} AS={width*0.24u} PD={2*(width + 0.24u)} PS={2*(width + 0.24u)}\n","vsdp 0 vdp dc 0.9\n","vsgp 0 vgp dc 0.9\n","vsbp 0 vbp dc 0\n",".op\n",".option post nomod\n",".end\n","\n",".control\n","save all @m.x1.m0[id] @m.x1.m0[gm] @m.x1.m0[cgg]\n","dc vsgp 0 1.8 0.01\n","display\n","wrdata output.txt @m.x1.m0[id] @m.x1.m0[gm] @m.x1.m0[cgg]\n",".endc"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"6Qs0DbgP02vN","outputId":"0cf96806-cf62-4069-ceca-6c508ca39aaa"},"outputs":[{"output_type":"stream","name":"stdout","text":["\n","Note: Compatibility modes selected: hs\n","\n","Warning: m=xx on .subckt line will override multiplier m hierarchy!\n","\n","\n","Circuit: * pmos vgs sweep\n","\n","Doing analysis at TEMP = 27.000000 and TNOM = 27.000000\n","\n","\n","No. of Data Rows : 181\n","Here are the vectors currently active:\n","\n","Title: * pmos vgs sweep\n","Name: dc1 (DC transfer characteristic)\n","Date: Fri Mar 10 04:41:42 2023\n","\n"," @m.x1.m0[cgg] : capacitance, real, 181 long\n"," @m.x1.m0[gm] : admittance, real, 181 long\n"," @m.x1.m0[id] : current, real, 181 long\n"," v-sweep : voltage, real, 181 long [default scale]\n"," vbp : voltage, real, 181 long\n"," vdp : voltage, real, 181 long\n"," vgp : voltage, real, 181 long\n"," vsbp#branch : current, real, 181 long\n"," vsdp#branch : current, real, 181 long\n"," vsgp#branch : current, real, 181 long\n","Doing analysis at TEMP = 27.000000 and TNOM = 27.000000\n","\n","\n","No. of Data Rows : 1\n","\tNode Voltage\n","\t---- -------\n","\t----\t-------\n","\tvbp 0.000000e+00\n","\tvgp -9.00000e-01\n","\tvdp -9.00000e-01\n","\n","\tSource\tCurrent\n","\t------\t-------\n","\n","\t@m.x1.m0[id] 2.878168e-05\n","\tvsdp#branch -2.87817e-05\n","\tvsgp#branch 0.000000e+00\n","\tvsbp#branch 9.008252e-13\n","\n"," BSIM4v5: Berkeley Short Channel IGFET Model-4\n"," device m.x1.m0\n"," model pfet_03v3.8\n"," l 2.8e-07\n"," w 1e-05\n"," m 1\n"," nf 1\n"," sa 0\n"," sb 0\n"," sd 0\n"," sca 0\n"," scb 0\n"," scc 0\n"," sc 0\n"," min 0\n"," ad 2.4e-12\n"," as 2.4e-12\n"," pd 2.048e-05\n"," ps 2.048e-05\n"," nrd 0\n"," nrs 0\n"," off 0\n"," rbdb 50\n"," rbsb 50\n"," rbpb 50\n"," rbps 50\n"," rbpd 50\n"," delvto -0\n"," mulu0 1\n"," xgw 0\n"," ngcon 1\n"," trnqsmod 0\n"," acnqsmod 0\n"," rbodymod 0\n"," rgatemod 0\n"," geomod 0\n"," rgeomod 0\n"," gmbs 8.95099e-05\n"," gm 0.000269371\n"," gds 5.97813e-06\n"," vdsat 0.193151\n"," vth 0.734139\n"," id 2.87817e-05\n"," ibd -9.00825e-13\n"," ibs 0\n"," gbd 1.00168e-12\n"," gbs 1.00054e-12\n"," isub 1.89841e-19\n"," igidl 0\n"," igisl 0\n"," igs 0\n"," igd 0\n"," igb 0\n"," igcs 0\n"," igcd 0\n"," vbs -0\n"," vgs 0.9\n"," vds 0.9\n"," cgg 9.1479e-15\n"," cgs -6.8743e-15\n"," cgd 5.70911e-17\n"," cbg -1.64433e-15\n"," cbd 2.68413e-17\n"," cbs -3.18902e-15\n"," cdg -3.00443e-15\n"," cdd -3.18562e-17\n"," cds 4.0277e-15\n"," csg -4.49914e-15\n"," csd -5.20762e-17\n"," css 6.03562e-15\n"," cgb -2.33068e-15\n"," cdb -9.91414e-16\n"," csb -1.48441e-15\n"," cbb 4.8065e-15\n"," capbd 7.22884e-15\n"," capbs 8.65386e-15\n"," qg 1.18378e-14\n"," qb -9.40755e-15\n"," qd -9.72774e-16\n"," qs -1.45748e-15\n"," qinv 1.36557e-15\n"," qdef -0\n"," gcrg 0\n"," gtau 0\n","\n"," Vsource: Independent voltage source\n"," device vsbp vsgp vsdp\n"," dc 0 0.9 0.9\n"," acmag 0 0 0\n"," pulse - - -\n"," sin - - -\n"," exp - - -\n"," pwl - - -\n"," sffm - - -\n"," am - - -\n"," trnoise - - -\n"," trrandom - - -\n"," portnum 0 0 0\n"," z0 0 0 0\n"," pwr 0 0 0\n"," freq 0 0 0\n"," phase 0 0 0\n"," i 9.00825e-13 0 -2.87817e-05\n"," p 0 0 -2.59035e-05\n","\n","\n","Total analysis time (seconds) = 0.001798\n","\n","Total CPU time (seconds) = 0.114 \n","\n","Total DRAM available = 12985.547 MB.\n","DRAM currently available = 7227.352 MB.\n","Maximum ngspice program size = 20.113 MB.\n","Current ngspice program size = 14.832 MB.\n","\n","Shared ngspice pages = 6.988 MB.\n","Text (code) pages = 5.059 MB.\n","Stack = 0 bytes.\n","Library pages = 8.773 MB.\n","\n"]}],"source":["!ngspice -b netlist.spice"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":423},"id":"xh5L-L-KaM9A","outputId":"bf99bf27-a710-4047-8282-c7b927499446"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" vsg gm vsg1 id vsg2 cgg gm_id \\\n","0 0.00 2.327947e-14 0.00 6.266460e-13 0.00 5.090079e-15 0.037149 \n","1 0.01 3.047037e-14 0.01 8.202064e-13 0.01 5.067127e-15 0.037150 \n","2 0.02 3.988240e-14 0.02 1.073551e-12 0.02 5.044596e-15 0.037150 \n","3 0.03 5.220157e-14 0.03 1.405141e-12 0.03 5.022486e-15 0.037150 \n","4 0.04 6.832577e-14 0.04 1.839142e-12 0.04 5.000804e-15 0.037151 \n",".. ... ... ... ... ... ... ... \n","176 1.76 5.645906e-04 1.76 8.077414e-04 1.76 9.709857e-15 0.698974 \n","177 1.77 5.726699e-04 1.77 8.080913e-04 1.77 9.714894e-15 0.708670 \n","178 1.78 5.807518e-04 1.78 8.082642e-04 1.78 9.720098e-15 0.718517 \n","179 1.79 5.888346e-04 1.79 8.082598e-04 1.79 9.725480e-15 0.728521 \n","180 1.80 5.969164e-04 1.80 8.080786e-04 1.80 9.731051e-15 0.738686 \n","\n"," f_T \n","0 7.278949e-01 \n","1 9.570531e-01 \n","2 1.258273e+00 \n","3 1.654188e+00 \n","4 2.174527e+00 \n",".. ... \n","176 9.254244e+09 \n","177 9.381806e+09 \n","178 9.509114e+09 \n","179 9.636124e+09 \n","180 9.762790e+09 \n","\n","[181 rows x 8 columns]"],"text/html":["\n","
\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
vsggmvsg1idvsg2cgggm_idf_T
00.002.327947e-140.006.266460e-130.005.090079e-150.0371497.278949e-01
10.013.047037e-140.018.202064e-130.015.067127e-150.0371509.570531e-01
20.023.988240e-140.021.073551e-120.025.044596e-150.0371501.258273e+00
30.035.220157e-140.031.405141e-120.035.022486e-150.0371501.654188e+00
40.046.832577e-140.041.839142e-120.045.000804e-150.0371512.174527e+00
...........................
1761.765.645906e-041.768.077414e-041.769.709857e-150.6989749.254244e+09
1771.775.726699e-041.778.080913e-041.779.714894e-150.7086709.381806e+09
