diff --git a/SAR_ADC_proposal.ipynb b/SAR_ADC_proposal.ipynb index 7f9dd3b..7c362ea 100644 --- a/SAR_ADC_proposal.ipynb +++ b/SAR_ADC_proposal.ipynb @@ -1 +1 @@ -{"cells":[{"cell_type":"markdown","metadata":{"id":"view-in-github"},"source":["\"Open"]},{"cell_type":"markdown","metadata":{"id":"aK2t7aSWNojQ"},"source":["# Lab Bench on Chip\n","## SAR ADC design for integrated oscilloscope\n","\n","```\n","AC3E-UTFSM-PUC-Chile Team, May 2023\n","SPDX-License-Identifier: Apache-2.0\n","```\n","\n","\n","|Name|Email|Affiliation|IEEE Member|SSCS Member|\n","|:--:|:--:|:----------:|:----------:|:----------:|\n","|Jorge Marín (Lead)
|jorge.marinn@usm.cl|AC3E|Yes|Yes|\n","|Christian Rojas|c.a.rojas@ieee.org|AC3E, Universidad Técnica Federico Santa María|Yes|No|\n","|Alonso Rodríguez|alonso.rodriguez.13@sansano.usm.cl|Affiliation 3|Yes/No|Yes/No|\n","|Kevin Pizarro|kevin.pizarroa@sansano.usm.cl|Universidad Técnica Federico Santa María|Yes|Yes|\n","|Vicente Osorio|vicente.osorio@usm.cl|Universidad Técnica Federico Santa María|No|No|\n","|Andrea Duarte|Email3|Universidad Técnica Federico Santa María|Yes/No|Yes/No|\n","|Mario Romero|mario.romeron@usm.cl|Universidad Técnica Federico Santa María|Yes|Yes|\n","|Felipe Torres|felipe.torreso@sansano.usm.cl|Affiliation 3|Yes/No|Yes/No|\n","|Patricio Carrasco|patricio.carrascoo@sansano.usm.cl|Affiliation 3|Yes/No|Yes/No|\n","|Sebastián Sánchez|sebastian.sanchezp@usm.cl|Universidad Técnica Federico Santa María|Yes/No|Yes/No|\n","|Jesús Ávila|jesus.avila.05@gmail.com|Affiliation 3|Yes/No|Yes/No|\n","|Martín Muñoz|martin.munozmun@usm.cl|Universidad Técnica Federico Santa María|Yes/No|Yes/No|\n","|Valeria Muñoz|valeria.munoz@usm.cl|Affiliation 4|Yes/No|Yes/No|\n","|Joaquín Saldías|joaquin.saldiasa@usm.cl|Affiliation 3|Yes/No|Yes/No|\n","|Felipe Rifo|felipe.rifo@sansano.usm.cl|Affiliation 3|Yes/No|Yes/No|"]},{"cell_type":"markdown","metadata":{"id":"W7JQJy7mvn2w"},"source":["**_Abstract_** - This work introduces a design of a n-bit SAR ADC intended for an integrated oscilloscope, targetting the open-source GlobalFoundries 180nm PDK.\n","\n","The basic architecture of a SAR ADC consists of a capacitive DAC, a comparator, and a control block. This can be seen in the figure depicted below:\n"]},{"cell_type":"markdown","source":["
\n","\n","
Figure 1: SAR ADC architecture
\n"],"metadata":{"id":"_XjW7cdZ0peq"}},{"cell_type":"markdown","source":["**_Key words_** - component; formatting; style; styling; insert (key words)\n"],"metadata":{"id":"-in8T7fH0etl"}},{"cell_type":"markdown","metadata":{"id":"4ProrWGQPJEx"},"source":["## Tool Installation\n","\n","This is where you need to install your tools. We provide here an example where conda environment is being installed and then Ngspice for simulations."]},{"cell_type":"markdown","metadata":{"id":"LLYfEdDLPJEy"},"source":["\n","**_Tool setup adopted from @proppy and @bmurmann (see this [Colab notebook](https://colab.research.google.com/gist/proppy/a0c5ed3e28e942f1621200dcf67bad5a/sky130-pyspice-playground.ipynb#scrollTo=q0XHBAt1jGmQ))_**"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"aKoPD8cKw2UL","outputId":"0959dcdf-5df0-44ba-fb67-b9c3bd7d40b4"},"outputs":[{"output_type":"stream","name":"stdout","text":["\n"," __\n"," __ ______ ___ ____ _____ ___ / /_ ____ _\n"," / / / / __ `__ \\/ __ `/ __ `__ \\/ __ \\/ __ `/\n"," / /_/ / / / / / / /_/ / / / / / / /_/ / /_/ /\n"," / .___/_/ /_/ /_/\\__,_/_/ /_/ /_/_.___/\\__,_/\n"," /_/\n","\n","Empty environment created at prefix: /content/conda-env\n","\n"," __\n"," __ ______ ___ ____ _____ ___ / /_ ____ _\n"," / / / / __ `__ \\/ __ `/ __ `__ \\/ __ \\/ __ `/\n"," / /_/ / / / / / / /_/ / / / / / / /_/ / /_/ /\n"," / .___/_/ /_/ /_/\\__,_/_/ /_/ /_/_.___/\\__,_/\n"," /_/\n","\n","\n","Pinned packages:\n"," - python 3.7*\n","\n","\n","Transaction\n","\n"," Prefix: /content/conda-env\n","\n"," Updating specs:\n","\n"," - ngspice=*\n","\n","\n"," Package Version Build Channel Size\n","─────────────────────────────────────────────────────────────────────────────────────\n"," Install:\n","─────────────────────────────────────────────────────────────────────────────────────\n","\n"," \u001b[32m+ _libgcc_mutex\u001b[0m 0.1 main main/linux-64 3kB\n"," \u001b[32m+ _openmp_mutex\u001b[0m 5.1 1_gnu main/linux-64 21kB\n"," \u001b[32m+ libgcc-ng \u001b[0m 11.2.0 h1234567_1 main/linux-64 9MB\n"," \u001b[32m+ libgomp \u001b[0m 11.2.0 h1234567_1 main/linux-64 573kB\n"," \u001b[32m+ libstdcxx-ng \u001b[0m 11.2.0 h1234567_1 main/linux-64 6MB\n"," \u001b[32m+ ngspice \u001b[0m 39.3_2_gf9ed3fd08 20230225_164303 litex-hub/linux-64 3MB\n","\n"," Summary:\n","\n"," Install: 6 packages\n","\n"," Total download: 19MB\n","\n","─────────────────────────────────────────────────────────────────────────────────────\n","\n","\n","\n","Transaction starting\n","Linking libstdcxx-ng-11.2.0-h1234567_1\n","Linking _libgcc_mutex-0.1-main\n","Linking libgomp-11.2.0-h1234567_1\n","Linking _openmp_mutex-5.1-1_gnu\n","Linking libgcc-ng-11.2.0-h1234567_1\n","Linking ngspice-39.3_2_gf9ed3fd08-20230225_164303\n","Transaction finished\n","downloading: https://github.com/efabless/globalfoundries-pdk-libs-gf180mcu_fd_pr/raw/main/models/ngspice/design.ngspice\n","downloading: https://github.com/efabless/globalfoundries-pdk-libs-gf180mcu_fd_pr/raw/main/models/ngspice/sm141064.ngspice\n","downloading: https://github.com/efabless/globalfoundries-pdk-libs-gf180mcu_fd_pr/raw/main/models/ngspice/sm141064_mim.ngspice\n","downloading: https://github.com/efabless/globalfoundries-pdk-libs-gf180mcu_fd_pr/raw/main/models/ngspice/smbb000149.ngspice\n","env: CONDA_PREFIX=/content/conda-env\n","env: PATH=/content/conda-env/bin:/opt/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/tools/node/bin:/tools/google-cloud-sdk/bin\n"]}],"source":["#@title Install dependencies {display-mode: \"form\"}\n","#@markdown - Click the ▷ button to setup the digital design environment based on [conda-eda](https://github.com/hdl/conda-eda).\n","\n","ngspice_version = 'latest' #@param {type:\"string\"}\n","gf180mcu_fd_pr_version = 'latest' #@param {type:\"string\"}\n","\n","if ngspice_version == 'latest':\n"," ngspice_version = ''\n","\n","if gf180mcu_fd_pr_version == 'latest':\n"," gf180mcu_fd_pr_version = 'main'\n","\n","import os\n","import pathlib\n","import urllib.request\n","\n","!curl -Ls https://micro.mamba.pm/api/micromamba/linux-64/latest | tar -xj bin/micromamba\n","conda_prefix_path = pathlib.Path('conda-env')\n","CONDA_PREFIX = str(conda_prefix_path.resolve())\n","!bin/micromamba create --yes --prefix $CONDA_PREFIX\n","!echo 'python ==3.7*' >> {CONDA_PREFIX}/conda-meta/pinned\n","!CI=0 bin/micromamba install --yes --prefix $CONDA_PREFIX \\\n"," --channel litex-hub \\\n"," --channel main \\\n"," ngspice={ngspice_version} \\\n"," iverilog \n","\n","ngspice_models_dir = pathlib.Path('globalfoundries-pdk-libs-gf180mcu_fd_pr/models/ngspice')\n","ngspice_models_dir.mkdir(exist_ok=True, parents=True)\n","models = ['design.ngspice', 'sm141064.ngspice', 'sm141064_mim.ngspice', 'smbb000149.ngspice']\n","for m in models:\n"," url = f'https://github.com/efabless/globalfoundries-pdk-libs-gf180mcu_fd_pr/raw/{gf180mcu_fd_pr_version}/models/ngspice/{m}'\n"," print('downloading:', url)\n"," with urllib.request.urlopen(url) as src:\n"," with (ngspice_models_dir / m).open('wb') as dst:\n"," dst.write(src.read())\n","\n","PATH = os.environ['PATH']\n","%env CONDA_PREFIX={CONDA_PREFIX}\n","%env PATH={CONDA_PREFIX}/bin:{PATH}"]},{"cell_type":"markdown","metadata":{"id":"Qnn9H_oowEgQ"},"source":["## I. Introduction\n","\n","Please Introduce your idea here. Feel free to add subsections and figures."]