1781.785.807518e-041.788.082642e-041.789.720098e-150.7185179.509114e+09
1791.795.888346e-041.798.082598e-041.799.725480e-150.7285219.636124e+09
1801.805.969164e-041.808.080786e-041.809.731051e-150.7386869.762790e+09
\n","

181 rows × 8 columns

\n","
\n"," \n"," \n"," \n"," \n"," \n"," \n","\n"," \n"," \n","\n"," \n","
\n","
\n"," "]},"metadata":{},"execution_count":5}],"source":["import math\n","import pandas as pd\n","import matplotlib.pyplot as plt\n","df = pd.read_csv(\"output.txt\", delim_whitespace=True, header=None)\n","df.columns = [\"vsg\", \"gm\", \"vsg1\", \"id\", \"vsg2\", \"cgg\"]\n","df['gm_id'] = df['gm']/df['id']\n","df['f_T'] = df['gm']/df['cgg']/2/math.pi\n","df"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":279},"id":"rCTaJreri9ke","outputId":"7e782d05-07d7-44bb-9b97-5969e00900a5"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYEAAAEGCAYAAACD7ClEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAj7UlEQVR4nO3deXxU9bnH8c+TyUYS1gQjGCAgiCCKEkTBDWwtuFelVbRu0Lq0tr3XutbrVdve0vb2dhNbtYpLa0XA1loKtSrBpYgsln2RsAeQSAKBJGT/3T9mYoeUhDCZzJnl+3695pU5vzNn8s1hmCe/55ycMeccIiKSmJK8DiAiIt5RERARSWAqAiIiCUxFQEQkgakIiIgksGSvAxyLnJwcl5+fH9K2lZWVZGZmhjdQB4mVrMoZXrGSE2Inq3L6LVu2bK9zrucRVzrnYuZWUFDgQlVYWBjytpEWK1mVM7xiJadzsZNVOf2Apa6F91W1g0REEpiKgIhIAlMREBFJYJ4eGDazIcC3gRzgbefcb471Oerq6iguLqa6urrVx3Xt2pV169aFFjSM0tPTycvLIyUlxesoIiKhFwEzmw5cBpQ454YFjU8Afgn4gGeccz9q6Tmcc+uAO8wsCXgROOYiUFxcTOfOncnPz8fMWnzcwYMH6dy587E+fVg55ygtLaW4uJj+/ft7mkVEBNrXDnoemBA8YGY+4AngYmAoMMnMhprZqWY2p9ntuMA2VwB/BeaGEqK6uprs7OxWC0C0MDOys7OPOmsREYkUc+24iqiZ5QNzmmYCZjYaeNQ5Nz6w/CCAc25qG57rr865S48wfhtwG0Bubm7BjBkzDlvftWtXBg4ceNSsDQ0N+Hy+oz4uEoqKiigvL29xfUVFBVlZWRFMFBrlDK9YyQmxk1U5/caNG7fMOTfySOvCfUzgBGBH0HIxcFZLDzazscDVQBotzAScc08DTwOMHDnSjR079rD169ata1ObJxraQU3S09M544wzWly/YMECmv+c0Ug5wytWckLsZG1rzoZGR219I7X1jdQ0NFBb30hdg6OhsZH6Rkd9g6Oh0VHf2PS10f+1oWms8V/rDnvsv8YBnAOHC3z91/LmPZvpn5mHc45G9++PwznOGZjDWQOyw76PPD0w7JxbACzwMkM4jBkzhoULF/7b+C233MJll13GxIkTPUglElucc9Q2NFJd28ihugb/rdb/tTroftOyf6zxsGX/m3jjZ2/oJXsP8fi6hZ8t1wbW1dQ3Utfwr7GmN2lPbdzQ6uq0FF9MFIGdQJ+g5bzAWFw7UgEQSQTVdQ0cqK6jsqaBypp6DlbXU1lTT2Vt0P2aeg7WNN1vCLpfT0VN/WFv8KG8F6clJ5Ge4iM9JYnU5CRSfUmkJvtI9RkNDtJTkuiSnuxfl+wLrE8iLdn/NcVnpPp8gfWBdb4kUpKN5KQkkpMMX5KR7DN8wcuffU0i2Xf4si9o2WdGUpJhBob/2KD/Kxj+8XfffZcLLjifpM/WBT2mg493hrsILAEGmVl//G/+1wHXh/l7RJ2srCwqKipwzvHNb36TN998kz59+pCamup1NJGjamh07K+qpayylv2H6iivqqP80OG3A82WPy2v4tBb86ipbzzq85tBZmoyWWnJZKb5Al+Tyc7MIDMtmU6pPjqlBG6pPtI/u59Ep5R/LWekJtMpNSlovY/0ZB9JSS2/SfrbQWeHc3d1iFSfkZbszTHL9pwi+jIwFsgxs2LgEefcs2Z2F/AG/lNEpzvn1oQlaRs89pc1rN114IjrQj0wPLR3Fx65/JQ2PfZPf/oTGzZsYO3atezZs4ehQ4cyefLkY/6eIu1VVVvPJ+XV7K2opayyJvC1ltKKGvZW1lJWUUtpZQ1llf7x1n4D75yWTJdOKXTtlEK3jBQGHpdFr9RqhgzoS5dOKXRJTyYrPdn/Rp+e/NmbfOfA104prb9Ri7dCLgLOuUktjM8lxNM9Y927777LpEmT8Pl89O7dmwsvvNDrSBJnnHOUVdayu7yaPQeq+eRANZ+UB24H/GO7y6s5WF1/xO27pCeTk5VGdlYq/XMyGZnfg+zMVLIzU+mRlUa3wJt9061zejLJvn8/k9z/G/aQjv5xJQJi6lLSR9Pab+zRdHaQSGtq6hso3neI7WVV7CirYntpFdvLqj5brqxtOOzxSQY9O6dxfNdO9M/JZPSAbHK7pnN8l3R6dk4jO9P/pt89I5XUZF0pRg4XV0XAa+effz5PPfUUN998MyUlJRQWFnL99XF/SERCVFlTT1FJBRtLKthYcpBFa6t5ePF8ivcdIvjPd9JTkujbI4O+PTIYfWI2fbpn0LtbOsd37cTxXdLJyUo94m/rIm2hIhBGV111FfPnz2fo0KH07duX0aNHex1JosTeihpW7SxndXE5K3eWs3bXAXbuP/TZ+lRfErkZcPqA7lwzIo9+2f43/T49MuiZlRYTfxEvsUlFIAwqKioA/6lc06ZN8ziNeK2x0bH+k4Ms2VrG4q1lfLRtH7vL/ZcKMYP+OZkU9OvO9Wf1ZeBxWZyU25k+3Tvx/nvvMnZsy39EKNIRVAREwmDr3krmry/h/aK9LN1axoHAgdneXdMZmd+D4XldGXZCV07p3YXO6bqCrEQPFQGRENQ1NLJ4Sxnz15dQuL6EzXsrARiQk8mlp/XizPwejOrfg7zuGR4nFWldXBQB51zM9Ezbc8E+8VZDo2PxljJeX7GLeat3s7+qjtTkJM4ekM1No/tx4cm59M3Wm77ElpgvAunp6ZSWlsbE5aSbPk8gPT3d6yhyDHaXH2LG4h3MXLqD3eXVZKT6uGhoLpee2otzB+WQkRrz/40kgcX8qzcvL4/i4mI+/fTTVh9XXV0dFW++TZ8sJtHNOccHm0uZ/v4W5q8vwQHnDerJg5cM4fNDjtMbv8SNmH8lp6SktOlTuhYsWNDq5ZtFwN/y+fuaT3jynU2sKC4nJyuVOy44kUmj+tKnh1o9En9ivgiIhINzjr+v3cP/vrGBopIK+mVn8D9XDeOaEXmkp0THhxGJdAQVAUl4S7aWMXXuOj7avp8BOZk8PukMLjm1Fz5d9EwSgIqAJKxPD9bwP39dy2vLd3Fc5zSmXn0qXyrI0yUYJKGoCEjCaWx0/GHxdn78t/VU1zXwrQsHcufYgXRKVdtHEo+KgCSU4n1V3D1zBYu3lDHmxGy+/8VhnNgz+j+IXKSjqAhIQnDO8eflu3j4tdU44CcTT+NLBXlR/7clIh1NRUDiXnW94z9eWc6fl+9iZL/u/Pza03W6p0iAioDEta17K/nBokPsqqziOxedxNfHDdRZPyJBVAQkbs1fv4dvz1hOY4PjhcmjOG9QT68jiUQdFQGJO845nnlvCz+ct46hvbpwy8A6FQCRFuiEaIkrDY2Ox/6ylv+Zu46Lhx3Pq3eOoWeGXuYiLdFMQOJGdV0D357xT95Ys4cp5/bnoUuGkKT+v0irVAQkLhysrmPK80tZsq2M/75sKJPPPfpFBUVERUDiQHlVHTc9t5g1O8v51XVncPnw3l5HEokZKgIS00orarjx2cUUlVTw6xtG8IVTjvc6kkhMURGQmFVaUcOk3y5iW2kVv715JBecpDOARI6VioDEpPJDddz47GK2lVbx3K1nMubEHK8jicQknTsnMaeypp5bn1vMxpKDPHVjgQqASDtoJiAxpbquga+9uJQVxeU8cf0ZjB18nNeRRGKaZgISM+oaGvnGSx+xcFMp/zvxNCYM6+V1JJGYpyIgMaGh0fGfryzn7fUlfP+Lw7h6RJ7XkUTigoqARD3nHN+fs5Y5K3fz4MUnc+PZ/byOJBI3VAQk6j37/haeX7iVKef25/YLTvQ6jkhc8bQImNlYM3vPzJ40s7FeZpHoNGflLn7w13VccurxPHTJEK/jiMSdkIuAmU03sxIzW91sfIKZbTCzIjN74ChP44AKIB0oDjWLxKcPN5dy9ysrODO/Oz/78um6GJxIB2jPKaLPA9OAF5sGzMwHPAFchP9NfYmZvQ74gKnNtp8MvOece8fMcoGfATe0I4/EkaKSg3ztxaXk9ejEb28aSXqKz+tIInEp5CLgnHvXzPKbDY8CipxzmwHMbAZwpXNuKnBZK0+3D0gLNYvEl5KD1dw8fQmpyT5euHUU3TJSvY4kErfMORf6xv4iMMc5NyywPBGY4Jz7amD5RuAs59xdLWx/NTAe6Ab8xjm34AiPuQ24DSA3N7dgxowZIWWtqKggKysrpG0jLVaydkTO2gbHjxZXU1zRyIOj0unftf0zgETenx0lVrIqp9+4ceOWOedGHnGlcy7kG5APrA5angg8E7R8IzCtPd8j+FZQUOBCVVhYGPK2kRYrWcOds7Gx0X3r5Y9cv/vnuHmrdoXteRN1f3akWMmqnH7AUtfC+2q4zw7aCfQJWs4LjIkc1ROFRfx5+S7uHT9Yfw0sEiHhLgJLgEFm1t/MUoHrgNfD/D0kDs1btZuf/v1jvnh6b74+Vn8LIBIp7TlF9GXgA2CwmRWb2RTnXD1wF/AGsA6Y6ZxbE56oEq9W7yznP2cu54y+3fjRNadhplNBRSKlPWcHTWphfC4wN+REklBKDlTz1ReW0iMjladv1KmgIpGmS0mLZ2rrG7nzpY8oP1THq3eOoWdnnSUsEmkqAuKZ789Zy7Jt+3h80hkM7d3F6zgiCUkXkBNPzFy6g98t2sZt5w/g8uG9vY4jkrBUBCTiVuzYz3+9tppzBmZz3/jBXscRSWgqAhJReytquOP3y+iZlcbjk0aQ7NNLUMRLOiYgEVPf0Mhdf/iIsspaXr1zDD0ydU0gEa+pCEjETJ23nkWby/jZl4cz7ISuXscREdQOkgj58/KdPPv+Fm4Zk6/PBxaJIioC0uE2fHKQ+19dyaj8Hjx0qT4dTCSaqAhIh6qsqefrLy0jKy2FaTecQYoOBItEFf2PlA7jnOO7f1rFlr2V/GrS6RzXOd3rSCLSjIqAdJiXF+/gz8t38Z+fP4kxJ+Z4HUdEjkBFQDrEml3lPPqXNZw3KIdvjBvodRwRaYGKgITdweo6vvHSR3TPSOEX155OUpIuDS0SrfR3AhJWzjkeeHUVO/Yd4uWvnU12lq4MKhLNNBOQsPrdom38ddVu7vnCYEb17+F1HBE5ChUBCZuVxfv5wZx1jBvck9vPH+B1HBFpAxUBCYuD1XXc9Yd/kpOVys++rOMAIrFCxwQkLB5+bTXF+6qYeftouuvCcCIxQzMBabc/flTMa8t38e3PncTIfB0HEIklKgLSLlv3VvLwa6sZ1b8Hd12ovwcQiTUqAhKy+kbHt2b8k2RfEr+49nR8Og4gEnN0TEBC9urGOlYWV/HkV0bQu1snr+OISAg0E5CQvLfxU+ZtqeP6s/oyYVgvr+OISIhUBOSY7a2o4e6ZK+idZTx86VCv44hIO6gIyDFxznHvrBWUH6rjzuHpdEr1eR1JRNpBRUCOyfMLt1K44VMeumQIfTrr5SMS6/S/WNrs4z0HmTpvPReefBw3je7ndRwRCQMVAWmT2vpG/mPGcjqnJfPja07DTKeDisQDnSIqbfLztz5m7e4DPH1jAT076/LQIvFCMwE5qsVbynjynU1cO7IPXzjleK/jiEgYqQhIqw5W13H3zOX06Z7Bw5frdFCReKN2kLTqsb+sZdf+Q8y6YzRZaXq5iMQbzQSkRX9bvZvZy4r5+tiBFPTT1UFF4pGnv9qZ2XnADYEcQ51zY7zMI/9ScqCaB/+4ilNP6Mq3Pz/I6zgi0kFCngmY2XQzKzGz1c3GJ5jZBjMrMrMHWnsO59x7zrk7gDnAC6FmkfByznHv7JVU1Tbw82tPJ8WnCaNIvGrPTOB5YBrwYtOAmfmAJ4CLgGJgiZm9DviAqc22n+ycKwncvx6Y0o4sEka/X7SNdz7+lMeuOIWBx2V5HUdEOpA550Lf2CwfmOOcGxZYHg086pwbH1h+EMA517wABD9HX+Bh59zXWlh/G3AbQG5ubsGMGTNCylpRUUFWVmy8oXmZdXdFI48sPMRJPXx8pyCt1T8Ki5V9qpzhFytZldNv3Lhxy5xzI4+40jkX8g3IB1YHLU8EnglavhGYdpTneAwY05bvV1BQ4EJVWFgY8raR5lXW2voGd/nj77nhj73hPik/dNTHx8o+Vc7wi5WsyukHLHUtvK96fs6fc+4RrzOI3+Nvb2RlcTm/vmEEuV3SvY4jIhEQ7iN+O4E+Qct5gTGJcsu27WNaYRFXjziBS07Vh8SIJIpwF4ElwCAz629mqcB1wOth/h4SZlW19Xxn5nJ6de3Eo1ec4nUcEYmg9pwi+jLwATDYzIrNbIpzrh64C3gDWAfMdM6tCU9U6Sg/nreeraVV/PRLw+mSnuJ1HBGJoJCPCTjnJrUwPheYG3Iiiah/FO3lhQ+2ces5+Yw+MdvrOCISYforoAR2oLqO+2avZEBOJveNP9nrOCLiAc/PDhLv/GDOWnaXH2L2nWP0WcEiCUozgQQ1f/0eZi4t5vYLTmRE3+5exxERj6gIJKB9lbXc/+oqBud25j90cTiRhKZ2UAJ65PU17Kus5blbziQtWW0gkUSmmUCC+evK3by+Yhff+twghp3Q1es4IuIxFYEE8unBGv7rtVWclteVO8ee6HUcEYkCKgIJwjnHg39cRWVtA//3peH6jAARAVQEEsYfP9rJW+v2cO8XBjMot7PXcUQkSqgIJIBd+w/x6F/WcGZ+dyaf29/rOCISRVQE4pxzjvtfXUl9g+OnXxqOL6nlD4kRkcSjIhDnXvpwO+9t3Mt3Lx1Cv+xMr+OISJRREYhj20ur+OHcdZw3KIevnNXX6zgiEoVUBOJUY6Pjnlkr8Jnx42tOa/WzgkUkcakIxKnp/9jC4q1lPHLFKfTu1snrOCISpVQE4lBRyUF+8sYGPj8kl2tGnOB1HBGJYioCcaa+oZHvzFxBZqqPH149TG0gEWmVLiAXZ556dzMrisuZdv0ZHNc53es4IhLlNBOIIxs+Ocgv3vqYS0/txWWn9fY6jojEABWBOFHX0Mg9s1bQJT2F7115itdxRCRGqB0UJ556ZxOrdpbz6xtGkJ2V5nUcEYkRmgnEgfWfHOCXb2/k0tN6ccmpvbyOIyIxREUgxh3WBrpCbSAROTZqB8W4JxdsYvXOA/xGbSARCYFmAjFs3e4D/Gr+Ri47rRcXqw0kIiFQEYhRTW2grp1S+N6Vw7yOIyIxSu2gGPWbBZtYs+sAT35lBD0yU72OIyIxSjOBGLRu9wEen7+Ry4f3ZsIwtYFEJHQqAjEmuA30mM4GEpF2Ujsoxvy6sKkNVKA2kIi0m2YCMWTtLn8b6IrhvZkw7Hiv44hIHFARiBFNbaBuGalqA4lI2KgdFCOeKCxi7e4DPHVjAd3VBhKRMPFsJmBmQ81sppn9xswmepUjFqzZVc60+UVceXpvxp+iNpCIhE9IRcDMpptZiZmtbjY+wcw2mFmRmT1wlKe5GHjcOXcncFMoORJBbX0j98xaSbeMVB69XG0gEQmvUNtBzwPTgBebBszMBzwBXAQUA0vM7HXAB0xttv1k4HfAI2Z2BZAdYo6490RhEet2H+BptYFEpAOYcy60Dc3ygTnOuWGB5dHAo8658YHlBwGcc80LQPPn8QF/dM5d2cL624DbAHJzcwtmzJgRUt6KigqysrJC2jbSmrJuO9DA9z6oZtTxPm4fHn0fFRkr+1Q5wy9Wsiqn37hx45Y550YecaVzLqQbkA+sDlqeCDwTtHwjMO0o2z8NvASc25bvWVBQ4EJVWFgY8raRVlhY6GrqGtz4n7/jRv7gTbevssbrSEcUK/tUOcMvVrIqpx+w1LXwvurZ2UHOua0EfsOXfzetsIj1nxzktzeNpFuG2kAi0jHCWQR2An2ClvMCY3KMth1o4NeLirjqjBO4aGiu13FEJI6F8xTRJcAgM+tvZqnAdcDrYXz+hFBb38gzq2rpnpnKI5cP9TqOiMS5UE8RfRn4ABhsZsVmNsU5Vw/cBbwBrANmOufWhC9qYpg2fyM7DjYy9apT1QYSkQ4XUjvIOTephfG5wNx2JUpgq3eW88SCTYzpnczn1QYSkQjQZSOihP+PwlaQnZnKDUN8XscRkQShC8hFicfnb2T9JweZevWpZKaY13FEJEGoCESBVcXl/HrBJq4ZkcfnhqgNJCKRoyLgsZr6Bu6ZtYKcrFT+W2cDiUiE6ZiAxx5/u4gNew7y3C1n0rVTitdxRCTBaCbgoZXF+/nNO5uYWJDHuJOP8zqOiCQgFQGPNLWBemal8fBlagOJiDfUDvLIr97eyMd7KnjuVrWBRMQ7mgl4YGXxfp58ZzNfKshj3GC1gUTEOyoCERbcBvovtYFExGNqB0XYL99SG0hEoodmAhG0Ysd+nnxnE18eqTaQiEQHFYEIqa7zt4Fyu6SrDSQiUUPtoAj55dsb2VhSwQuTR9ElXW0gEYkOmglEwPId+3nqnU1cO7IPF5zU0+s4IiKfURHoYMFtoIcuG+J1HBGRw6gd1MF+8dZGitQGEpEopZlAB/rn9n08/e4mrjtTbSARiU4qAh2kqQ10fJd0HrpUbSARiU5qB3WQn7/5MZs+reTFyaPorDaQiEQpzQQ6wEfb9/Hb9zYzaVQfzlcbSESimIpAmDW1gXp17cR3L1EbSESim9pBYfazNz9m86eV/G6K2kAiEv00EwijZdua2kB9OW+Q2kAiEv1UBMKkuq6Be2etoHfXTnz3kpO9jiMi0iZqB4XJ//19A5v3VvL7KWepDSQiMUMzgTBYtq2MZ97fwvVn9eXcQTlexxERaTMVgXbyt4FWBtpAOhtIRGKL2kHt9NM3/G2gl756Fllp2p0iEls0E2iHpVvLePYfW7jhrL6cM1BtIBGJPSoCITpU28C9s/1toAfVBhKRGKX+RYh++vcNbNlbyR/UBhKRGKaZQAiWbC1j+j+28JWz+zJGbSARiWEqAsfoUK3/j8JO6NaJBy9WG0hEYlvEioCZDTCzZ81sdmtj0e5/39jA1tIqfjLxNDLVBhKRGNemImBm082sxMxWNxufYGYbzKzIzB5o7Tmcc5udc1OONhbNFm8p47mFW7jx7H6MOVFtIBGJfW39VfZ5YBrwYtOAmfmAJ4CLgGJgiZm9DviAqc22n+ycK2l3Wg8dqm3gvtkryOveiQcu1rWBRCQ+mHOubQ80ywfmOOeGBZZHA48658YHlh8EcM41LwDNn2e2c27i0caC1t0G3AaQm5tbMGPGjDblba6iooKsrKyQtgV4aV0Nb26r5/4z0xmS7Qv5edqivVkjRTnDK1ZyQuxkVU6/cePGLXPOjTziSudcm25APrA6aHki8EzQ8o3AtFa2zwaeBDYBD7Y01tqtoKDAhaqwsDDkbT/cXOryH5jjHn5tVcjPcSzakzWSlDO8YiWnc7GTVTn9gKWuhffViB3ZdM6VAnccbSzaVNXWc2+gDXT/BLWBRCS+tKcI7AT6BC3nBcbiyk/+toFtpVW8/LWzdTaQiMSd9pwiugQYZGb9zSwVuA54PTyxosOHm0t5fuFWbh7dj9EnZnsdR0Qk7Np6iujLwAfAYDMrNrMpzrl64C7gDWAdMNM5t6bjokaWvw20kr49MrhfZwOJSJxqU3/DOTephfG5wNywJooSP/nbBraXVTHjtrPJSFUbSETiky4bcQSLAm2gW8bkc/YAtYFEJH6pCDRTVVvPfbNX0i87g/smDPY6johIh1Kfo5kfz1vP9rIqXlEbSEQSgGYCQT7YVMoLH2zj1nPyOUttIBFJACoCAZU19dz36gryszO4b7zOBhKRxKB+R8CP/7ae4n2HmHn7aDqlduy1gUREooVmAsDCTXt58YNt3DqmP2fm9/A6johIxCR8Eais8Z8N1D8nk3vH62wgEUksCd8O+tG89ezcf4hZagOJSAJK6JnAwqK9/G7RNiaf05+RagOJSAJK2CLgPxvI3wa65wtqA4lIYkrYdtDUeevUBhKRhJeQM4GFRXv5/aLtTFEbSEQSXMIVgYoa/yWiB+Rkco/OBhKRBJdw7aCpc9exq/wQs+8YTXqK2kAiktgSaibwj6K9vPThdr56bn8K+qkNJCKSMEXgUL3jvtkrGdAzk+/obCARESCB2kGvbKhld3k9s+4YozaQiEhAQswE3t+4lwU76vnqeQMo6Nfd6zgiIlEjIYpAWkoSp+X4uPuik7yOIiISVRKiCJyZ34O7R6arDSQi0kxCFAERETkyFQERkQSmIiAiksBUBEREEpiKgIhIAlMREBFJYCoCIiIJTEVARCSBmXPO6wxtZmafAttC3DwH2BvGOB0pVrIqZ3jFSk6InazK6dfPOdfzSCtiqgi0h5ktdc6N9DpHW8RKVuUMr1jJCbGTVTmPTu0gEZEEpiIgIpLAEqkIPO11gGMQK1mVM7xiJSfETlblPIqEOSYgIiL/LpFmAiIi0oyKgIhIAouLImBmE8xsg5kVmdkDR1ifZmavBNZ/aGb5QeseDIxvMLPxHue828zWmtlKM3vbzPoFrWsws+WB2+se57zFzD4NyvPVoHU3m9nGwO3mjszZxqw/D8r5sZntD1oXyX063cxKzGx1C+vNzH4V+DlWmtmIoHUR26dtyHlDIN8qM1toZsOD1m0NjC83s6Ue5xxrZuVB/77/HbSu1ddMhHPeG5RxdeA12SOwLjL70zkX0zfAB2wCBgCpwApgaLPHfB14MnD/OuCVwP2hgcenAf0Dz+PzMOc4ICNw/86mnIHliijan7cA046wbQ9gc+Br98D97l5mbfb4bwLTI71PA9/rfGAEsLqF9ZcA8wADzgY+9GifHi3nmKbvD1zclDOwvBXIiZL9ORaY097XTEfnbPbYy4H5kd6f8TATGAUUOec2O+dqgRnAlc0ecyXwQuD+bOBzZmaB8RnOuRrn3BagKPB8nuR0zhU656oCi4uAvA7K0pq27M+WjAfedM6VOef2AW8CEzooJxx71knAyx2Yp0XOuXeBslYeciXwovNbBHQzs15EeJ8eLadzbmEgB3j3Gm3L/mxJe17fx+wYc3ry+oyHInACsCNouTgwdsTHOOfqgXIgu43bRjJnsCn4fzNskm5mS81skZl9sQPyNWlrzmsCbYHZZtbnGLcNlzZ/v0BrrT8wP2g4Uvu0LVr6WSK9T49F89eoA/5uZsvM7DaPMgUbbWYrzGyemZ0SGIvK/WlmGfiL+6tBwxHZn8kd9cQSOjP7CjASuCBouJ9zbqeZDQDmm9kq59wmbxLyF+Bl51yNmd2Of5Z1oUdZ2uo6YLZzriFoLJr2aUwxs3H4i8C5QcPnBvbnccCbZrY+8JuwFz7C/+9bYWaXAK8BgzzK0haXA/9wzgXPGiKyP+NhJrAT6BO0nBcYO+JjzCwZ6AqUtnHbSObEzD4PPARc4ZyraRp3zu0MfN0MLADO8Cqnc640KNszQEFbtw2zY/l+19Fsqh3BfdoWLf0skd6nR2Vmp+H/d7/SOVfaNB60P0uAP9FxrdWjcs4dcM5VBO7PBVLMLIco3J8Brb0+O3Z/dvRBh46+4Z/NbMY/1W860HNKs8d8g8MPDM8M3D+Fww8Mb6bjDgy3JecZ+A9aDWo23h1IC9zPATbSQQez2pizV9D9q4BFgfs9gC2BvN0D93t4+W8feNzJ+A+ymRf7NOh75tPygcxLOfzA8GIv9mkbcvbFf+xsTLPxTKBz0P2FwAQPcx7f9O+N/81ze2Dftuk1E6mcgfVd8R83yPRif3bYDx7JG/4zKz4OvIE+FBj7Hv7fpgHSgVmBF+9iYEDQtg8FttsAXOxxzreAPcDywO31wPgYYFXgBbsKmOJxzqnAmkCeQuDkoG0nB/ZzEXCr1//2geVHgR812y7S+/RlYDdQh78PPQW4A7gjsN6AJwI/xypgpBf7tA05nwH2Bb1GlwbGBwT25YrAa+Mhj3PeFfQaXURQ0TrSa8arnIHH3IL/BJXg7SK2P3XZCBGRBBYPxwRERCREKgIiIglMRUBEJIGpCIiIJDAVARGRBKYiICKSwFQEREQSmK4dJNIGZvYjYIdz7onA8qNAA3AR0AX//6U7nXPvmdkU4H5gP/4/9qlxzt3lRW6Ro9FMQKRtXgG+HLT8Zfz/f95wzp0ODAeWm1lv4GH8l344B/8lK0SilmYCIm3gnPunmR0XeJPvif/SCYXAdDNLAV5zzi03s88B77jA1SDNbBZwkmfBRY5CMwGRtpsFTASuxf+pb+/i/+SoncDzZnaTl+FEQqEiINJ2r+C/Cu1EYFbgg2r2OOd+i//CaiOAJcAFZtY9cNnyazxLK9IGageJtJFzbo2ZdQZ2Oud2Bz70/V4zqwMqgJuc/0NAfoj/arVlwHr8n2QnEpV0FVGRMDOzLOf/RKtk/B8GMt059yevc4kcidpBIuH3qJktB1bj/xCY1zxNI9IKzQRERBKYZgIiIglMRUBEJIGpCIiIJDAVARGRBKYiICKSwP4fKwCgR2ZVLpEAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}],"source":["df.plot(x=\"vsg\", y=\"id\", logy=True, grid=True)\n","plt.show()"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":279},"id":"QtT18v6ElmwL","outputId":"63fb4833-4ccb-4ce9-9fd5-4d0f23df8e6f"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXQAAAEGCAYAAAB1iW6ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoGUlEQVR4nO3deXxU9b3/8deHkBAg7EsUw6q4gBskgNtDQW2L9SG0V9rigqIg1d+li13ttVWr3dtbqw+9tYpUkWrcLSqt1yVUq7LvuxEVA8gS1oHs+fz+yOAdY5YhzMyZmbyfj8c8mHPO95y8czJ88s33bObuiIhI6msTdAAREYkNFXQRkTShgi4ikiZU0EVE0oQKuohImmgb1Bfu2bOnDxgwoEXrHjx4kI4dO8Y2UJykSlbljK1UyQmpk1U56yxZsmSXu/dqcKG7B/LKz8/3lioqKmrxuomWKlmVM7ZSJad76mRVzjrAYm+krmrIRUQkTaigi4ikCRV0EZE0EdhB0YZUVVVRUlJCeXl5k+26dOnCunXrEpTq6Bxp1uzsbPLy8sjMzIxjKhFJR0lV0EtKSujUqRMDBgzAzBptd+DAATp16pTAZC13JFndndLSUkpKShg4cGCck4lIukmqIZfy8nJ69OjRZDFPZ2ZGjx49mv0LRUSkIUlV0IFWW8wPa+3fv4i0XNIVdBGRdFVb6/zy5bW8vzMUl+2roIuIJMhzy7bw0FsfsPSjPXHZvgp6ApxzzjkNzp88eTLPPPNMgtOISBD2lVXxm3+sY1i/rlw+PC8uXyOpznJJV++8807QEUQkYH96bSOlByv56+SRtGkTn2NlSVvQf/7iGtZu3d/gspqaGjIyMo54m0P6dOb2y4Y22+6uu+5i9uzZ9OrVi759+5Kfn89LL73EsGHDeOuttzh48CCzZs3i17/+NatWreIb3/gGv/jFLxrdXk5ODqFQCHfnW9/6Fq+++ip9+/YlKyvriL8HEUk96z/Zz6x3P+LKkf04La9L3L5O0hb0oCxatIhnn32WFStWUFVVxfDhw8nPzwcgKyuLxYsXc8899zB+/HiWLFlC9+7dOf7447n55pvp0aNHk9t+/vnn2bBhA2vXrmX79u0MGTKE66+/PhHflogExN25/e9r6JTdlh988aS4fq2kLehN9aTjeWHR22+/zfjx48nOziY7O5vLLrvs02Xjxo0D4LTTTmPo0KEce+yxAAwaNIiPP/642YL+5ptvcsUVV5CRkUGfPn248MIL4/I9iEjymLNiKws+2M0vv3oq3TrG969yHRQ9Au3atQOgTZs2n74/PF1dXR1ULBFJUvvKqrjrpXWcnteFiSP6xf3rqaDXc+655/Liiy9SXl5OKBTipZdeitm2zz//fJ588klqamrYtm0bRUVFMdu2iCSfP7yygd0HK/jlV04jI04HQiNFNeRiZmOBe4AMYIa7/6be8ruBMeHJDkBvd+8aw5wJM2LECMaNG8fpp59Obm4up512Gl26xOYgxle/+lXeeOMNhgwZQr9+/Tj77LNjsl0RST7LP97L7AUfce3ZA+J6IDRSswXdzDKA+4EvACXAIjOb4+5rD7dx95sj2n8LGBaHrAnzgx/8gDvuuINDhw5x/vnnk5+fzw033PDp8tGjRzN69OhPp+fNm9fk9kKhuqvCzIz77rsvHpFFJIlU19TyX8+tonendnz/iycm7OtG00MfCRS7+yYAMysExgNrG2l/BXB7bOIFY9q0aaxdu5by8nKuvfZahg8fHnQkEUkhj777EWu37ed/rhpOp+zE3Qrb6h5R10QDswnAWHefGp6eBIxy9+kNtO0PzAfy3L2mgeXTgGkAubm5+YWFhZ9Z3qVLF0444YRmQ7f0PPR4Ki0t/fQsmEgvvPACvXo1/DzXxhQXF7Nv375YRYtKKBQiJycnoV+zJZQz9lIla6rk/Lg0xC+XGid2z+Dm4e1ifsO9MWPGLHH3goaWxfq0xYnAMw0VcwB3fxB4EKCgoMAjhy0A1q1bR05OTrM7IBnvh96pUydWrlz5uflHmtXdyc7OZtiwxI5azZs3j/o/j2SknLGXKllTJefld/8T2jj3X3c+fbt3SOjXjuYsly1A34jpvPC8hkwEnmhpmOzsbEpLS2nur4Z0dfgBF9nZ2UFHEZEWeH3ddpZsr+HbFw1OeDGH6Hroi4DBZjaQukI+EbiyfiMzOxnoBrzb0jB5eXmUlJSwc+fOJtuVl5enTNE70qyHH0EnIqnlQHkVP3thNcflGFPPGxRIhmYLurtXm9l04BXqTluc6e5rzOxOYLG7zwk3nQgU+lF0rzMzM6N69Nq8efMSPiTRUqmUVURa7nf/3MC2/eX8dFQ2WW2DucQnqjF0d58LzK0377Z603fELpaISOpY+MFuHpv/EVPOG8jxOTsCy6ErRUVEjkJ5VQ0/fnYlfbu3T+g55w1J2ptziYikgntef48Pdh1k9pRRdMgKtqSqhy4i0kKrt+zjwTc38fWCPM4b3DPoOCroIiItUVVTy4+eWUn3jlnc+uUhQccBNOQiItIiD765ibXb9vPA1cPp0iFxl/c3RT10EZEjtP6T/dzz2nt8+bRjGHvqsUHH+ZQKuojIEaisruX7T62gc/u23DX+1KDjfIaGXEREjsB9RcWs2bqfv0zKp0dOu+ZXSCD10EVEorSyZC/3FxXzH8OP40tDjwk6zueooIuIRKG8qobvP7WCXjntmnyIfZA05CIiEoW7X93IeztCPHr9SLq0T46zWupTD11EpBmLP9zNg29t4spR/bjgxCN7YE0iqaCLiDThUGU13396BXnd2vNfXz4l6DhN0pCLiEgTfvOP9WzefYgnbjiLnHbJXTLVQxcRacS/39vFrHc/4rpzBnLWoB5Bx2mWCrqISAP2HKzk+08v5/heHfnR2JOCjhOV5P77QUQkAO7OLc+tZPfBSmZOHkF2ZkbQkaKiHrqISD1PLvqYV9Zs50dfOpmhfboEHSdqKugiIhE27Qzx8xfXcu4JPZhyXvPPOE4mURV0MxtrZhvMrNjMbmmkzdfNbK2ZrTGzx2MbU0Qk/iqra/lO4XLaZbbhv792Jm3aWNCRjkizY+hmlgHcD3wBKAEWmdkcd18b0WYw8BPgXHffY2a94xVYRCRe7n5tI6u27OOBq/M5pkt20HGOWDQ99JFAsbtvcvdKoBAYX6/NDcD97r4HwN2De+y1iEgLvPt+KQ/8630mjujL2FOT78Zb0TB3b7qB2QRgrLtPDU9PAka5+/SINi8AG4FzgQzgDnf/ZwPbmgZMA8jNzc0vLCxsUehQKEROTk6L1k20VMmqnLGVKjkhdbLGM+fBKudnb5eR2QZ+fk57stu2fKgl3vtzzJgxS9y9oMGF7t7kC5gAzIiYngTcV6/NS8DzQCYwEPgY6NrUdvPz872lioqKWrxuoqVKVuWMrVTJ6Z46WeOVs7a21v/f7CV+/E9e9uWb9xz19uK9P4HF3khdjWbIZQvQN2I6LzwvUgkwx92r3P0D6nrrg6P6dSMiEqCnFn/My6u2cfMXTuSMvl2DjnNUoinoi4DBZjbQzLKAicCcem1eAEYDmFlP4ERgU+xiiojE3oZPDnD7nDWce0IPbrzg+KDjHLVmC7q7VwPTgVeAdcBT7r7GzO40s3HhZq8ApWa2FigCfujupfEKLSJytA5VVjP98aXktGvL3d84k4wUO0WxIVFd+u/uc4G59ebdFvHege+FXyIiSe+OOWso3hnisetH0btT6p2i2BBdKSoirc4Ly7bw1OIS/nP0CZw3uGfQcWJGBV1EWpVNO0Pc+vwqRgzoxncvTq9zN1TQRaTVKK+qYfrjy8hs24Z7rxhG24z0KoG6fa6ItBq/mruOtdv2M+OaAo7t0j7oODGXXr+eREQa8c/V25j17kdMPW8gFw/JDTpOXKigi0ja+6j0ID98ZiVn5HXhR2NPDjpO3Kigi0haK6+q4abZS2ljxn1XDierbfqWPY2hi0hau+3vq1m7bT8zJxfQt3uHoOPEVfr+qhKRVu+pRR/z1OISvnXhCVx4cnqOm0dSQReRtLRm6z5+9vfVnHdCT7578YlBx0kIFXQRSTv7yqq4afZSunXI4p6J6XGflmhoDF1E0kptrfP9p1awdW8ZT37zbHrktAs6UsKohy4iaeUvb27itXXbufXSU8jv3y3oOAmlgi4iaePd90v5/SvrufT0Y5l8zoCg4yScCrqIpIUd+8v51hPLGNizI7+9/HTMWse4eSSNoYtIyquqqWX648s4VFnNEzeMIqdd6yxtrfO7FpG08pt/rGfhh7u5Z+KZDM7tFHScwGjIRURS2vPLSnj43