},{"cell_type":"markdown","metadata":{"id":"QNj3rwejPJE7"},"source":["## II. Implementation Details of your Idea\n","\n","This is where you should describe your idea in more details. Circuit diagrams, Flow chart, Simulations, etc.. are expected.\n","\n"]},{"cell_type":"markdown","metadata":{"id":"l145R7JJPJE7"},"source":["**Example of a Simulation Flow using Ngspice**"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"J0k4CykG8wui","outputId":"8b69d99a-4b1c-42b5-f860-53e0b43a2701"},"outputs":[{"output_type":"stream","name":"stdout","text":["Writing .spiceinit\n"]}],"source":["%%writefile .spiceinit\n","set ngbehavior=hs"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"d4381uZZ1dbj","outputId":"ae4c2403-439f-4d55-a2a1-9338f712449c"},"outputs":[{"output_type":"stream","name":"stdout","text":["Writing netlist.spice\n"]}],"source":["%%writefile netlist.spice\n","* PMOS VGS sweep\n","\n",".include \"globalfoundries-pdk-libs-gf180mcu_fd_pr/models/ngspice/design.ngspice\"\n",".lib \"globalfoundries-pdk-libs-gf180mcu_fd_pr/models/ngspice/sm141064.ngspice\" typical\n","\n",".param width=10u\n","X1 vdp vgp 0 vbp pfet_03v3 w=width l=0.28u AD={width*0.24u} AS={width*0.24u} PD={2*(width + 0.24u)} PS={2*(width + 0.24u)}\n","vsdp 0 vdp dc 0.9\n","vsgp 0 vgp dc 0.9\n","vsbp 0 vbp dc 0\n",".op\n",".option post nomod\n",".end\n","\n",".control\n","save all @m.x1.m0[id] @m.x1.m0[gm] @m.x1.m0[cgg]\n","dc vsgp 0 1.8 0.01\n","display\n","wrdata output.txt @m.x1.m0[id] @m.x1.m0[gm] @m.x1.m0[cgg]\n",".endc"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"6Qs0DbgP02vN","outputId":"0cf96806-cf62-4069-ceca-6c508ca39aaa"},"outputs":[{"output_type":"stream","name":"stdout","text":["\n","Note: Compatibility modes selected: hs\n","\n","Warning: m=xx on .subckt line will override multiplier m hierarchy!\n","\n","\n","Circuit: * pmos vgs sweep\n","\n","Doing analysis at TEMP = 27.000000 and TNOM = 27.000000\n","\n","\n","No. of Data Rows : 181\n","Here are the vectors currently active:\n","\n","Title: * pmos vgs sweep\n","Name: dc1 (DC transfer characteristic)\n","Date: Fri Mar 10 04:41:42 2023\n","\n"," @m.x1.m0[cgg] : capacitance, real, 181 long\n"," @m.x1.m0[gm] : admittance, real, 181 long\n"," @m.x1.m0[id] : current, real, 181 long\n"," v-sweep : voltage, real, 181 long [default scale]\n"," vbp : voltage, real, 181 long\n"," vdp : voltage, real, 181 long\n"," vgp : voltage, real, 181 long\n"," vsbp#branch : current, real, 181 long\n"," vsdp#branch : current, real, 181 long\n"," vsgp#branch : current, real, 181 long\n","Doing analysis at TEMP = 27.000000 and TNOM = 27.000000\n","\n","\n","No. of Data Rows : 1\n","\tNode Voltage\n","\t---- -------\n","\t----\t-------\n","\tvbp 0.000000e+00\n","\tvgp -9.00000e-01\n","\tvdp -9.00000e-01\n","\n","\tSource\tCurrent\n","\t------\t-------\n","\n","\t@m.x1.m0[id] 2.878168e-05\n","\tvsdp#branch -2.87817e-05\n","\tvsgp#branch 0.000000e+00\n","\tvsbp#branch 9.008252e-13\n","\n"," BSIM4v5: Berkeley Short Channel IGFET Model-4\n"," device m.x1.m0\n"," model pfet_03v3.8\n"," l 2.8e-07\n"," w 1e-05\n"," m 1\n"," nf 1\n"," sa 0\n"," sb 0\n"," sd 0\n"," sca 0\n"," scb 0\n"," scc 0\n"," sc 0\n"," min 0\n"," ad 2.4e-12\n"," as 2.4e-12\n"," pd 2.048e-05\n"," ps 2.048e-05\n"," nrd 0\n"," nrs 0\n"," off 0\n"," rbdb 50\n"," rbsb 50\n"," rbpb 50\n"," rbps 50\n"," rbpd 50\n"," delvto -0\n"," mulu0 1\n"," xgw 0\n"," ngcon 1\n"," trnqsmod 0\n"," acnqsmod 0\n"," rbodymod 0\n"," rgatemod 0\n"," geomod 0\n"," rgeomod 0\n"," gmbs 8.95099e-05\n"," gm 0.000269371\n"," gds 5.97813e-06\n"," vdsat 0.193151\n"," vth 0.734139\n"," id 2.87817e-05\n"," ibd -9.00825e-13\n"," ibs 0\n"," gbd 1.00168e-12\n"," gbs 1.00054e-12\n"," isub 1.89841e-19\n"," igidl 0\n"," igisl 0\n"," igs 0\n"," igd 0\n"," igb 0\n"," igcs 0\n"," igcd 0\n"," vbs -0\n"," vgs 0.9\n"," vds 0.9\n"," cgg 9.1479e-15\n"," cgs -6.8743e-15\n"," cgd 5.70911e-17\n"," cbg -1.64433e-15\n"," cbd 2.68413e-17\n"," cbs -3.18902e-15\n"," cdg -3.00443e-15\n"," cdd -3.18562e-17\n"," cds 4.0277e-15\n"," csg -4.49914e-15\n"," csd -5.20762e-17\n"," css 6.03562e-15\n"," cgb -2.33068e-15\n"," cdb -9.91414e-16\n"," csb -1.48441e-15\n"," cbb 4.8065e-15\n"," capbd 7.22884e-15\n"," capbs 8.65386e-15\n"," qg 1.18378e-14\n"," qb -9.40755e-15\n"," qd -9.72774e-16\n"," qs -1.45748e-15\n"," qinv 1.36557e-15\n"," qdef -0\n"," gcrg 0\n"," gtau 0\n","\n"," Vsource: Independent voltage source\n"," device vsbp vsgp vsdp\n"," dc 0 0.9 0.9\n"," acmag 0 0 0\n"," pulse - - -\n"," sin - - -\n"," exp - - -\n"," pwl - - -\n"," sffm - - -\n"," am - - -\n"," trnoise - - -\n"," trrandom - - -\n"," portnum 0 0 0\n"," z0 0 0 0\n"," pwr 0 0 0\n"," freq 0 0 0\n"," phase 0 0 0\n"," i 9.00825e-13 0 -2.87817e-05\n"," p 0 0 -2.59035e-05\n","\n","\n","Total analysis time (seconds) = 0.001798\n","\n","Total CPU time (seconds) = 0.114 \n","\n","Total DRAM available = 12985.547 MB.\n","DRAM currently available = 7227.352 MB.\n","Maximum ngspice program size = 20.113 MB.\n","Current ngspice program size = 14.832 MB.\n","\n","Shared ngspice pages = 6.988 MB.\n","Text (code) pages = 5.059 MB.\n","Stack = 0 bytes.\n","Library pages = 8.773 MB.\n","\n"]}],"source":["!ngspice -b netlist.spice"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":423},"id":"xh5L-L-KaM9A","outputId":"bf99bf27-a710-4047-8282-c7b927499446"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" vsg gm vsg1 id vsg2 cgg gm_id \\\n","0 0.00 2.327947e-14 0.00 6.266460e-13 0.00 5.090079e-15 0.037149 \n","1 0.01 3.047037e-14 0.01 8.202064e-13 0.01 5.067127e-15 0.037150 \n","2 0.02 3.988240e-14 0.02 1.073551e-12 0.02 5.044596e-15 0.037150 \n","3 0.03 5.220157e-14 0.03 1.405141e-12 0.03 5.022486e-15 0.037150 \n","4 0.04 6.832577e-14 0.04 1.839142e-12 0.04 5.000804e-15 0.037151 \n",".. ... ... ... ... ... ... ... \n","176 1.76 5.645906e-04 1.76 8.077414e-04 1.76 9.709857e-15 0.698974 \n","177 1.77 5.726699e-04 1.77 8.080913e-04 1.77 9.714894e-15 0.708670 \n","178 1.78 5.807518e-04 1.78 8.082642e-04 1.78 9.720098e-15 0.718517 \n","179 1.79 5.888346e-04 1.79 8.082598e-04 1.79 9.725480e-15 0.728521 \n","180 1.80 5.969164e-04 1.80 8.080786e-04 1.80 9.731051e-15 0.738686 \n","\n"," f_T \n","0 7.278949e-01 \n","1 9.570531e-01 \n","2 1.258273e+00 \n","3 1.654188e+00 \n","4 2.174527e+00 \n",".. ... \n","176 9.254244e+09 \n","177 9.381806e+09 \n","178 9.509114e+09 \n","179 9.636124e+09 \n","180 9.762790e+09 \n","\n","[181 rows x 8 columns]"],"text/html":["\n","
\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
vsggmvsg1idvsg2cgggm_idf_T
00.002.327947e-140.006.266460e-130.005.090079e-150.0371497.278949e-01
10.013.047037e-140.018.202064e-130.015.067127e-150.0371509.570531e-01
20.023.988240e-140.021.073551e-120.025.044596e-150.0371501.258273e+00
30.035.220157e-140.031.405141e-120.035.022486e-150.0371501.654188e+00
40.046.832577e-140.041.839142e-120.045.000804e-150.0371512.174527e+00
...........................