x9w3bkDGH/mcUHHCZQKuoikrNVb9nHLs6sYNbA7//XlU4KOE7ioCrqZjTWzDWZWbGa3NLB8spntNLPl4dfU2EcVEfk/uw9W8s3HltCjYxb3XzWczDR7WEVLNDuGbmYZwP3AF4ASYJGZzXH3tfWaPunu0+OQUUTkM6prapn++FJ2hip45saz6dmKLh5qSjS/0kYCxe6+yd0rgUJgfHxjiYg07rf/XM8775fyy6+cyul5XYOOkzTM3ZtuYDYBGOvuU8PTk4BRkb1xM5sM/BrYCWwEbnb3jxvY1jRgGkBubm5+YWFhi0KHQiFycnJatG6ipUpW5YytVMkJqZP1cM53t1bzl5UVXNSvLZOGJF/PPN77c8yYMUvcvaDBhe7e5AuYAMyImJ4E3FevTQ+gXfj9N4E3mttufn6+t1RRUVGL1020VMmqnLGVKjndUydrUVGRr96y10/66Vz/2p/f8crqmqAjNSje+xNY7I3U1WiGXLYAfSOm88LzIn8plLp7RXhyBpAf3e8aEZHohCqdbz62hK7tdRC0MdHskUXAYDMbaGZZwERgTmQDMzs2YnIcsC52EUWktauuqeXPK8rZcaCCBybl06tT8g21JINmz3Jx92ozmw68AmQAM919jZndSV3Xfw7wbTMbB1QDu4HJccwsIq3M717ZwJrSWn434XTO7Ns16DhJK6pL/919LjC33rzbIt7/BPhJbKOJiMBzS0t48M1NXNivLV8v6Nv8Cq2Y7uUiIklr2eY93PLcKs4e1IMrTygLOk7S01EFEUlK2/aVMe2xJRzTOZv/uWo4bVvJY+SOhnroIpJ0yiprmDZrCWWVNfxt6ii6dcwKOlJKUEEXkaTi7vzo2ZWs3rqPGdcUcGIrvh3ukdKQi4gklfuLinlxxVZ+9KWTueiU3KDjpBQVdBFJGq+s+YQ//O9GvnJmH268YFDQcVKOCrqIJIV12/Zz85PLOSOvC79ppc8EPVoq6CISuNJQBVMfXUyn7LY8eE0B2ZkZQUdKSTooKiKBqqyu5aa/LWVXqIKnvnk2uZ2zg46UslTQRSQw7s6tz69i4Qd1D3g+Q5f1HxUNuYhIYB741yaeXlLCty88odU/4DkWVNBFJBD/XL2N3/5zPZed0Yebv3Bi0HHSggq6iCTcypK9fPfJ5Qzr15XfT9AZLbGigi4iCbV1bxlTHl1Mz5x2PDhJZ7TEkg6KikjChCqqmfLoYsrD92jRgypiSwVdRBKiptb59hPL2Lj9ADMnj9A9WuJAQy4ikhC/fHkdb6zfwR3jhnLBib2CjpOWVNBFJO4em/8RM9/+gOvOHcCks/oHHSdtqaCLSFz9a+NO7pizhgtP7s1PLx0SdJy0poIuInGzcfsBpv9tKYN753DvFcPI0FOH4iqqgm5mY81sg5kVm9ktTbS73MzczApiF1FEUtGuUAXXP7KI7KwMZk4eQU47nYMRb80WdDPLAO4HLgGGAFeY2ef+bjKzTsB3gAWxDikiqaWssoYpjy5mV6iCGdcU0Kdr+6AjtQrR9NBHAsXuvsndK4FCYHwD7e4CfguUxzCfiKSYmlrn24XLWFmyl3snDtMNtxLI3L3pBmYTgLHuPjU8PQkY5e7TI9oMB25198vNbB7wA3df3MC2pgHTAHJzc/MLCwtbFDoUCpGTk9OidRMtVbIqZ2ylSk6IbVZ3Z/a6Sl7fXM3Vp2Rxcf/MmGwXUmefxjvnmDFjlrh7w8Pa7t7kC5gAzIiYngTcFzHdBpgHDAhPzwMKmttufn6+t1RRUVGL1020VMmqnLGVKjndY5v1oTff9/4/fsl/8dKamG3zsFTZp/HOCSz2RupqNEMuW4C+EdN54XmHdQJOBeaZ2YfAWcAcHRgVaV1eXrmNX7y8ji+fdgw/ueSUoOO0StEU9EXAYDMbaGZZwERgzuGF7r7P3Xu6+wB3HwDMB8Z5A0MuIpKeFn24m5ufWk5B/2788etn0kanJwai2YLu7tXAdOAVYB3wlLuvMbM7zWxcvAOKSHJ7f2eIG2Yt5riu7XlIzwMNVFQnhrr7XGBuvXm3NdJ29NHHEpFUsPNABZP/upAMMx65bgTdOmYFHalV05n+ItIihyqrmfroInYeqOCJG86if4+OQUdq9XTpv4gcsbpb4S5n1ZZ93DtxGMP6dQs6kqAeuogcIXfn5y+u4bV127lz/FC+OPSYoCNJmHroInJEHnprE7Pe/Yhp5w/imrMHBB1HIqigi0jUnl9Wwq/mrufS04/llrEnBx1H6lFBF5Go/GvjTn749ErOHtSDP379DJ1rnoRU0EWkWSs+3stNs5cwOLcTf7kmn3Ztda55MlJBF5EmfbDrINc/sojuHbN49LoRdM6O3Q23JLZU0EWkUTsOlHPNzAU4MOv6kfTunB10JGmCCrqINOhAeRWTZy5i14FKZk4ewaBeyX/r2tZOBV1EPqeiuoYbZy9h4/YD/Pnq4Zyph1SkBF1YJCKfUVvrfP+pFbxdXMp/f+0MRp/UO+hIEiX10EXkU+7OXS+v5aWV27jlkpO5PD8v6EhyBFTQReRTD/xrE399+0OuP3cg3zx/UNBx5AipoIsIAM8sKeG3/1zPZWf04aeXnoKZLhxKNSroIsKra7fz42dXcu4JPfjD107XVaApSgdFRVq59btr+ONrSzm1T2f+MqlAV4GmMPXQRVqx1Vv28acl5fTr3oFHrhtJTjv18VKZCrpIK7VpZ4hrZy6kY6bx2JSRenxcGoiqoJvZWDPbYGbFZnZLA8tvNLNVZrbczP5tZkNiH1VEYmXr3jImPbwQgB+OyObYLu0DTiSx0GxBN7MM4H7gEmAIcEUDBftxdz/N3c8Efgf8MdZBRSQ2dh+sZNLDC9hfVsWj14/kmI76Qz1dRPOTHAkUu/smd68ECoHxkQ3cfX/EZEfAYxdRRGIlVFHN5L8upGRPGTOuLeDU47oEHUliyNybrr1mNgEY6+5Tw9OTgFHuPr1eu/8EvgdkARe6+3sNbGsaMA0gNzc3v7CwsEWhQ6EQOTmpcaOgVMmqnLGVjDkra5y7l5SzYU8t3xrWjmG96w6AJmPWhihnnTFjxixx94IGF7p7ky9gAjAjYnoScF8T7a8EHm1uu/n5+d5SRUVFLV430VIlq3LGVrLlrKqu8WmzFnn/H7/kzy39+DPLki1rY5SzDrDYG6mr0Qy5bAH6Rkznhec1phD4ShTbFZEEcHf+6/lVvLJmO7dfNoSvDtP9WdJVNAV9ETDYzAaaWRYwEZgT2cDMBkdMXgp8brhFRBLP3fnV3HU8tbiE71w0mOvOHRh0JImjZq8icPdqM5sOvAJkADPdfY2Z3Uld138OMN3MLgaqgD3AtfEMLSLRuff1Yh566wOuPbs/3714cPMrSEqL6rIwd58LzK0377aI99+JcS4ROUoPvbmJu1/byIT8PG6/bKhuttUK6ARUkTQ0e/5H/HLuOi49/Vh+e7luttVaqKCLpJnnlpbws7+v5qKTe3P3188kQ8W81VBBF0kj/1i1jR88vYKzB/Xg/quGk9VW/8VbE/20RdJE0YYdfLtwGcP6deOhawrIztRtcFsbFXSRNPDu+6Xc+NgSTjqmEzMnj6CjboPbKqmgi6S4pZv3MOXRRfTr3oFZ14+iS/vMoCNJQFTQRVLYmq37mDxzIb06tWP21FF01z3NWzUVdJEUVbzjANc8vJCcdm3529RR5HbODjqSBEwFXSQFfbjrIFfNWICZMXvqKPK6dQg6kiQBFXSRFLO59BBXPDSfyupaZk8dyaBeyX9LWUkMHQoXSSEle+qKeVlVDY9PPYuTj+kcdCRJIuqhi6SIrXvLuOKh+Rwor2L2lFEM6aNiLp+lgi6SAj7ZV86VD81n78EqHpsySo+OkwZpyEUkye3YX1fMd4UqmTVlJGf07Rp0JElS6qGLJLGdByq4csYCPtlfziPXjWB4v25BR5IkpoIukqRKQxVcNWM+W/aU8dfJIygY0D3oSJLkVNBFktCeg5VcNWMBm3cf4uHJBYwa1CPoSJICNIYukmT2Hari6ocXsGnXQWZeO4Jzju8ZdCRJEeqhiySRfWVVTJq5gPe2h3hwUj7nDVYxl+hFVdDNbKyZbTCzYjO7pYHl3zOztWa20sxeN7P+sY8qkt72HqrkqhnzWbdtP3++ejijT+oddCRJMc0WdDPLAO4HLgGGAFeY2ZB6zZYBBe5+OvAM8LtYBxVJZ7sPVnLlQwvYuD3Eg5MKuOiU3KAjSQqKpoc+Eih2903uXgkUAuMjG7h7kbsfCk/OB/JiG1MkfZWGKrjyofm8vzPEQ9cUMOZk9cylZczdm25gNgEY6+5Tw9OTgFHuPr2R9vcBn7j7LxpYNg2YBpCbm5tfWFjYotChUIicnNS4IVGqZFXO2Io2574K53eLyth5yPnO8GyG9kz8Y+PSbZ8GLd45x4wZs8TdCxpc6O5NvoAJwIyI6UnAfY20vZq6Hnq75rabn5/vLVVUVNTidRMtVbIqZ2xFk3P7vjK/8A9FfvJP/+FvF++Mf6hGpNM+TQbxzgks9kbqajSnLW4B+kZM54XnfYaZXQzcClzg7hXR/rYRaY0O35vl8BWgOs9cYiGaMfRFwGAzG2hmWcBEYE5kAzMbBvwFGOfuO2IfUyR9bN1bxjcefJcdByqYdf1IFXOJmWYLurtXA9OBV4B1wFPuvsbM7jSzceFmvwdygKfNbLmZzWlkcyKtWsmeQ3zjwXfZHb7Rli7nl1iK6kpRd58LzK0377aI9xfHOJdI2tm0M8TVMxYQqqhm9tRRumuixJwu/RdJgHXb9jPp4QW4wxPTzmJoH93PXGJPBV0kzpZt3sO1MxfSIasts6eO4oTeyX/qnaQmFXSROHr3/VKmPrqIHjnt+NvUUfTt3iHoSJLGVNBF4uSN9du5afZS+nXvwOypo8jtnB10JElzKugicbBgWzUP/e8STjm2M49eP5LuHbOCjiStgAq6SIw9vmAzD6yooGBANx6ePILO2ZlBR5JWQgVdJEbcnXtef48/vfYep/fMYNb1o2iflfh7s0jrpYIuEgM1tc7P/r6axxds5vLheVzSc7eKuSScnlgkcpTKq2q4afYSHl+wmZtGH88fvnY6bdtY0LGkFVIPXeQo7DtUxQ2zFrPoo93cftkQrjt3YNCRpBVTQRdpoW37ypg8cxGbdoW4d+IwLjujT9CRpJVTQRdpgQ2fHOC6vy5kf3k1j143knNO0MOcJXgq6CJHaN6GHUx/fBkdsjIonHYWpx6n+7JIclBBFzkCj737IbfPWcNJx3Rm5uQCju3SPuhIIp9SQReJQk2t84uX1/LXtz/kopN7c+8Vw+jYTv99JLnoEynSjAPlVXy3cDmvr9/B9ecO5NZLTyFDpyVKElJBF2nC+ztDTJu1mA9LD3HXV05l0ln9g44k0igVdJFGvLp2O997cjlZbdswe8oozj5ez/6U5KaCLlJPba3zp9ff497X3+O047rwwKR8juuqg5+S/KK69N/MxprZBjMrNrNbGlh+vpktNbNqM5sQ+5giiXH4ys97X3+Py4fn8fSNZ6uYS8potoduZhnA/cAXgBJgkZnNcfe1Ec02A5OBH8QjpEgiLPpwN995Yhk7DlRw5/ihTDqrP2Y6+CmpI5ohl5FAsbtvAjCzQmA88GlBd/cPw8tq45BRJK5qap3/KSrm7tc2ktetA8/cdA5n9u0adCyRI2bu3nSDuiGUse4+NTw9CRjl7tMbaPsI8JK7P9PItqYB0wByc3PzCwsLWxQ6FAqRk5MaD9pNlaytNeee8lr+srKC9btrOevYDK4d2o72bY++V54q+xNSJ6ty1hkzZswSdy9oaFlCD4q6+4PAgwAFBQU+evToFm1n3rx5tHTdREuVrK0x5z9WbePO51dRXmX8fsLpTMjPi9kQS6rsT0idrMrZvGgK+hagb8R0XnieSEoqDVVw29/X8PKqbZx2XBf+NPFMju+V/D0/keZEU9AXAYPNbCB1hXwicGVcU4nEgbvz4spt3DFnDQfKq/jBF0/kmxccT2aGnvMi6aHZgu7u1WY2HXgFyABmuvsaM7sTWOzuc8xsBPA80A24zMx+7u5D45pc5Ai8vzPE7X9fw7+Ld3HacV34w9fO4qRjOgUdSySmohpDd/e5wNx6826LeL+IuqEYkaQSqqjmz/OKefDNTWRnZnDn+KFcNaq/7sUiaUlXikpaqqqppXDhZu55/T12hSr5j+HH8ZNLTqFXp3ZBRxOJGxV0SSvVNbW8vGobf3rtPT7YdZBRA7sz49pTdF65tAoq6JIWKqtreW5pCX/+1/t8VHqIk3I78fC1BVx4cm9d7Smthgq6pLTt+8t5YuFmnli4me37K+pupnV1Pl8ckksbjZNLK6OCLimnsrqWNzfu5LllJbyyZjs1tc4FJ/bidxMGcv7gnuqRS6ulgi4pobyqhoUf7OaR1RV851+vsa+sim4dMply3kCuGtWP/j06Bh1RJHAq6JKUamqd9Z/sZ/GHe3hz407eeb+Usqoa2mXAJaf1YdyZfTjvhF5ktdVFQSKHqaBL4MqraijeEWLj9gNs2H6AtVv3s2zzXkIV1QD0696BrxXkMeak3lRuWcOXLhoWcGKR5KSCLnFXWV3L9v3lbNlbxtbwa8vecrbuLWPz7kN8VHqQ2vBNP7My2nB87xzGn9mHggHdKOjfnbxu7T8dF5/3ydomvpJI66aCLkesqqaW/WVV7CurovRgJaWhCnaFKikNVVJ6sILSUCW7QhWfLttzqOpz2+iZk0Wfru055dhOjDujDycd04kTc3Po36Oj7q0i0kIq6CnO3ampdapr/+/f6praz8yripiurnEqqmsoq6qhrLLu3/KqGlZ+WMXaecWUh+eVVdUQKq9mf3k1+8uq2F9exf6yavaXV3GosqbRPF3aZ9IjJ4ueOe04MTeHHoN60CMniz5d2tOna3v6dM2mT9f2ZGdmJHAvibQOKVfQn1r0MX966xDtl8z7dJ7Xe3N4+vDDOyIf4eGftvHPTjfwnI/660e2+dz6DbQBp7Kyksy3Xm0wV0PrNZS5oe8rsoDHzPoNALTPzCA7sw052W3pnJ1Jl/aZDOqZQ+f2ddOd29fN69y+LT06tvu0gHfrkKWDlCIBSrmC3q1jFsd1akPvXp0h4nTjw28Pj7X+3/RnlzfUhk/bWESb+tttok29DUWeBr1t61b69Dnmc+tbE9nrb7+h9dq2MdpmGBlt2tC2jZHRxsiMmG6bYeH5n5/OzmwTLtoZtM/KoH1mBksXzufiMefTrm0bncctkqJSrqB/YUgumTuyGT16eNBRojJvXimjR58WdIxmbcwyDYOIpDj9fSwikiZU0EVE0oQKuohImlBBFxFJEyroIiJpQgVdRCRNqKCLiKQJFXQRkTRh3tA174n4wmY7gY9auHpPYFcM48RTqmRVzthKlZyQOlmVs05/d+/V0ILACvrRMLPF7l4QdI5opEpW5YytVMkJqZNVOZunIRcRkTShgi4ikiZStaA/GHSAI5AqWZUztlIlJ6ROVuVsRkqOoYuIyOelag9dRETqUUEXEUkTSVfQzWysmW0ws2Izu6WB5e3M7Mnw8gVmNiBi2U/C8zeY2ZcCzvk9M1trZivN7HUz6x+xrMbMlodfcwLOOdnMdkbkmRqx7Fozey/8ujaeOaPMendEzo1mtjdiWUL2qZnNNLMdZra6keVmZveGv4eVZjY8Ylmi92dzWa8KZ1xlZu+Y2RkRyz4Mz19uZosDzjnazPZF/Hxvi1jW5GcmwTl/GJFxdfgz2T28LDH7092T5gVkAO8Dg4AsYAUwpF6b/wc8EH4/EXgy/H5IuH07YGB4OxkB5hwDdAi/v+lwzvB0KIn252TgvgbW7Q5sCv/bLfy+W5BZ67X/FjAzgH16PjAcWN3I8i8D/6DuyYJnAQuC2J9RZj3ncAbgksNZw9MfAj2TZJ+OBl462s9MvHPWa3sZ8Eai92ey9dBHAsXuvsndK4FCYHy9NuOBR8PvnwEusrqHYI4HCt29wt0/AIrD2wskp7sXufuh8OR8IC9OWZoSzf5szJeAV919t7vvAV4FxsYpJxx51iuAJ+KYp0Hu/iawu4km44FZXmc+0NXMjiXx+7PZrO7+TjgLBPcZjWafNuZoPt9H7AhzBvL5TLaCfhzwccR0SXheg23cvRrYB/SIct1E5ow0hbpe22HZZrbYzOab2VfikO+waHNeHv7T+xkz63uE68ZK1F8vPHw1EHgjYnai9mlzGvs+Er0/j1T9z6gD/2tmS8xsWkCZIp1tZivM7B9mNjQ8Lyn3qZl1oO6X9bMRsxOyP1PuIdGpxsyuBgqACyJm93f3LWY2CHjDzFa5+/vBJORF4Al3rzCzb1L318+FAWWJ1kTgGXeviZiXTPs0pZjZGOoK+nkRs88L78/ewKtmtj7cQw3CUup+viEz+zLwAjA4oCzRuAx4290je/MJ2Z/J1kPfAvSNmM4Lz2uwjZm1BboApVGum8icmNnFwK3AOHevODzf3beE/90EzAOGBZXT3Usjss0A8qNdN8aO5OtNpN6fswncp81p7PtI9P6MipmdTt3Pfby7lx6eH7E/dwDPE7/hy2a5+353D4XfzwUyzawnSbpPafrzGd/9Ge9B+iN5UfcXwybq/pw+fJBjaL02/8lnD4o+FX4/lM8eFN1E/A6KRpNzGHUHbAbXm98NaBd+3xN4jzgdyIky57ER778KzA+/7w58EM7bLfy+e5A/+3C7k6k7wGRB7NPw1xhA4wfwLuWzB0UXBrE/o8zaj7pjTefUm98R6BTx/h1gbIA5jzn886auEG4O79+oPjOJyhle3oW6cfaOQezPuH6YWrjDvgxsDBfDW8Pz7qSulwuQDTwd/iAuBAZFrHtreL0NwCUB53wN2A4sD7/mhOefA6wKf/hWAVMCzvlrYE04TxFwcsS614f3czFwXdA/+/D0HcBv6q2XsH1KXc9rG1BF3ZjtFOBG4MbwcgPuD38Pq4CCAPdnc1lnAHsiPqOLw/MHhfflivBn49aAc06P+IzOJ+IXUEOfmaByhttMpu7kjMj1ErY/dem/iEiaSLYxdBERaSEVdBGRNKGCLiKSJlTQRUTShAq6iEiaUEEXEUkTKugiImlC93KRVsfMfgN87O73h6fvAGqALwCdqft/cZO7v2VmU4AfA3upuzCkwt2nB5FbpDnqoUtr9CTw9Yjpr1P3f+EVdz8TOANYbmZ9gJ9Rdwn/udTddkAkaamHLq2Ouy8zs97hgt2Lusvfi4CZZpYJvODuy83sIuBfHr5rnpk9DZwYWHCRZqiHLq3V08AE4BvUPU3qTeqeSLMFeMTMrgkynEhLqKBLa/UkdXfrnAA8HX5oxnZ3f4i6m1YNBxYBF5hZt/Ctmi8PLK1IFDTkIq2Su68xs07AFnffFn5o8w/NrAoIAdd43QMJfkXdXT13A+upe0KWSFLS3RZFmmBmOV73pJy21D2YYKa7Px90LpGGaMhFpGl3mNlyYDV1D6V4IdA0Ik1QD11EJE2ohy4ikiZU0EVE0oQKuohImlBBFxFJEyroIiJp4v8DfBc1prezlHgAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}],"source":["df.plot(x=\"vsg\", y=\"gm_id\", grid=True)\n","plt.show()"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":290},"id":"fuCOaerRn2EV","outputId":"51e206f2-aa22-44a9-d24c-7a5c0f1f74e4"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXQAAAERCAYAAABrWly6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAleUlEQVR4nO3deXxU9b3/8deHEAir7BFlVUBEWYOg4m2h2hbUyr2KFRcU0VJr7aptUVu12t7r0nt7teKuqK2KqNWLSqUuQalWZZHFIEiIiOwB2QJk//z+mEl/Q8wyCZM5s7yfj8c8mHPO98y8c2b45Jvv2czdERGR5Ncs6AAiIhIbKugiIilCBV1EJEWooIuIpAgVdBGRFKGCLiKSIgIt6Gb2mJltN7OPo2j7NTNbamblZjap2rLLzGxt+HFZ0yUWEUlcQffQHwfGR9l2AzAVeDpyppl1Am4GRgOjgJvNrGPsIoqIJIdAC7q7vwN8GTnPzI41s9fMbImZLTSzgeG26919BVBZ7WW+Dbzu7l+6+y7gdaL/JSEikjKaBx2gBg8BV7n7WjMbDdwHfKOO9kcDX0RMbwzPExFJKwlV0M2sLXAq8JyZVc1uGVwiEZHkkVAFndAQ0G53H9aAdTYBYyOmewALYhdJRCQ5BL1T9BDuvhf4zMzOB7CQofWsNh/4lpl1DO8M/VZ4nohIWgn6sMVngH8Cx5nZRjO7ArgYuMLMlgN5wMRw25PMbCNwPvCgmeUBuPuXwG3AovDj1vA8EZG0Yrp8rohIakioIRcREWm8wHaKdunSxfv06dOodffv30+bNm1iG6iJJEtW5YytZMkJyZNVOUOWLFmyw9271rjQ3QN55OTkeGPl5uY2et14S5asyhlbyZLTPXmyKmcIsNhrqav1DrnUd72V8JEo95hZvpmtMLMRh/f7R0REGiOaMfTHqftU+glA//BjOnD/4ccSEZGGqregew3XW6lmIvBk+K+B94EOZtY9VgFFRCQ6UR22aGZ9gFfc/cQalr0C3O7u/whPvwn8yt0X19B2OqFePNnZ2TmzZ8+uvpw2bdqQkZFRZx53J+LSAAmnoqKC/fv34+4UFRXRtm3boCPVSzljK1lyQvJkVc6QcePGLXH3kTUurG1wPfIB9AE+rmXZK8BpEdNvAiPre82adooWFBR4YWGhV1ZW1rlTYO/evQ3aiRBPlZWVXlhY6AUFBe6uHTmxppyxlyxZlTOEw9kpGoVNQM+I6R7heQ1WXFxM586dE7r3XR8zo3PnzhQXFwcdRUTSTCwK+lzg0vDRLicDe9x9S2NfLJmLeZVU+BlEJPlEc9jiV663YmZXmdlV4SbzgAIgH3gYuLrJ0oqIJLHKSuf3r65i/Y79TfL69Z4p6u4X1rPcgR/GLJGISIp66sMNPLzwM/p1a0ufLrE/m1TXcqnmnnvu4fjjj+fiiy8+ZP6sWbMYNmwYw4YNo0WLFgwePJhhw4YxY8aMgJKKSDLZtPsgt8/7hH/r34XvjuxZ/wqNkGg3uAjcfffdxxtvvEGPHj0OmX/55Zdz+eWXA9CnTx9yc3Pp0qVLEBFFJMm4O9f/dSUO/Od/DG6y/WwJW9B/+3IeqzbvrXFZRUVFvceq12TQUe25+Tsn1Lr8qquuoqCggAkTJjBt2jR+9rOfNfg9RESqe37JRt75tJBbJ55Az06tm+x9EragB+GBBx7gtddeU+9bRGJm+95ibntlFaP6dOKS0b2b9L0StqDX1ZPet28f7dq1i2MaEZGGc3dufOljSsoruf28wTRr1rSHNGunqIhIE3llxRZeX7WNa781gGO6Nv1lC1TQRUSawM6iEm6em8fQHkcwbUzfuLynCrqISBO45eVV7Csu485JQ2meEZ9Sm7Bj6EFZv359TNqISPr6e95WXl6+mZ9/cwDHHRm//X3qoYuIxND+MufXL33MwCPb8YOxx8b1vdVDr8GsWbO4++67D5k3ZswYZs6cGVAiEUkWs1eXsnN/BY9edhKZcRpqqZJwBd0T4OYVkWeFNoZHcdMQEUk9b39ayMJN5Vw99lgG9zgi7u+fUEMuWVlZ7Ny5M6