1761.765.645906e-041.768.077414e-041.769.709857e-150.6989749.254244e+09
1771.775.726699e-041.778.080913e-041.779.714894e-150.7086709.381806e+09
1781.785.807518e-041.788.082642e-041.789.720098e-150.7185179.509114e+09
1791.795.888346e-041.798.082598e-041.799.725480e-150.7285219.636124e+09
1801.805.969164e-041.808.080786e-041.809.731051e-150.7386869.762790e+09
\n","

181 rows × 8 columns

\n","
\n"," \n"," \n"," \n"," \n"," \n"," \n","\n"," \n"," \n","\n"," \n","
\n","
\n"," "]},"metadata":{},"execution_count":5}],"source":["import math\n","import pandas as pd\n","import matplotlib.pyplot as plt\n","df = pd.read_csv(\"output.txt\", delim_whitespace=True, header=None)\n","df.columns = [\"vsg\", \"gm\", \"vsg1\", \"id\", \"vsg2\", \"cgg\"]\n","df['gm_id'] = df['gm']/df['id']\n","df['f_T'] = df['gm']/df['cgg']/2/math.pi\n","df"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":279},"id":"rCTaJreri9ke","outputId":"7e782d05-07d7-44bb-9b97-5969e00900a5"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYEAAAEGCAYAAACD7ClEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAj7UlEQVR4nO3deXxU9bnH8c+TyUYS1gQjGCAgiCCKEkTBDWwtuFelVbRu0Lq0tr3XutbrVdve0vb2dhNbtYpLa0XA1loKtSrBpYgsln2RsAeQSAKBJGT/3T9mYoeUhDCZzJnl+3695pU5vzNn8s1hmCe/55ycMeccIiKSmJK8DiAiIt5RERARSWAqAiIiCUxFQEQkgakIiIgksGSvAxyLnJwcl5+fH9K2lZWVZGZmhjdQB4mVrMoZXrGSE2Inq3L6LVu2bK9zrucRVzrnYuZWUFDgQlVYWBjytpEWK1mVM7xiJadzsZNVOf2Apa6F91W1g0REEpiKgIhIAlMREBFJYJ4eGDazIcC3gRzgbefcb471Oerq6iguLqa6urrVx3Xt2pV169aFFjSM0tPTycvLIyUlxesoIiKhFwEzmw5cBpQ454YFjU8Afgn4gGeccz9q6Tmcc+uAO8wsCXgROOYiUFxcTOfOncnPz8fMWnzcwYMH6dy587E+fVg55ygtLaW4uJj+/ft7mkVEBNrXDnoemBA8YGY+4AngYmAoMMnMhprZqWY2p9ntuMA2VwB/BeaGEqK6uprs7OxWC0C0MDOys7OPOmsREYkUc+24iqiZ5QNzmmYCZjYaeNQ5Nz6w/CCAc25qG57rr865S48wfhtwG0Bubm7BjBkzDlvftWtXBg4ceNSsDQ0N+Hy+oz4uEoqKiigvL29xfUVFBVlZWRFMFBrlDK9YyQmxk1U5/caNG7fMOTfySOvCfUzgBGBH0HIxcFZLDzazscDVQBotzAScc08DTwOMHDnSjR079rD169ata1ObJxraQU3S09M544wzWly/YMECmv+c0Ug5wytWckLsZG1rzoZGR219I7X1jdQ0NFBb30hdg6OhsZH6Rkd9g6Oh0VHf2PS10f+1oWms8V/rDnvsv8YBnAOHC3z91/LmPZvpn5mHc45G9++PwznOGZjDWQOyw76PPD0w7JxbACzwMkM4jBkzhoULF/7b+C233MJll13GxIkTPUglElucc9Q2NFJd28ihugb/rdb/tTroftOyf6zxsGX/m3jjZ2/oJXsP8fi6hZ8t1wbW1dQ3Utfwr7GmN2lPbdzQ6uq0FF9MFIGdQJ+g5bzAWFw7UgEQSQTVdQ0cqK6jsqaBypp6DlbXU1lTT2Vt0P2aeg7WNN1vCLpfT0VN/WFv8KG8F6clJ5Ge4iM9JYnU5CRSfUmkJvtI9RkNDtJTkuiSnuxfl+wLrE8iLdn/NcVnpPp8gfWBdb4kUpKN5KQkkpMMX5KR7DN8wcuffU0i2Xf4si9o2WdGUpJhBob/2KD/Kxj+8XfffZcLLjifpM/WBT2mg493hrsILAEGmVl//G/+1wHXh/l7RJ2srCwqKipwzvHNb36TN998kz59+pCamup1NJGjamh07K+qpayylv2H6iivqqP80OG3A82WPy2v4tBb86ipbzzq85tBZmoyWWnJZKb5Al+Tyc7MIDMtmU6pPjqlBG6pPtI/u59Ep5R/LWekJtMpNSlovY/0ZB9JSS2/SfrbQWeHc3d1iFSfkZbszTHL9pwi+jIwFsgxs2LgEefcs2Z2F/AG/lNEpzvn1oQlaRs89pc1rN114IjrQj0wPLR3Fx65/JQ2PfZPf/oTGzZsYO3atezZs4ehQ4cyefLkY/6eIu1VVVvPJ+XV7K2opayyJvC1ltKKGvZW1lJWUUtpZQ1llf7x1n4D75yWTJdOKXTtlEK3jBQGHpdFr9RqhgzoS5dOKXRJTyYrPdn/Rp+e/NmbfOfA104prb9Ri7dCLgLOuUktjM8lxNM9Y927777LpEmT8Pl89O7dmwsvvNDrSBJnnHOUVdayu7yaPQeq+eRANZ+UB24H/GO7y6s5WF1/xO27pCeTk5VGdlYq/XMyGZnfg+zMVLIzU+mRlUa3wJt9061zejLJvn8/k9z/G/aQjv5xJQJi6lLSR9Pab+zRdHaQSGtq6hso3neI7WVV7CirYntpFdvLqj5brqxtOOzxSQY9O6dxfNdO9M/JZPSAbHK7pnN8l3R6dk4jO9P/pt89I5XUZF0pRg4XV0XAa+effz5PPfUUN998MyUlJRQWFnL99XF/SERCVFlTT1FJBRtLKthYcpBFa6t5ePF8ivcdIvjPd9JTkujbI4O+PTIYfWI2fbpn0LtbOsd37cTxXdLJyUo94m/rIm2hIhBGV111FfPnz2fo0KH07duX0aNHex1JosTeihpW7SxndXE5K3eWs3bXAXbuP/TZ+lRfErkZcPqA7lwzIo9+2f43/T49MuiZlRYTfxEvsUlFIAwqKioA/6lc06ZN8ziNeK2x0bH+k4Ms2VrG4q1lfLRtH7vL/ZcKMYP+OZkU9OvO9Wf1ZeBxWZyU25k+3Tvx/nvvMnZsy39EKNIRVAREwmDr3krmry/h/aK9LN1axoHAgdneXdMZmd+D4XldGXZCV07p3YXO6bqCrEQPFQGRENQ1NLJ4Sxnz15dQuL6EzXsrARiQk8mlp/XizPwejOrfg7zuGR4nFWldXBQB51zM9Ezbc8E+8VZDo2PxljJeX7GLeat3s7+qjtTkJM4ekM1No/tx4cm59M3Wm77ElpgvAunp6ZSWlsbE5aSbPk8gPT3d6yhyDHaXH2LG4h3MXLqD3eXVZKT6uGhoLpee2otzB+WQkRrz/40kgcX8qzcvL4/i4mI+/fTTVh9XXV0dFW++TZ8sJtHNOccHm0uZ/v4W5q8vwQHnDerJg5cM4fNDjtMbv8SNmH8lp6SktOlTuhYsWNDq5ZtFwN/y+fuaT3jynU2sKC4nJyuVOy44kUmj+tKnh1o9En9ivgiIhINzjr+v3cP/vrGBopIK+mVn8D9XDeOaEXmkp0THhxGJdAQVAUl4S7aWMXXuOj7avp8BOZk8PukMLjm1Fz5d9EwSgIqAJKxPD9bwP39dy2vLd3Fc5zSmXn0qXyrI0yUYJKGoCEjCaWx0/GHxdn78t/VU1zXwrQsHcufYgXRKVdtHEo+KgCSU4n1V3D1zBYu3lDHmxGy+/8VhnNgz+j+IXKSjqAhIQnDO8eflu3j4tdU44CcTT+NLBXlR/7clIh1NRUDiXnW94z9eWc6fl+9iZL/u/Pza03W6p0iAioDEta17K/nBokPsqqziOxedxNfHDdRZPyJBVAQkbs1fv4dvz1hOY4PjhcmjOG9QT68jiUQdFQGJO845nnlvCz+ct46hvbpwy8A6FQCRFuiEaIkrDY2Ox/6ylv+Zu46Lhx3Pq3eOoWeGXuYiLdFMQOJGdV0D357xT95Ys4cp5/bnoUuGkKT+v0irVAQkLhysrmPK80tZsq2M/75sKJPPPfpFBUVERUDiQHlVHTc9t5g1O8v51XVncPnw3l5HEokZKgIS00orarjx2cUUlVTw6xtG8IVTjvc6kkhMURGQmFVaUcOk3y5iW2kVv715JBecpDOARI6VioDEpPJDddz47GK2lVbx3K1nMubEHK8jicQknTsnMaeypp5bn1vMxpKDPHVjgQqASDtoJiAxpbquga+9uJQVxeU8cf0ZjB18nNeRRGKaZgISM+oaGvnGSx+xcFMp/zvxNCYM6+V1JJGYpyIgMaGh0fGfryzn7fUlfP+Lw7h6RJ7XkUTigoqARD3nHN+fs5Y5K3fz4MUnc+PZ/byOJBI3VAQk6j37/haeX7iVKef25/YLTvQ6jkhc8bQImNlYM3vPzJ40s7FeZpHoNGflLn7w13VccurxPHTJEK/jiMSdkIuAmU03sxIzW91sfIKZbTCzIjN74ChP44AKIB0oDjWLxKcPN5dy9ysrODO/Oz/78um6GJxIB2jPKaLPA9OAF5sGzMwHPAFchP9NfYmZvQ74gKnNtp8MvOece8fMcoGfATe0I4/EkaKSg3ztxaXk9ejEb28aSXqKz+tIInEp5CLgnHvXzPKbDY8CipxzmwHMbAZwpXNuKnBZK0+3D0gLNYvEl5KD1dw8fQmpyT5euHUU3TJSvY4kErfMORf6xv4iMMc5NyywPBGY4Jz7amD5RuAs59xdLWx/NTAe6Ab8xjm34AiPuQ24DSA3N7dgxowZIWWtqKggKysrpG0jLVaydkTO2gbHjxZXU1zRyIOj0unftf0zgETenx0lVrIqp9+4ceOWOedGHnGlcy7kG5APrA5angg8E7R8IzCtPd8j+FZQUOBCVVhYGPK2kRYrWcOds7Gx0X3r5Y9cv/vnuHmrdoXteRN1f3akWMmqnH7AUtfC+2q4zw7aCfQJWs4LjIkc1ROFRfx5+S7uHT9Yfw0sEiHhLgJLgEFm1t/MUoHrgNfD/D0kDs1btZuf/v1jvnh6b74+Vn8LIBIp7TlF9GXgA2CwmRWb2RTnXD1wF/AGsA6Y6ZxbE56oEq9W7yznP2cu54y+3fjRNadhplNBRSKlPWcHTWphfC4wN+REklBKDlTz1ReW0iMjladv1KmgIpGmS0mLZ2rrG7nzpY8oP1THq3eOoWdnnSUsEmkqAuKZ789Zy7Jt+3h80hkM7d3F6zgiCUkXkBNPzFy6g98t2sZt5w/g8uG9vY4jkrBUBCTiVuzYz3+9tppzBmZz3/jBXscRSWgqAhJReytquOP3y+iZlcbjk0aQ7NNLUMRLOiYgEVPf0Mhdf/iIsspaXr1zDD0ydU0gEa+pCEjETJ23nkWby/jZl4cz7ISuXscREdQOkgj58/KdPPv+Fm4Zk6/PBxaJIioC0uE2fHKQ+19dyaj8Hjx0qT4dTCSaqAhIh6qsqefrLy0jKy2FaTecQYoOBItEFf2PlA7jnOO7f1rFlr2V/GrS6RzXOd3rSCLSjIqAdJiXF+/gz8t38Z+fP4kxJ+Z4HUdEjkBFQDrEml3lPPqXNZw3KIdvjBvodRwRaYGKgITdweo6vvHSR3TPSOEX155OUpIuDS0SrfR3AhJWzjkeeHUVO/Yd4uWvnU12lq4MKhLNNBOQsPrdom38ddVu7vnCYEb17+F1HBE5ChUBCZuVxfv5wZx1jBvck9vPH+B1HBFpAxUBCYuD1XXc9Yd/kpOVys++rOMAIrFCxwQkLB5+bTXF+6qYeftouuvCcCIxQzMBabc/flTMa8t38e3PncTIfB0HEIklKgLSLlv3VvLwa6sZ1b8Hd12ovwcQiTUqAhKy+kbHt2b8k2RfEr+49nR8Og4gEnN0TEBC9urGOlYWV/HkV0bQu1snr+OISAg0E5CQvLfxU+ZtqeP6s/oyYVgvr+OISIhUBOSY7a2o4e6ZK+idZTx86VCv44hIO6gIyDFxznHvrBWUH6rjzuHpdEr1eR1JRNpBRUCOyfMLt1K44VMeumQIfTrr5SMS6/S/WNrs4z0HmTpvPReefBw3je7ndRwRCQMVAWmT2vpG/mPGcjqnJfPja07DTKeDisQDnSIqbfLztz5m7e4DPH1jAT076/LQIvFCMwE5qsVbynjynU1cO7IPXzjleK/jiEgYqQhIqw5W13H3zOX06Z7Bw5frdFCReKN2kLTqsb+sZdf+Q8y6YzRZaXq5iMQbzQSkRX9bvZvZy4r5+tiBFPTT1UFF4pGnv9qZ2XnADYEcQ51zY7zMI/9ScqCaB/+4ilNP6Mq3Pz/I6zgi0kFCngmY2XQzKzGz1c3GJ5jZBjMrMrMHWnsO59x7zrk7gDnAC6FmkfByznHv7JVU1Tbw82tPJ8WnCaNIvGrPTOB5YBrwYtOAmfmAJ4CLgGJgiZm9DviAqc22n+ycKwncvx6Y0o4sEka/X7SNdz7+lMeuOIWBx2V5HUdEOpA550Lf2CwfmOOcGxZYHg086pwbH1h+EMA517wABD9HX+Bh59zXWlh/G3AbQG5ubsGMGTNCylpRUUFWVmy8oXmZdXdFI48sPMRJPXx8pyCt1T8Ki5V9qpzhFytZldNv3Lhxy5xzI4+40jkX8g3IB1YHLU8EnglavhGYdpTneAwY05bvV1BQ4EJVWFgY8raR5lXW2voGd/nj77nhj73hPik/dNTHx8o+Vc7wi5WsyukHLHUtvK96fs6fc+4RrzOI3+Nvb2RlcTm/vmEEuV3SvY4jIhEQ7iN+O4E+Qct5gTGJcsu27WNaYRFXjziBS07Vh8SIJIpwF4ElwCAz629mqcB1wOth/h4SZlW19Xxn5nJ6de3Eo1ec4nUcEYmg9pwi+jLwATDYzIrNbIpzrh64C3gDWAfMdM6tCU9U6Sg/nreeraVV/PRLw+mSnuJ1HBGJoJCPCTjnJrUwPheYG3Iiiah/FO3lhQ+2ces5+Yw+MdvrOCISYforoAR2oLqO+2avZEBOJveNP9nrOCLiAc/PDhLv/GDOWnaXH2L2nWP0WcEiCUozgQQ1f/0eZi4t5vYLTmRE3+5exxERj6gIJKB9lbXc/+oqBud25j90cTiRhKZ2UAJ65PU17Kus5blbziQtWW0gkUSmmUCC+evK3by+Yhff+twghp3Q1es4IuIxFYEE8unBGv7rtVWclteVO8ee6HUcEYkCKgIJwjnHg39cRWVtA//3peH6jAARAVQEEsYfP9rJW+v2cO8XBjMot7PXcUQkSqgIJIBd+w/x6F/WcGZ+dyaf29/rOCISRVQE4pxzjvtfXUl9g+OnXxqOL6nlD4kRkcSjIhDnXvpwO+9t3Mt3Lx1Cv+xMr+OISJRREYhj20ur+OHcdZw3KIevnNXX6zgiEoVUBOJUY6Pjnlkr8Jnx42tOa/WzgkUkcakIxKnp/9jC4q1lPHLFKfTu1snrOCISpVQE4lBRyUF+8sYGPj8kl2tGnOB1HBGJYioCcaa+oZHvzFxBZqqPH149TG0gEWmVLiAXZ556dzMrisuZdv0ZHNc53es4IhLlNBOIIxs+Ocgv3vqYS0/txWWn9fY6jojEABWBOFHX0Mg9s1bQJT2F7115itdxRCRGqB0UJ556ZxOrdpbz6xtGkJ2V5nUcEYkRmgnEgfWfHOCXb2/k0tN6ccmpvbyOIyIxREUgxh3WBrpCbSAROTZqB8W4JxdsYvXOA/xGbSARCYFmAjFs3e4D/Gr+Ri47rRcXqw0kIiFQEYhRTW2grp1S+N6Vw7yOIyIxSu2gGPWbBZtYs+sAT35lBD0yU72OIyIxSjOBGLRu9wEen7+Ry4f3ZsIwtYFEJHQqAjEmuA30mM4GEpF2Ujsoxvy6sKkNVKA2kIi0m2YCMWTtLn8b6IrhvZkw7Hiv44hIHFARiBFNbaBuGalqA4lI2KgdFCOeKCxi7e4DPHVjAd3VBhKRMPFsJmBmQ81sppn9xswmepUjFqzZVc60+UVceXpvxp+iNpCIhE9IRcDMpptZiZmtbjY+wcw2mFmRmT1wlKe5GHjcOXcncFMoORJBbX0j98xaSbeMVB69XG0gEQmvUNtBzwPTgBebBszMBzwBXAQUA0vM7HXAB0xttv1k4HfAI2Z2BZAdYo6490RhEet2H+BptYFEpAOYcy60Dc3ygTnOuWGB5dHAo8658YHlBwGcc80LQPPn8QF/dM5d2cL624DbAHJzcwtmzJgRUt6KigqysrJC2jbSmrJuO9DA9z6oZtTxPm4fHn0fFRkr+1Q5wy9Wsiqn37hx45Y550YecaVzLqQbkA+sDlqeCDwTtHwjMO0o2z8NvASc25bvWVBQ4EJVWFgY8raRVlhY6GrqGtz4n7/jRv7gTbevssbrSEcUK/tUOcMvVrIqpx+w1LXwvurZ2UHOua0EfsOXfzetsIj1nxzktzeNpFuG2kAi0jHCWQR2An2ClvMCY3KMth1o4NeLirjqjBO4aGiu13FEJI6F8xTRJcAgM+tvZqnAdcDrYXz+hFBb38gzq2rpnpnKI5cP9TqOiMS5UE8RfRn4ABhsZsVmNsU5Vw/cBbwBrANmOufWhC9qYpg2fyM7DjYy9apT1QYSkQ4XUjvIOTephfG5wNx2JUpgq3eW88SCTYzpnczn1QYSkQjQZSOihP+PwlaQnZnKDUN8XscRkQShC8hFicfnb2T9JweZevWpZKaY13FEJEGoCESBVcXl/HrBJq4ZkcfnhqgNJCKRoyLgsZr6Bu6ZtYKcrFT+W2cDiUiE6ZiAxx5/u4gNew7y3C1n0rVTitdxRCTBaCbgoZXF+/nNO5uYWJDHuJOP8zqOiCQgFQGPNLWBemal8fBlagOJiDfUDvLIr97eyMd7KnjuVrWBRMQ7mgl4YGXxfp58ZzNfKshj3GC1gUTEOyoCERbcBvovtYFExGNqB0XYL99SG0hEoodmAhG0Ysd+nnxnE18eqTaQiEQHFYEIqa7zt4Fyu6SrDSQiUUPtoAj55dsb2VhSwQuTR9ElXW0gEYkOmglEwPId+3nqnU1cO7IPF5zU0+s4IiKfURHoYMFtoIcuG+J1HBGRw6gd1MF+8dZGitQGEpEopZlAB/rn9n08/e4mrjtTbSARiU4qAh2kqQ10fJd0HrpUbSARiU5qB3WQn7/5MZs+reTFyaPorDaQiEQpzQQ6wEfb9/Hb9zYzaVQfzlcbSESimIpAmDW1gXp17cR3L1EbSESim9pBYfazNz9m86eV/G6K2kAiEv00EwijZdua2kB9OW+Q2kAiEv1UBMKkuq6Be2etoHfXTnz3kpO9jiMi0iZqB4XJ//19A5v3VvL7KWepDSQiMUMzgTBYtq2MZ97fwvVn9eXcQTlexxERaTMVgXbyt4FWBtpAOhtIRGKL2kHt9NM3/G2gl756Fllp2p0iEls0E2iHpVvLePYfW7jhrL6cM1BtIBGJPSoCITpU28C9s/1toAfVBhKRGKX+RYh++vcNbNlbyR/UBhKRGKaZQAiWbC1j+j+28JWz+zJGbSARiWEqAsfoUK3/j8JO6NaJBy9WG0hEYlvEioCZDTCzZ81sdmtj0e5/39jA1tIqfjLxNDLVBhKRGNemImBm082sxMxWNxufYGYbzKzIzB5o7Tmcc5udc1OONhbNFm8p47mFW7jx7H6MOVFtIBGJfW39VfZ5YBrwYtOAmfmAJ4CLgGJgiZm9DviAqc22n+ycK2l3Wg8dqm3gvtkryOveiQcu1rWBRCQ+mHOubQ80ywfmOOeGBZZHA48658YHlh8EcM41LwDNn2e2c27i0caC1t0G3AaQm5tbMGPGjDblba6iooKsrKyQtgV4aV0Nb26r5/4z0xmS7Qv5edqivVkjRTnDK1ZyQuxkVU6/cePGLXPOjTziSudcm25APrA6aHki8EzQ8o3AtFa2zwaeBDYBD7Y01tqtoKDAhaqwsDDkbT/cXOryH5jjHn5tVcjPcSzakzWSlDO8YiWnc7GTVTn9gKWuhffViB3ZdM6VAnccbSzaVNXWc2+gDXT/BLWBRCS+tKcI7AT6BC3nBcbiyk/+toFtpVW8/LWzdTaQiMSd9pwiugQYZGb9zSwVuA54PTyxosOHm0t5fuFWbh7dj9EnZnsdR0Qk7Np6iujLwAfAYDMrNrMpzrl64C7gDWAdMNM5t6bjokaWvw20kr49MrhfZwOJSJxqU3/DOTephfG5wNywJooSP/nbBraXVTHjtrPJSFUbSETiky4bcQSLAm2gW8bkc/YAtYFEJH6pCDRTVVvPfbNX0i87g/smDPY6johIh1Kfo5kfz1vP9rIqXlEbSEQSgGYCQT7YVMoLH2zj1nPyOUttIBFJACoCAZU19dz36gryszO4b7zOBhKRxKB+R8CP/7ae4n2HmHn7aDqlduy1gUREooVmAsDCTXt58YNt3DqmP2fm9/A6johIxCR8Eais8Z8N1D8nk3vH62wgEUksCd8O+tG89ezcf4hZagOJSAJK6JnAwqK9/G7RNiaf05+RagOJSAJK2CLgPxvI3wa65wtqA4lIYkrYdtDUeevUBhKRhJeQM4GFRXv5/aLtTFEbSEQSXMIVgYoa/yWiB+Rkco/OBhKRBJdw7aCpc9exq/wQs+8YTXqK2kAiktgSaibwj6K9vPThdr56bn8K+qkNJCKSMEXgUL3jvtkrGdAzk+/obCARESCB2kGvbKhld3k9s+4YozaQiEhAQswE3t+4lwU76vnqeQMo6Nfd6zgiIlEjIYpAWkoSp+X4uPuik7yOIiISVRKiCJyZ34O7R6arDSQi0kxCFAERETkyFQERkQSmIiAiksBUBEREEpiKgIhIAlMREBFJYCoCIiIJTEVARCSBmXPO6wxtZmafAttC3DwH2BvGOB0pVrIqZ3jFSk6InazK6dfPOdfzSCtiqgi0h5ktdc6N9DpHW8RKVuUMr1jJCbGTVTmPTu0gEZEEpiIgIpLAEqkIPO11gGMQK1mVM7xiJSfETlblPIqEOSYgIiL/LpFmAiIi0oyKgIhIAouLImBmE8xsg5kVmdkDR1ifZmavBNZ/aGb5QeseDIxvMLPxHue828zWmtlKM3vbzPoFrWsws+WB2+se57zFzD4NyvPVoHU3m9nGwO3mjszZxqw/D8r5sZntD1oXyX063cxKzGx1C+vNzH4V+DlWmtmIoHUR26dtyHlDIN8qM1toZsOD1m0NjC83s6Ue5xxrZuVB/77/HbSu1ddMhHPeG5RxdeA12SOwLjL70zkX0zfAB2wCBgCpwApgaLPHfB14MnD/OuCVwP2hgcenAf0Dz+PzMOc4ICNw/86mnIHliijan7cA046wbQ9gc+Br98D97l5mbfb4bwLTI71PA9/rfGAEsLqF9ZcA8wADzgY+9GifHi3nmKbvD1zclDOwvBXIiZL9ORaY097XTEfnbPbYy4H5kd6f8TATGAUUOec2O+dqgRnAlc0ecyXwQuD+bOBzZmaB8RnOuRrn3BagKPB8nuR0zhU656oCi4uAvA7K0pq27M+WjAfedM6VOef2AW8CEzooJxx71knAyx2Yp0XOuXeBslYeciXwovNbBHQzs15EeJ8eLadzbmEgB3j3Gm3L/mxJe17fx+wYc3ry+oyHInACsCNouTgwdsTHOOfqgXIgu43bRjJnsCn4fzNskm5mS81skZl9sQPyNWlrzmsCbYHZZtbnGLcNlzZ/v0BrrT8wP2g4Uvu0LVr6WSK9T49F89eoA/5uZsvM7DaPMgUbbWYrzGyemZ0SGIvK/WlmGfiL+6tBwxHZn8kd9cQSOjP7CjASuCBouJ9zbqeZDQDmm9kq59wmbxLyF+Bl51yNmd2Of5Z1oUdZ2uo6YLZzriFoLJr2aUwxs3H4i8C5QcPnBvbnccCbZrY+8JuwFz7C/+9bYWaXAK8BgzzK0haXA/9wzgXPGiKyP+NhJrAT6BO0nBcYO+JjzCwZ6AqUtnHbSObEzD4PPARc4ZyraRp3zu0MfN0MLADO8Cqnc640KNszQEFbtw2zY/l+19Fsqh3BfdoWLf0skd6nR2Vmp+H/d7/SOVfaNB60P0uAP9FxrdWjcs4dcM5VBO7PBVLMLIco3J8Brb0+O3Z/dvRBh46+4Z/NbMY/1W860HNKs8d8g8MPDM8M3D+Fww8Mb6bjDgy3JecZ+A9aDWo23h1IC9zPATbSQQez2pizV9D9q4BFgfs9gC2BvN0D93t4+W8feNzJ+A+ymRf7NOh75tPygcxLOfzA8GIv9mkbcvbFf+xsTLPxTKBz0P2FwAQPcx7f9O+N/81ze2Dftuk1E6mcgfVd8R83yPRif3bYDx7JG/4zKz4OvIE+FBj7Hv7fpgHSgVmBF+9iYEDQtg8FttsAXOxxzreAPcDywO31wPgYYFXgBbsKmOJxzqnAmkCeQuDkoG0nB/ZzEXCr1//2geVHgR812y7S+/RlYDdQh78PPQW4A7gjsN6AJwI/xypgpBf7tA05nwH2Bb1GlwbGBwT25YrAa+Mhj3PeFfQaXURQ0TrSa8arnIHH3IL/BJXg7SK2P3XZCBGRBBYPxwRERCREKgIiIglMRUBEJIGpCIiIJDAVARGRBKYiICKSwFQEREQSmK4dJNIGZvYjYIdz7onA8qNAA3AR0AX//6U7nXPvmdkU4H5gP/4/9qlxzt3lRW6Ro9FMQKRtXgG+HLT8Zfz/f95wzp0ODAeWm1lv4GH8l344B/8lK0SilmYCIm3gnPunmR0XeJPvif/SCYXAdDNLAV5zzi03s88B77jA1SDNbBZwkmfBRY5CMwGRtpsFTASuxf+pb+/i/+SoncDzZnaTl+FEQqEiINJ2r+C/Cu1EYFbgg2r2OOd+i//CaiOAJcAFZtY9cNnyazxLK9IGageJtJFzbo2ZdQZ2Oud2Bz70/V4zqwMqgJuc/0NAfoj/arVlwHr8n2QnEpV0FVGRMDOzLOf/RKtk/B8GMt059