kLoruzc+dOsrKygo4iInFUVFLODX9dSfc2xo9P7x9IhoTqoffo0YONGzdSWFhYZ7vi4uKELphZWVlfuRaMiKS2O/62ms17DnLjqCyyMht+aZJYSKiCnpmZSd++9R+vuWDBAoYPHx6HRCIi9Xu/YCd/fv9zpo3pS7922wPLkVBDLiIiyeZgaQW/emEFvTq15rpvDwg0S0L10EVEks1//30Nn+88wNPfG03rFsGWVPXQRUQaaemGXTz27mdcOKoXpx4b/BVaVdBFRBqhpLyCXz6/guz2Wdxw5sCg4wAachERaZR738onf3sRs6aeRLuszKDjAOqhi4g0WN7mPdy/YB3nDj+acQO7BR3nX1TQRUQaoKyikl8+v4IOrTP5zdmDgo5zCA25iIg0wEPvFJC3eS/3XTyCjm1aBB3nEOqhi4hEKX97EXe/uZYJJx7JmYO7Bx3nK1TQRUSiUFHp/PL55bTKzOC3E2u/53GQVNBFRKLwxHvrWbphNzedPYhu7RLzWlIq6CIi9diw8wB3zV/D1wd05dwRRwcdp1Yq6CIidXB3rn9xBRnNjP88d3Dg92uoiwq6iEgdnl30Be/m72TGhIEc3aFV0HHqpIIuIlKLLXsO8vtXP2F0305cNKpX0HHqpYIuIlIDd+fXL35MWWUld5w3hGbNEneopYoKuohIDeYu38ybq7dz3beOo0+XNkHHiUpUBd3MxpvZGjPLN7MZNSzvZWa5ZvaRma0wszNjH1VEJD52FJVwy9w8hvXswOVj6r+LWqKot6CbWQYwE5gADAIuNLPqFzD4NTDH3YcDk4H7Yh1URCRebp6bR1FJOXdOGkJGEgy1VImmhz4KyHf3AncvBWYDE6u1caB9+PkRwObYRRQRiZ/5eVt5dcUWfvyN/gzIbhd0nAYxd6+7gdkkYLy7XxmengKMdvdrItp0B/4OdATaAGe4+5IaXms6MB0gOzs7Z/bs2Y0KXVRURNu2bRu1brwlS1bljK1kyQnJkzUeOfeXOTf84yDtWxg3n5JF80b0zps657hx45a4+8gaF7p7nQ9gEvBIxPQU4N5qbX4OXBt+fgqwCmhW1+vm5OR4Y+Xm5jZ63XhLlqzKGVvJktM9ebLGI+d1c5b5Mde/6is37m70azR1TmCx11JXoxly2QT0jJjuEZ4X6QpgTvgXxD+BLCD4G+yJiETp7U8LeW7JRqZ/7RhOPPqIoOM0SjQFfRHQ38z6mlkLQjs951ZrswE4HcDMjidU0AtjGVREpKkUlZRzw19XckzXNvzk9P5Bx2m0egu6u5cD1wDzgU8IHc2SZ2a3mtk54WbXAt8zs+XAM8DU8J8GIiIJ787XVrN5z0HumjSErMyMoOM0WlR3LHL3ecC8avNuini+ChgT22giIk3vw8++5Ml/fs7UU/uQ07tT0HEOi84UFZG0VVxWwa9eWEGPjq34xbePCzrOYdM9RUUkbf3x9U/5bMd+nrpyNG1aJn85VA9dRNLS8i928/DCAiaf1JMx/VLjoDwVdBFJO6Xllfzy+RV0bdeSG846Pug4MZP8f2OIiDTQzNx81mzbxyOXjqR9VmbQcWJGPXQRSSt5m/cwMzeficOO4oxB2UHHiSkVdBFJG2UVlVz33Ao6tG7BLd85Ieg4MachFxFJGzNz8/lky14enJJDxzYtgo4Tc+qhi0haWLV5L/e+FRpq+fYJRwYdp0mooItIygsNtSynQ+vMlBxqqaIhFxFJefcvWMeqLXt54JLUHGqpoh66iKS0T7bs5U9vreWcoUcx/sTUHGqpooIuIimraqjliFaZ3HJO6g61VNGQi4ikrAcWrCNv814euGQEnVJ4qKWKeugikpJWb93LPW+t5ewh3Rl/Yveg48SFCrqIpJyqoZb2WZncOvHEoOPEjYZcRCTlPPj2Oj7etJf7L06PoZYq6qGLSEpZs3Ufd7+5lrOGdGfC4PQYaqmigi4iKaM8cqglDY5qqU5DLiKSMh58p4CVm/Zw38Uj6Ny2ZdBx4k49dBFJCWu27uPuN9Zy1uDunJlmQy1VVNBFJOmVV1Tyi+eX0zarOb+dmH5DLVU05CIiSe/BdwpYsXEP9140nC5pONRSRT10EUlqqzbv5X/f+JSzhnTn7CFHBR0nUCroIpK0Ssor+PmcZRzRqgW3pdEJRLXRkIuIJK173lzL6q2hmz2n0wlEtVEPXUSS0tINu7h/wTrOz+mRcjd7biwVdBFJOgdLK7huznK6H9GKm74zKOg4CUNDLiKSdO54bTUFO/bz9JWjaZeVGXSchKEeuogklffW7eDx99Yz9dQ+nNqvS9BxEooKuogkjX3FZfziuRX07dKGX40fGHSchBNVQTez8Wa2xszyzWxGLW2+a2arzCzPzJ6ObUwREfjdK5+wZc9B/nD+UFq1yAg6TsKpdwzdzDKAmcA3gY3AIjOb6+6rItr0B64Hxrj7LjPr1lSBRSQ9LdtezrNLv+AHY48lp3fHoOMkpGh66KOAfHcvcPdSYDYwsVqb7wEz3X0XgLtvj21MEUlnu/aXMiuvlIFHtuOnZ/QPOk7CMnevu4HZJGC8u18Znp4CjHb3ayLavAR8CowBMoBb3P21Gl5rOjAdIDs7O2f27NmNCl1UVETbtm0btW68JUtW5YytZMkJyZH1/mXFLN5Wzk2ntKJ3+8Qeamnq7Tlu3Lgl7j6ypmWxOmyxOdAfGAv0AN4xs8Huvjuykbs/BDwEMHLkSB87dmyj3mzBggU0dt14S5asyhlbyZITEj/rKys288HWjzi3fwsuO+f0oOPUK8jtGc2QyyagZ8R0j/C8SBuBue5e5u6fEeqt6+8iETks2/cV8+uXPmZozw6c1VfHm9cnmoK+COhvZn3NrAUwGZhbrc1LhHrnmFkXYABQELuYIpJu3J0ZL6zkYGkF/33+UDKaWdCREl69Bd3dy4FrgPnAJ8Acd88zs1vN7Jxws/nATjNbBeQCv3D3nU0VWkRS31MfbOCt1du5fsJA+nVL7DH+RBHVGLq7zwPmVZt3U8RzB34efoiIHJZ1hUX87tVV/Fv/Llx6Sp+g4yQNnSkqIgmlrKKSnz27jKzMDP5w/lCaaaglaro4l4gklD+9uZYVG/dw/8UjyG6fFXScpKIeuogkjCWf7+Le3HzOG9GDCYO7Bx0n6aigi0hCKCop52fPLuOoDq245Rxd47wxNOQiIgnhtpdXsXHXAWZPP0XXOG8k9dBFJHDz87by7OIvuOrrxzKqb6eg4yQtFXQRCdT2fcVc/9eVnHh0e356xoCg4yQ1FXQRCYy788vnV7C/pJz/vWAYLZqrJB0ObT0RCcxfPtjAgjWF3HDm8fTr1i7oOElPBV1EApG/fR+/f3UVXxvQlUtP6R10nJSggi4icVdcVsGPnllG6xbN+cOkIZjpbNBY0GGLIhJ3d7y2mk+27OWxqSPpprNBY0Y9dBGJq9zV25n17nqmntqHbwzMDjpOSlFBF5G42b6vmOueW87AI9sxY8LAoOOkHA25iEhcVFY6185Zzv7ScmZfeDJZmYl9b9BkpB66iMTFo//4jIVrd/CbswfRP1uHKDYFFXQRaXIrN+7hzvmr+fYJ2Vw0qlfQcVKWCrqINKn9JeX8ePZHdG7TktvP1SGKTUlj6CLSpH77ch7rd+7n6StPpmObFkHHSWnqoYtIk3llxWbmLN7ID8f245RjOwcdJ+WpoItIk9i46wDX/3Ulw3p24Cdn9A86TlpQQReRmCurqORHz3yEO9wzeTiZGSo18aAxdBGJubvmr+GjDbuZedEIenVuHXSctKFfmyISU29+so2H3ilgysm9OWuIbvQcTyroIhIzm3Yf5NrnljOoe3tuPOv4oOOkHRV0EYmJsopKfvT0UsrKK5l58Qid2h8AjaGLSEz84e9rWLphN/dcOJy+XdoEHSctqYcuIoftrdXbePDtAi4a3Ytzhh4VdJy0pYIuIodl8+6DXDtnOcd3b89NZw8KOk5aU0EXkUYrq6jkx898RGl5JTMvGq5x84BpDF1EGu1/Xv+UxZ/v4u7Jwzima9ug46Q99dBFpFFy12zn/gXruHBUTyYOOzroOEKUBd3MxpvZGjPLN7MZdbQ7z8zczEbGLqKIJJpNuw/y82eXMfDIdtz8nROCjiNh9RZ0M8sAZgITgEHAhWb2lT0fZtYO+AnwQaxDikjiKCmv4OqnllJW4TrePMFE00MfBeS7e4G7lwKzgYk1tLsNuAMojmE+EUkwt72yiuVf7OYP5w/hWI2bJxRz97obmE0Cxrv7leHpKcBod78mos0I4EZ3P8/MFgDXufviGl5rOjAdIDs7O2f27NmNCl1UVETbtsnxRUqWrMoZW8mSExqW9d1NZTy8spQJfTO54Lj43qwiWbZpU+ccN27cEneveVjb3et8AJOARyKmpwD3Rkw3AxYAfcLTC4CR9b1uTk6ON1Zubm6j1423ZMmqnLGVLDndo8+6avMeP+7X8/y7D7znZeUVTRuqBsmyTZs6J7DYa6mr0Qy5bAJ6Rkz3CM+r0g44EVhgZuuBk4G52jEqkjr2HCzjB39ZQvusTP500XCa6/rmCSmaT2UR0N/M+ppZC2AyMLdqobvvcfcu7t7H3fsA7wPneA1DLiKSfNyd655bzsZdB7nv4hF0a5cVdCSpRb0F3d3LgWuA+cAnwBx3zzOzW83snKYOKCLBeuDtAl5ftY3rzzyekX06BR1H6hDVmaLuPg+YV23eTbW0HXv4sUQkEby3bgd3zV/N2UO6M21Mn6DjSD00ECYiNdq46wDXPP0Rx3Rtyx3nDcHMgo4k9VBBF5GvOFhawff/vISyikoempJDm5a67FMy0KckIodwd2b8dQWrtuzlsctO0kW3koh66CJyiIcXFvB/yzZz3beOY9zAbkHHkQZQQReRf3nn00Ju/9tqzhx8JFePPTboONJAKugiAsDnO/fzo2c+YkB2O+6aNFQ7QZOQCrqIsL+knOlPLsEMHpoyUjtBk5QKukiaqzoTdO32fdx74Qh6dW4ddCRpJP0aFklzc9eV8bf8rfz6rOM5rX+XoOPIYVAPXSSNvbJiMy/ml3HuiKO54rS+QceRw6SCLpKmln2xm2vnLGdAx2b817mDtRM0BWjIRSQNbd59kO89uZhu7VtyzTCjZXPdRi4VqIcukmb2l5Rz5ROLKS6t4NHLTqJ9C/XMU4UKukgaqax0fvbsMlZv3cufLhrOgOx2QUeSGFJBF0kjd85fw99XbeM3Zw9i7HE6rT/VqKCLpInnFn/BA2+v4+LRvZh6ap+g40gTUEEXSQP/XLeTG15cyZh+nbnlnBN0REuKUkEXSXGfbtvH9D8vpnfnNtx3UQ6ZusFzytInK5LCtu0tZupjH9IqM4PHLz+JI1pnBh1JmpAKukiK2ldcxtRZi9hzsIxZl59Ej466Rkuq04lFIimorKKSq59aytpt+3hs6kmccNQRQUeSOFBBF0kx7s6MF1aycO0O7po0hK8N6Bp0JIkTDbmIpJg/vrGWF5Zu5GdnDOD8kT2DjiNxpIIukkJmf7iBe95cywUje/Lj0/sFHUfiTAVdJEXMz9vKDS+u5OsDuvK7/zhRx5qnIRV0kRTwbv4OfvT0Rwzr2YH7LxmhY83TlD51kSS37IvdfO/JxRzTtQ2zpo6idQsd65CuVNBFktjabfuYOutDurRtyZPTRunEoTSngi6SpL748gCXPPoBLTKa8ZcrRtOtfVbQkSRg+ttMJAlt31fMlEc/oLiskjnfP4VenXUWqKiHLpJ09hws49JHP2T7vhJmXX4Sxx2pm1RISFQF3czGm9kaM8s3sxk1LP+5ma0ysxVm9qaZ9Y59VBEpKinn8lkfUlC4n4emjGREr45BR5IEUm9BN7MMYCYwARgEXGhmg6o1+wgY6e5DgOeBO2MdVCTd7Q8X8+Ub93DPhcM5rX+XoCNJgommhz4KyHf3AncvBWYDEyMbuHuuux8IT74P9IhtTJH0dqC0nGmPL2Lpht3cM3k44088MuhIkoDM3etuYDYJGO/uV4anpwCj3f2aWtrfC2x199/VsGw6MB0gOzs7Z/bs2Y0KXVRURNu2bRu1brwlS1bljK1Y5iytcP64pJjVX1by/SEtOfmo2B7LkI7btCk1dc5x48YtcfeRNS509zofwCTgkYjpKcC9tbS9hFAPvWV9r5uTk+ONlZub2+h14y1ZsipnbMUq58HScr/kkfe9z4xX/IUlX8TkNatLt23a1Jo6J7DYa6mr0fyq3wREXrKtR3jeIczsDOBG4OvuXhLtbxsRqVlxWQVX/WUJC9fu4M7zhnDuCI1kSt2iGUNfBPQ3s75m1gKYDMyNbGBmw4EHgXPcfXvsY4qklwOl5VzxxCLe/rSQ288dzHdP0mVwpX719tDdvdzMrgHmAxnAY+6eZ2a3Eur6zwXuAtoCz4Wv8LbB3c9pwtwiKauopJxpsxax+PMv+cOkoZyXo565RCeqvSvuPg+YV23eTRHPz4hxLpG0tOdgGVNnfciKjXu4e/JwvjP0qKAjSRLRqf8iCWLX/lKmPPYBa7buY+ZFI3RoojSYCrpIAti2t5hLH/2Qz3aGzgAdN7Bb0JEkCamgiwSsoLCIKY9+yO4DpcyaehJj+ukMUGkcFXSRAK3cuIepsz7EgWemn8yQHh2CjiRJTAVdJCDv5e/ge08upkPrFvz5ilEc0zXxz4KUxKaCLhKAeSu38NPZy+jTpTVPThvNkUfo5hRy+FTQReLI3Xl4YQH/9bfVjOjVkUcvG0mH1i2CjiUpQgVdJE7KKiq5eW4eT3+wgTMHH8n/fHcYWZkZQceSFKKCLhIHe4vL+OFTS1m4dgc/GHssv/jWcTRrZkHHkhSjgi7SxDbuOsC0xxdRULifO88bouuySJNRQRdpQh9+9iVXP7WEkvJKnpg2SseYS5NSQRdpAu7OE++t57ZXVtGzU2tmX5pDv266mbM0LRV0kRgrLqvgkZWlvLs5jzOO78b/XDCM9lmZQceSNKCCLhJDG3cd4Kq/LOHjzeX89Iz+/Pgb/bXzU+JGBV0kRt5avY1r5yynvML5yYiW/PSMAUFHkjQTzR2LRKQOJeUV/PblPKY9vpjs9lm8dM0YhndTX0niT986kcNQUFjEj575iLzNe5l6ah9mTBhIVmYGXwQdTNKSCrpII7g7zy/ZyM1z82jZvBmPXDqSMwZlBx1L0pwKukgDbdtbzI0vruSNT7Yzum8n7p48XBfXkoSggi4Spape+W2vrKKkvJIbzzyeaaf1JUNHsUiCUEEXicLm3Qe5/q8refvTQkb16cQdk4bQt0uboGOJHEIFXaQO5RWVPPHPz/nj659S6c5vzzmBKSf31rHlkpBU0EVq8X7BTm7+vzzWbNvH1wZ05ff/fiI9O7UOOpZIrVTQRapZv2M/d/19Da+u2MLRHVrx4JQcvjUoGzP1yiWxqaCLhO0oKuFPb67lqQ82kJnRjJ+c3p+rvn4srVroJhSSHFTQJe3tKCrh4YUF/Pmfn1NSXskFJ/Xkp6f3p1t7HYooyUUFXdLW5t0HefQfn/HUB6FCfvaQo/jJ6f10mVtJWiroklbcnaUbdvHYu+t57eOtAEwcehRXj+tHv25tA04ncnhU0CUt7Npfyv8t28RzSzaSt3kv7bKac8VpfZlycm8duSIpQwVdUlZRSTkL1mzn1RVbePOT7ZRWVHLCUe25beIJnDuiB21a6usvqUXfaEkpG3YeYGF+IbmrC3lnbSGl5ZV0aduCi0/uxfk5PRl0VPugI4o0GRV0SVoVlc66wiI+2rCLjzbs5r11O9nw5QEAju7QiotH92LCid3J6d1R11uRtBBVQTez8cDdQAbwiLvfXm15S+BJIAfYCVzg7utjG1XSVXFZBVv2FLNuexHzC0p5efty8guLyN+2j/2lFQAc0SqTk/p04orT+nJa/y4c06WNTgSStFNvQTezDGAm8E1gI7DIzOa6+6qIZlcAu9y9n5lNBu4ALmiKwJI8KiqdsopKSisqKSuv+tcpraiktLySopJy9h4sY19JGfuKw8+Ly9l9oIyte4vZFn7sOlB2yOt2a1dI/+y2TMrpwdCeHRjWswN9VcBFouqhjwLy3b0AwMxmAxOByII+Ebgl/Px54F4zM3f3GGYFYM6iL/jfhQdovfRtIHQYWqSvvKHXOVnv+tV/Aq/W4ivLq00XFxeT9f5bTfd+9axfvUVt65eVlpK58PWG56ve3qGsMlSwKxvx6bdo3owjWmWS3b4lPTq2Iqd3R45sn0X3Dq04pmsbtq5ZxpnfHNfwFxZJA9EU9KPhkDtqbQRG19bG3cvNbA/QGdgR2cjMpgPTAbKzs1mwYEGDA2/aXk52q0qaNzv4/1+3nnWqL6+vI/eVxVZ90upafIjyFpVkZh7aw6w3bwPz1Z+3/vZlZU5mZmV0+apPV5vRvFkGzS2D5s0IP4wMg8zwdEYzI7MZZGUYrTOhVXOjdXOjVSZk/musuwLYH34A+2DvPqgs2d+o7028FRUVJUVOSJ6syhkFd6/zAUwiNG5eNT0FuLdam4+BHhHT64Audb1uTk6ON1Zubm6j1423ZMmqnLGVLDndkyercoYAi72Wutosipq/CegZMd0jPK/GNmbWHDiC0M5RERGJk2gK+iKgv5n1NbMWwGRgbrU2c4HLws8nAW+Ff5OIiEic1DuG7qEx8WuA+YQOW3zM3fPM7FZCXf+5wKPAn80sH/iSUNEXEZE4iuo4dHefB8yrNu+miOfFwPmxjSYiIg0RzZCLiIgkARV0EZEUoYIuIpIiVNBFRFKEBXV0oZkVAp83cvUuVDsLNYElS1bljK1kyQnJk1U5Q3q7e9eaFgRW0A+HmS1295FB54hGsmRVzthKlpyQPFmVs34achERSREq6CIiKSJZC/pDQQdogGTJqpyxlSw5IXmyKmc9knIMXUREvipZe+giIlKNCrqISIpIuIJuZuPNbI2Z5ZvZjBqWtzSzZ8PLPzCzPhHLrg/PX2Nm3w4458/NbJWZrTCzN82sd8SyCjNbFn5UvxRxvHNONbPCiDxXRiy7zMzWhh+XVV83gKx/jMj5qZntjlgWl21qZo+Z2XYz+7iW5WZm94R/hhVmNiJiWby3Z31ZLw5nXGlm75nZ0Ihl68Pzl5nZ4oBzjjWzPRGf700Ry+r8zsQ55y8iMn4c/k52Ci+Lz/as7c4XQTwIXZ53HXAM0AJYDgyq1uZq4IHw88nAs+Hng8LtWwJ9w6+TEWDOcUDr8PMfVOUMTxcl0PacSrU7UIXndwIKwv92DD/vGGTWau1/ROhSzvHepl8DRgAf17L8TOBvhO7UdzLwQRDbM8qsp1ZlACZUZQ1Pr6eeu47FMedY4JXD/c40dc5qbb9D6L4Qcd2eidZD/9cNqd29FKi6IXWkicAT4efPA6db6HbvE4HZ7l7i7p8B+eHXCySnu+e6+4Hw5PuE7vQUb9Fsz9p8G3jd3b90913A68D4JsoJDc96IfBME+apkbu/Q+ia/7WZCDzpIe8DHcysO/HfnvVmdff3wlkguO9oNNu0Nofz/W6wBuYM5PuZaAW9phtSH11bG3cvB6puSB3NuvHMGekKQr22KllmttjM3jezf2+CfFWizXle+E/v582s6naD8dyeDXq/8PBVX+CtiNnx2qb1qe3niPf2bKjq31EH/m5mSyx0c/egnWJmy83sb2Z2QnheQm5TM2tN6Jf1CxGz47I9o7rBhTSemV0CjAS+HjG7t7tvMrNjgLfMbKW7rwsmIS8Dz7h7iZl9n9BfP98IKEu0JgPPu3tFxLxE2qZJxczGESrop0XMPi28PbsBr5vZ6nAPNQhLCX2+RWZ2JvAS0D+gLNH4DvCuu0f25uOyPROth344N6SOZt145sTMzgBuBM5x95Kq+e6+KfxvAbAAGB5UTnffGZHtESAn2nVjrCHvN5lqf87GcZvWp7afI97bMypmNoTQ5z7R3f91Y/eI7bkdeJGmG76sl7vvdfei8PN5QKaZdSFBtyl1fz+bdns29SB9Qx6E/mIoIPTndNVOjhOqtfkhh+4UnRN+fgKH7hQtoOl2ikaTczihHTb9q83vCLQMP+8CrKWJduREmbN7xPP/AN4PP+8EfBbO2zH8vFOQn3243UBCO5gsiG0afo8+1L4D7ywO3Sn6YRDbM8qsvQjtazq12vw2QLuI5+8B4wPMeWTV502oEG4Ib9+ovjPxyhlefgShcfY2QWzPJv0yNXKDnQl8Gi6GN4bn3UqolwuQBTwX/iJ+CBwTse6N4fXWABMCzvkGsA1YFn7MDc8/FVgZ/vKtBK4IOOd/AXnhPLnAwIh1p4W3cz5wedCffXj6FuD2auvFbZsS6nltAcoIjdleAVwFXBVebsDM8M+wEhgZ4PasL+sjwK6I7+ji8Pxjwttyefi7cWPAOa+J+I6+T8QvoJq+M0HlDLeZSujgjMj14rY9deq/iEiKSLQxdBERaSQVdBGRFKGCLiKSIlTQRURShAq6iEiKUEEXEUkRKugiIilC13KRtGNmtwNfuPvM8PQtQAXwTaA9of8XP3D3hWZ2BfArYDehE0NK3P2aIHKL1Ec9dElHzwLfjZj+LqH/C/PdfRgwFFhmZkcBvyF0Cv8YQpcdEElY6qFL2nH3j8ysW7hgdyV0+nsu8JiZZQIvufsyMzsdeNvDV80zs+eAAYEFF6mHeuiSrp4DJgEXELqb1DuE7kizCXjczC4NMpxIY6igS7p6ltDVOicBz4VvmrHN3R8mdNGqEcAi4Otm1jF8qebzAksrEgUNuUhacvc8M2sHbHL3LeGbNv/CzMqAIuBSD92Q4D8JXdXzS2A1oTtkiSQkXW1RpA5m1tZDd8ppTujGBI+5+4tB5xKpiYZcROp2i5ktAz4mdFOKlwJNI1IH9dBFRFKEeugiIilCBV1EJEWooIuIpAgVdBGRFKGCLiKSIv4fwrADa7uwGQQAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}],"source":["df.plot(x=\"vsg\", y=\"f_T\", grid=True)\n","plt.show()"]},{"cell_type":"markdown","metadata":{"id":"_5Pg-YCXPJE_"},"source":["## III. Summary of your Idea\n","\n","This is where you summarize your work. Comparison tables and a description of your expected results should be listed here."]},{"cell_type":"markdown","metadata":{"id":"llYW0-ATPJE_"},"source":["## IV. Planification and Tasks\n","\n","Planning and breakdown of tasks are usually helpful for a successful project. Good Luck!"]}],"metadata":{"colab":{"provenance":[],"toc_visible":true},"kernelspec":{"display_name":"Python 3.9.13 64-bit","language":"python","name":"python3"},"language_info":{"name":"python","version":"3.9.13"},"vscode":{"interpreter":{"hash":"397704579725e15f5c7cb49fe5f0341eb7531c82d19f2c29d197e8b64ab5776b"}}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file