yevc4kcidpBIuH3qJktB1bj/xCY1zxNI9IKzQRERBKYZgIiIglMRUBEJIGpCIiIJDAVARGRBKYiICKSwP4fKwCgR2ZVLpEAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}],"source":["df.plot(x=\"vsg\", y=\"id\", logy=True, grid=True)\n","plt.show()"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":279},"id":"QtT18v6ElmwL","outputId":"63fb4833-4ccb-4ce9-9fd5-4d0f23df8e6f"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXQAAAEGCAYAAAB1iW6ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoGUlEQVR4nO3deXxU9b3/8deHkBAg7EsUw6q4gBskgNtDQW2L9SG0V9rigqIg1d+li13ttVWr3dtbqw+9tYpUkWrcLSqt1yVUq7LvuxEVA8gS1oHs+fz+yOAdY5YhzMyZmbyfj8c8mHPO95y8czJ88s33bObuiIhI6msTdAAREYkNFXQRkTShgi4ikiZU0EVE0oQKuohImmgb1Bfu2bOnDxgwoEXrHjx4kI4dO8Y2UJykSlbljK1UyQmpk1U56yxZsmSXu/dqcKG7B/LKz8/3lioqKmrxuomWKlmVM7ZSJad76mRVzjrAYm+krmrIRUQkTaigi4ikCRV0EZE0EdhB0YZUVVVRUlJCeXl5k+26dOnCunXrEpTq6Bxp1uzsbPLy8sjMzIxjKhFJR0lV0EtKSujUqRMDBgzAzBptd+DAATp16pTAZC13JFndndLSUkpKShg4cGCck4lIukmqIZfy8nJ69OjRZDFPZ2ZGjx49mv0LRUSkIUlV0IFWW8wPa+3fv4i0XNIVdBGRdFVb6/zy5bW8vzMUl+2roIuIJMhzy7bw0FsfsPSjPXHZvgp6ApxzzjkNzp88eTLPPPNMgtOISBD2lVXxm3+sY1i/rlw+PC8uXyOpznJJV++8807QEUQkYH96bSOlByv56+SRtGkTn2NlSVvQf/7iGtZu3d/gspqaGjIyMo54m0P6dOb2y4Y22+6uu+5i9uzZ9OrVi759+5Kfn89LL73EsGHDeOuttzh48CCzZs3i17/+NatWreIb3/gGv/jFLxrdXk5ODqFQCHfnW9/6Fq+++ip9+/YlKyvriL8HEUk96z/Zz6x3P+LKkf04La9L3L5O0hb0oCxatIhnn32WFStWUFVVxfDhw8nPzwcgKyuLxYsXc8899zB+/HiWLFlC9+7dOf7447n55pvp0aNHk9t+/vnn2bBhA2vXrmX79u0MGTKE66+/PhHflogExN25/e9r6JTdlh988aS4fq2kLehN9aTjeWHR22+/zfjx48nOziY7O5vLLrvs02Xjxo0D4LTTTmPo0KEce+yxAAwaNIiPP/642YL+5ptvcsUVV5CRkUGfPn248MIL4/I9iEjymLNiKws+2M0vv3oq3TrG969yHRQ9Au3atQOgTZs2n74/PF1dXR1ULBFJUvvKqrjrpXWcnteFiSP6xf3rqaDXc+655/Liiy9SXl5OKBTipZdeitm2zz//fJ588klqamrYtm0bRUVFMdu2iCSfP7yygd0HK/jlV04jI04HQiNFNeRiZmOBe4AMYIa7/6be8ruBMeHJDkBvd+8aw5wJM2LECMaNG8fpp59Obm4up512Gl26xOYgxle/+lXeeOMNhgwZQr9+/Tj77LNjsl0RST7LP97L7AUfce3ZA+J6IDRSswXdzDKA+4EvACXAIjOb4+5rD7dx95sj2n8LGBaHrAnzgx/8gDvuuINDhw5x/vnnk5+fzw033PDp8tGjRzN69OhPp+fNm9fk9kKhuqvCzIz77rsvHpFFJIlU19TyX8+tonendnz/iycm7OtG00MfCRS7+yYAMysExgNrG2l/BXB7bOIFY9q0aaxdu5by8nKuvfZahg8fHnQkEUkhj777EWu37ed/rhpOp+zE3Qrb6h5R10QDswnAWHefGp6eBIxy9+kNtO0PzAfy3L2mgeXTgGkAubm5+YWFhZ9Z3qVLF0444YRmQ7f0PPR4Ki0t/fQsmEgvvPACvXo1/DzXxhQXF7Nv375YRYtKKBQiJycnoV+zJZQz9lIla6rk/Lg0xC+XGid2z+Dm4e1ifsO9MWPGLHH3goaWxfq0xYnAMw0VcwB3fxB4EKCgoMAjhy0A1q1bR05OTrM7IBnvh96pUydWrlz5uflHmtXdyc7OZtiwxI5azZs3j/o/j2SknLGXKllTJefld/8T2jj3X3c+fbt3SOjXjuYsly1A34jpvPC8hkwEnmhpmOzsbEpLS2nur4Z0dfgBF9nZ2UFHEZEWeH3ddpZsr+HbFw1OeDGH6Hroi4DBZjaQukI+EbiyfiMzOxnoBrzb0jB5eXmUlJSwc+fOJtuVl5enTNE70qyHH0EnIqnlQHkVP3thNcflGFPPGxRIhmYLurtXm9l04BXqTluc6e5rzOxOYLG7zwk3nQgU+lF0rzMzM6N69Nq8efMSPiTRUqmUVURa7nf/3MC2/eX8dFQ2WW2DucQnqjF0d58LzK0377Z603fELpaISOpY+MFuHpv/EVPOG8jxOTsCy6ErRUVEjkJ5VQ0/fnYlfbu3T+g55w1J2ptziYikgntef48Pdh1k9pRRdMgKtqSqhy4i0kKrt+zjwTc38fWCPM4b3DPoOCroIiItUVVTy4+eWUn3jlnc+uUhQccBNOQiItIiD765ibXb9vPA1cPp0iFxl/c3RT10EZEjtP6T/dzz2nt8+bRjGHvqsUHH+ZQKuojIEaisruX7T62gc/u23DX+1KDjfIaGXEREjsB9RcWs2bqfv0zKp0dOu+ZXSCD10EVEorSyZC/3FxXzH8OP40tDjwk6zueooIuIRKG8qobvP7WCXjntmnyIfZA05CIiEoW7X93IeztCPHr9SLq0T46zWupTD11EpBmLP9zNg29t4spR/bjgxCN7YE0iqaCLiDThUGU13396BXnd2vNfXz4l6DhN0pCLiEgTfvOP9WzefYgnbjiLnHbJXTLVQxcRacS/39vFrHc/4rpzBnLWoB5Bx2mWCrqISAP2HKzk+08v5/heHfnR2JOCjhOV5P77QUQkAO7OLc+tZPfBSmZOHkF2ZkbQkaKiHrqISD1PLvqYV9Zs50dfOpmhfboEHSdqKugiIhE27Qzx8xfXcu4JPZhyXvPPOE4mURV0MxtrZhvMrNjMbmmkzdfNbK2ZrTGzx2MbU0Qk/iqra/lO4XLaZbbhv792Jm3aWNCRjkizY+hmlgHcD3wBKAEWmdkcd18b0WYw8BPgXHffY2a94xVYRCRe7n5tI6u27OOBq/M5pkt20HGOWDQ99JFAsbtvcvdKoBAYX6/NDcD97r4HwN2De+y1iEgLvPt+KQ/8630mjujL2FOT78Zb0TB3b7qB2QRgrLtPDU9PAka5+/SINi8AG4FzgQzgDnf/ZwPbmgZMA8jNzc0vLCxsUehQKEROTk6L1k20VMmqnLGVKjkhdbLGM+fBKudnb5eR2QZ+fk57stu2fKgl3vtzzJgxS9y9oMGF7t7kC5gAzIiYngTcV6/NS8DzQCYwEPgY6NrUdvPz872lioqKWrxuoqVKVuWMrVTJ6Z46WeOVs7a21v/f7CV+/E9e9uWb9xz19uK9P4HF3khdjWbIZQvQN2I6LzwvUgkwx92r3P0D6nrrg6P6dSMiEqCnFn/My6u2cfMXTuSMvl2DjnNUoinoi4DBZjbQzLKAicCcem1eAEYDmFlP4ERgU+xiiojE3oZPDnD7nDWce0IPbrzg+KDjHLVmC7q7VwPTgVeAdcBT7r7GzO40s3HhZq8ApWa2FigCfujupfEKLSJytA5VVjP98aXktGvL3d84k4wUO0WxIVFd+u/uc4G59ebdFvHege+FXyIiSe+OOWso3hnisetH0btT6p2i2BBdKSoirc4Ly7bw1OIS/nP0CZw3uGfQcWJGBV1EWpVNO0Pc+vwqRgzoxncvTq9zN1TQRaTVKK+qYfrjy8hs24Z7rxhG24z0KoG6fa6ItBq/mruOtdv2M+OaAo7t0j7oODGXXr+eREQa8c/V25j17kdMPW8gFw/JDTpOXKigi0ja+6j0ID98ZiVn5HXhR2NPDjpO3Kigi0haK6+q4abZS2ljxn1XDierbfqWPY2hi0hau+3vq1m7bT8zJxfQt3uHoOPEVfr+qhKRVu+pRR/z1OISvnXhCVx4cnqOm0dSQReRtLRm6z5+9vfVnHdCT7578YlBx0kIFXQRSTv7yqq4afZSunXI4p6J6XGflmhoDF1E0kptrfP9p1awdW8ZT37zbHrktAs6UsKohy4iaeUvb27itXXbufXSU8jv3y3oOAmlgi4iaePd90v5/SvrufT0Y5l8zoCg4yScCrqIpIUd+8v51hPLGNizI7+9/HTMWse4eSSNoYtIyquqqWX648s4VFnNEzeMIqdd6yxtrfO7FpG08pt/rGfhh7u5Z+KZDM7tFHScwGjIRURS2vPLSnj43x9w3bkDGH/mcUHHCZQKuoikrNVb9nHLs6sYNbA7//XlU4KOE7ioCrqZjTWzDWZWbGa3NLB8spntNLPl4dfU2EcVEfk/uw9W8s3HltCjYxb3XzWczDR7WEVLNDuGbmYZwP3AF4ASYJGZzXH3tfWaPunu0+OQUUTkM6prapn++FJ2hip45saz6dmKLh5qSjS/0kYCxe6+yd0rgUJgfHxjiYg07rf/XM8775fyy6+cyul5XYOOkzTM3ZtuYDYBGOvuU8PTk4BRkb1xM5sM/BrYCWwEbnb3jxvY1jRgGkBubm5+YWFhi0KHQiFycnJatG6ipUpW5YytVMkJqZP1cM53t1bzl5UVXNSvLZOGJF/PPN77c8yYMUvcvaDBhe7e5AuYAMyImJ4E3FevTQ+gXfj9N4E3mttufn6+t1RRUVGL1020VMmqnLGVKjndUydrUVGRr96y10/66Vz/2p/f8crqmqAjNSje+xNY7I3U1WiGXLYAfSOm88LzIn8plLp7RXhyBpAf3e8aEZHohCqdbz62hK7tdRC0MdHskUXAYDMbaGZZwERgTmQDMzs2YnIcsC52EUWktauuqeXPK8rZcaCCBybl06tT8g21JINmz3Jx92ozmw68AmQAM919jZndSV3Xfw7wbTMbB1QDu4HJccwsIq3M717ZwJrSWn434XTO7Ns16DhJK6pL/919LjC33rzbIt7/BPhJbKOJiMBzS0t48M1NXNivLV8v6Nv8Cq2Y7uUiIklr2eY93PLcKs4e1IMrTygLOk7S01EFEUlK2/aVMe2xJRzTOZv/uWo4bVvJY+SOhnroIpJ0yiprmDZrCWWVNfxt6ii6dcwKOlJKUEEXkaTi7vzo2ZWs3rqPGdcUcGIrvh3ukdKQi4gklfuLinlxxVZ+9KWTueiU3KDjpBQVdBFJGq+s+YQ//O9GvnJmH268YFDQcVKOCrqIJIV12/Zz85PLOSOvC79ppc8EPVoq6CISuNJQBVMfXUyn7LY8eE0B2ZkZQUdKSTooKiKBqqyu5aa/LWVXqIKnvnk2uZ2zg46UslTQRSQw7s6tz69i4Qd1D3g+Q5f1HxUNuYhIYB741yaeXlLCty88odU/4DkWVNBFJBD/XL2N3/5zPZed0Yebv3Bi0HHSggq6iCTcypK9fPfJ5Qzr15XfT9AZLbGigi4iCbV1bxlTHl1Mz5x2PDhJZ7TEkg6KikjChCqqmfLoYsrD92jRgypiSwVdRBKiptb59hPL2Lj9ADMnj9A9WuJAQy4ikhC/fHkdb6zfwR3jhnLBib2CjpOWVNBFJO4em/8RM9/+gOvOHcCks/oHHSdtqaCLSFz9a+NO7pizhgtP7s1PLx0SdJy0poIuInGzcfsBpv9tKYN753DvFcPI0FOH4iqqgm5mY81sg5kVm9ktTbS73MzczApiF1FEUtGuUAXXP7KI7KwMZk4eQU47nYMRb80WdDPLAO4HLgGGAFeY2ef+bjKzTsB3gAWxDikiqaWssoYpjy5mV6iCGdcU0Kdr+6AjtQrR9NBHAsXuvsndK4FCYHwD7e4CfguUxzCfiKSYmlrn24XLWFmyl3snDtMNtxLI3L3pBmYTgLHuPjU8PQkY5e7TI9oMB25198vNbB7wA3df3MC2pgHTAHJzc/MLCwtbFDoUCpGTk9OidRMtVbIqZ2ylSk6IbVZ3Z/a6Sl7fXM3Vp2Rxcf/MmGwXUmefxjvnmDFjlrh7w8Pa7t7kC5gAzIiYngTcFzHdBpgHDAhPzwMKmttufn6+t1RRUVGL1020VMmqnLGVKjndY5v1oTff9/4/fsl/8dKamG3zsFTZp/HOCSz2RupqNEMuW4C+EdN54XmHdQJOBeaZ2YfAWcAcHRgVaV1eXrmNX7y8ji+fdgw/ueSUoOO0StEU9EXAYDMbaGZZwERgzuGF7r7P3Xu6+wB3HwDMB8Z5A0MuIpKeFn24m5ufWk5B/2788etn0kanJwai2YLu7tXAdOAVYB3wlLuvMbM7zWxcvAOKSHJ7f2eIG2Yt5riu7XlIzwMNVFQnhrr7XGBuvXm3NdJ29NHHEpFUsPNABZP/upAMMx65bgTdOmYFHalV05n+ItIihyqrmfroInYeqOCJG86if4+OQUdq9XTpv4gcsbpb4S5n1ZZ93DtxGMP6dQs6kqAeuogcIXfn5y+u4bV127lz/FC+OPSYoCNJmHroInJEHnprE7Pe/Yhp5w/imrMHBB1HIqigi0jUnl9Wwq/mrufS04/llrEnBx1H6lFBF5Go/GvjTn749ErOHtSDP379DJ1rnoRU0EWkWSs+3stNs5cwOLcTf7kmn3Ztda55MlJBF5EmfbDrINc/sojuHbN49LoRdM6O3Q23JLZU0EWkUTsOlHPNzAU4MOv6kfTunB10JGmCCrqINOhAeRWTZy5i14FKZk4ewaBeyX/r2tZOBV1EPqeiuoYbZy9h4/YD/Pnq4Zyph1SkBF1YJCKfUVvrfP+pFbxdXMp/f+0MRp/UO+hIEiX10EXkU+7OXS+v5aWV27jlkpO5PD8v6EhyBFTQReRTD/xrE399+0OuP3cg3zx/UNBx5AipoIsIAM8sKeG3/1zPZWf04aeXnoKZLhxKNSroIsKra7fz42dXcu4JPfjD107XVaApSgdFRVq59btr+ONrSzm1T2f+MqlAV4GmMPXQRVqx1Vv28acl5fTr3oFHrhtJTjv18VKZCrpIK7VpZ4hrZy6kY6bx2JSRenxcGoiqoJvZWDPbYGbFZnZLA8tvNLNVZrbczP5tZkNiH1VEYmXr3jImPbwQgB+OyObYLu0DTiSx0GxBN7MM4H7gEmAIcEUDBftxdz/N3c8Efgf8MdZBRSQ2dh+sZNLDC9hfVsWj14/kmI76Qz1dRPOTHAkUu/smd68ECoHxkQ3cfX/EZEfAYxdRRGIlVFHN5L8upGRPGTOuLeDU47oEHUliyNybrr1mNgEY6+5Tw9OTgFHuPr1eu/8EvgdkARe6+3sNbGsaMA0gNzc3v7CwsEWhQ6EQOTmpcaOgVMmqnLGVjDkra5y7l5SzYU8t3xrWjmG96w6AJmPWhihnnTFjxixx94IGF7p7ky9gAjAjYnoScF8T7a8EHm1uu/n5+d5SRUVFLV430VIlq3LGVrLlrKqu8WmzFnn/H7/kzy39+DPLki1rY5SzDrDYG6mr0Qy5bAH6Rkznhec1phD4ShTbFZEEcHf+6/lVvLJmO7dfNoSvDtP9WdJVNAV9ETDYzAaaWRYwEZgT2cDMBkdMXgp8brhFRBLP3fnV3HU8tbiE71w0mOvOHRh0JImjZq8icPdqM5sOvAJkADPdfY2Z3Uld138OMN3MLgaqgD3AtfEMLSLRuff1Yh566wOuPbs/3714cPMrSEqL6rIwd58LzK0377aI99+JcS4ROUoPvbmJu1/byIT8PG6/bKhuttUK6ARUkTQ0e/5H/HLuOi49/Vh+e7luttVaqKCLpJnnlpbws7+v5qKTe3P3188kQ8W81VBBF0kj/1i1jR88vYKzB/Xg/quGk9VW/8VbE/20RdJE0YYdfLtwGcP6deOhawrIztRtcFsbFXSRNPDu+6Xc+NgSTjqmEzMnj6CjboPbKqmgi6S4pZv3MOXRRfTr3oFZ14+iS/vMoCNJQFTQRVLYmq37mDxzIb06tWP21FF01z3NWzUVdJEUVbzjANc8vJCcdm3529RR5HbODjqSBEwFXSQFfbjrIFfNWICZMXvqKPK6dQg6kiQBFXSRFLO59BBXPDSfyupaZk8dyaBeyX9LWUkMHQoXSSEle+qKeVlVDY9PPYuTj+kcdCRJIuqhi6SIrXvLuOKh+Rwor2L2lFEM6aNiLp+lgi6SAj7ZV86VD81n78EqHpsySo+OkwZpyEUkye3YX1fMd4UqmTVlJGf07Rp0JElS6qGLJLGdByq4csYCPtlfziPXjWB4v25BR5IkpoIukqRKQxVcNWM+W/aU8dfJIygY0D3oSJLkVNBFktCeg5VcNWMBm3cf4uHJBYwa1CPoSJICNIYukmT2Hari6ocXsGnXQWZeO4Jzju8ZdCRJEeqhiySRfWVVTJq5gPe2h3hwUj7nDVYxl+hFVdDNbKyZbTCzYjO7pYHl3zOztWa20sxeN7P+sY8qkt72HqrkqhnzWbdtP3++ejijT+oddCRJMc0WdDPLAO4HLgGGAFeY2ZB6zZYBBe5+OvAM8LtYBxVJZ7sPVnLlQwvYuD3Eg5MKuOiU3KAjSQqKpoc+Eih2903uXgkUAuMjG7h7kbsfCk/OB/JiG1MkfZWGKrjyofm8vzPEQ9cUMOZk9cylZczdm25gNgEY6+5Tw9OTgFHuPr2R9vcBn7j7LxpYNg2YBpCbm5tfWFjYotChUIicnNS4IVGqZFXO2Io2574K53eLyth5yPnO8GyG9kz8Y+PSbZ8GLd45x4wZs8TdCxpc6O5NvoAJwIyI6UnAfY20vZq6Hnq75rabn5/vLVVUVNTidRMtVbIqZ2xFk3P7vjK/8A9FfvJP/+FvF++Mf6hGpNM+TQbxzgks9kbqajSnLW4B+kZM54XnfYaZXQzcClzg7hXR/rYRaY0O35vl8BWgOs9cYiGaMfRFwGAzG2hmWcBEYE5kAzMbBvwFGOfuO2IfUyR9bN1bxjcefJcdByqYdf1IFXOJmWYLurtXA9OBV4B1wFPuvsbM7jSzceFmvwdygKfNbLmZzWlkcyKtWsmeQ3zjwXfZHb7Rli7nl1iK6kpRd58LzK0377aI9xfHOJdI2tm0M8TVMxYQqqhm9tRRumuixJwu/RdJgHXb9jPp4QW4wxPTzmJoH93PXGJPBV0kzpZt3sO1MxfSIasts6eO4oTeyX/qnaQmFXSROHr3/VKmPrqIHjnt+NvUUfTt3iHoSJLGVNBF4uSN9du5afZS+nXvwOypo8jtnB10JElzKugicbBgWzUP/e8STjm2M49eP5LuHbOCjiStgAq6SIw9vmAzD6yooGBANx6ePILO2ZlBR5JWQgVdJEbcnXtef48/vfYep/fMYNb1o2iflfh7s0jrpYIuEgM1tc7P/r6axxds5vLheVzSc7eKuSScnlgkcpTKq2q4afYSHl+wmZtGH88fvnY6bdtY0LGkFVIPXeQo7DtUxQ2zFrPoo93cftkQrjt3YNCRpBVTQRdpoW37ypg8cxGbdoW4d+IwLjujT9CRpJVTQRdpgQ2fHOC6vy5kf3k1j143knNO0MOcJXgq6CJHaN6GHUx/fBkdsjIonHYWpx6n+7JIclBBFzkCj737IbfPWcNJx3Rm5uQCju3SPuhIIp9SQReJQk2t84uX1/LXtz/kopN7c+8Vw+jYTv99JLnoEynSjAPlVXy3cDmvr9/B9ecO5NZLTyFDpyVKElJBF2nC+ztDTJu1mA9LD3HXV05l0ln9g44k0igVdJFGvLp2O997cjlZbdswe8oozj5ez/6U5KaCLlJPba3zp9ff497X3+O047rwwKR8juuqg5+S/KK69N/MxprZBjMrNrNbGlh+vpktNbNqM5sQ+5giiXH4ys97X3+Py4fn8fSNZ6uYS8potoduZhnA/cAXgBJgkZnNcfe1Ec02A5OBH8QjpEgiLPpwN995Yhk7DlRw5/ihTDqrP2Y6+CmpI5ohl5FAsbtvAjCzQmA88GlBd/cPw8tq45BRJK5qap3/KSrm7tc2ktetA8/cdA5n9u0adCyRI2bu3nSDuiGUse4+NTw9CRjl7tMbaPsI8JK7P9PItqYB0wByc3PzCwsLWxQ6FAqRk5MaD9pNlaytNeee8lr+srKC9btrOevYDK4d2o72bY++V54q+xNSJ6ty1hkzZswSdy9oaFlCD4q6+4PAgwAFBQU+evToFm1n3rx5tHTdREuVrK0x5z9WbePO51dRXmX8fsLpTMjPi9kQS6rsT0idrMrZvGgK+hagb8R0XnieSEoqDVVw29/X8PKqbZx2XBf+NPFMju+V/D0/keZEU9AXAYPNbCB1hXwicGVcU4nEgbvz4spt3DFnDQfKq/jBF0/kmxccT2aGnvMi6aHZgu7u1WY2HXgFyABmuvsaM7sTWOzuc8xsBPA80A24zMx+7u5D45pc5Ai8vzPE7X9fw7+Ld3HacV34w9fO4qRjOgUdSySmohpDd/e5wNx6826LeL+IuqEYkaQSqqjmz/OKefDNTWRnZnDn+KFcNaq/7sUiaUlXikpaqqqppXDhZu55/T12hSr5j+HH8ZNLTqFXp3ZBRxOJGxV0SSvVNbW8vGobf3rtPT7YdZBRA7sz49pTdF65tAoq6JIWKqtreW5pCX/+1/t8VHqIk3I78fC1BVx4cm9d7Smthgq6pLTt+8t5YuFmnli4me37K+pupnV1Pl8ckksbjZNLK6OCLimnsrqWNzfu5LllJbyyZjs1tc4FJ/bidxMGcv7gnuqRS6ulgi4pobyqhoUf7OaR1RV851+vsa+sim4dMply3kCuGtWP/j06Bh1RJHAq6JKUamqd9Z/sZ/GHe3hz407eeb+Usqoa2mXAJaf1YdyZfTjvhF5ktdVFQSKHqaBL4MqraijeEWLj9gNs2H6AtVv3s2zzXkIV1QD0696BrxXkMeak3lRuWcOXLhoWcGKR5KSCLnFXWV3L9v3lbNlbxtbwa8vecrbuLWPz7kN8VHqQ2vBNP7My2nB87xzGn9mHggHdKOjfnbxu7T8dF5/3ydomvpJI66aCLkesqqaW/WVV7CurovRgJaWhCnaFKikNVVJ6sILSUCW7QhWfLttzqOpz2+iZk0Wfru055dhOjDujDycd04kTc3Po36Oj7q0i0kIq6CnO3ampdapr/+/f6praz8yripiurnEqqmsoq6qhrLLu3/KqGlZ+WMXaecWUh+eVVdUQKq9mf3k1+8uq2F9exf6yavaXV3GosqbRPF3aZ9IjJ4ueOe04MTeHHoN60CMniz5d2tOna3v6dM2mT9f2ZGdmJHAvibQOKVfQn1r0MX966xDtl8z7dJ7Xe3N4+vDDOyIf4eGftvHPTjfwnI/660e2+dz6DbQBp7Kyksy3Xm0wV0PrNZS5oe8rsoDHzPoNALTPzCA7sw052W3pnJ1Jl/aZDOqZQ+f2ddOd29fN69y+LT06tvu0gHfrkKWDlCIBSrmC3q1jFsd1akPvXp0h4nTjw28Pj7X+3/RnlzfUhk/bWESb+tttok29DUWeBr1t61b69Dnmc+tbE9nrb7+h9dq2MdpmGBlt2tC2jZHRxsiMmG6bYeH5n5/OzmwTLtoZtM/KoH1mBksXzufiMefTrm0bncctkqJSrqB/YUgumTuyGT16eNBRojJvXimjR58WdIxmbcwyDYOIpDj9fSwikiZU0EVE0oQKuohImlBBFxFJEyroIiJpQgVdRCRNqKCLiKQJFXQRkTRh3tA174n4wmY7gY9auHpPYFcM48RTqmRVzthKlZyQOlmVs05/d+/V0ILACvrRMLPF7l4QdI5opEpW5YytVMkJqZNVOZunIRcRkTShgi4ikiZStaA/GHSAI5AqWZUztlIlJ6ROVuVsRkqOoYuIyOelag9dRETqUUEXEUkTSVfQzWysmW0ws2Izu6WB5e3M7Mnw8gVmNiBi2U/C8zeY2ZcCzvk9M1trZivN7HUz6x+xrMbMlodfcwLOOdnMdkbkmRqx7Fozey/8ujaeOaPMendEzo1mtjdiWUL2qZnNNLMdZra6keVmZveGv4eVZjY8Ylmi92dzWa8KZ1xlZu+Y2RkRyz4Mz19uZosDzjnazPZF/Hxvi1jW5GcmwTl/GJFxdfgz2T28LDH7092T5gVkAO8Dg4AsYAUwpF6b/wc8EH4/EXgy/H5IuH07YGB4OxkB5hwDdAi/v+lwzvB0KIn252TgvgbW7Q5sCv/bLfy+W5BZ67X/FjAzgH16PjAcWN3I8i8D/6DuyYJnAQuC2J9RZj3ncAbgksNZw9MfAj2TZJ+OBl462s9MvHPWa3sZ8Eai92ey9dBHAsXuvsndK4FCYHy9NuOBR8PvnwEusrqHYI4HCt29wt0/AIrD2wskp7sXufuh8OR8IC9OWZoSzf5szJeAV919t7vvAV4FxsYpJxx51iuAJ+KYp0Hu/iawu4km44FZXmc+0NXMjiXx+7PZrO7+TjgLBPcZjWafNuZoPt9H7AhzBvL5TLaCfhzwccR0SXheg23cvRrYB/SIct1E5ow0hbpe22HZZrbYzOab2VfikO+waHNeHv7T+xkz63uE68ZK1F8vPHw1EHgjYnai9mlzGvs+Er0/j1T9z6gD/2tmS8xsWkCZIp1tZivM7B9mNjQ8Lyn3qZl1oO6X9bMRsxOyP1PuIdGpxsyuBgqACyJm93f3LWY2CHjDzFa5+/vBJORF4Al3rzCzb1L318+FAWWJ1kTgGXeviZiXTPs0pZjZGOoK+nkRs88L78/ewKtmtj7cQw3CUup+viEz+zLwAjA4oCzRuAx4290je/MJ2Z/J1kPfAvSNmM4Lz2uwjZm1BboApVGum8icmNnFwK3AOHevODzf3beE/90EzAOGBZXT3Usjss0A8qNdN8aO5OtNpN6fswncp81p7PtI9P6MipmdTt3Pfby7lx6eH7E/dwDPE7/hy2a5+353D4XfzwUyzawnSbpPafrzGd/9Ge9B+iN5UfcXwybq/pw+fJBjaL02/8lnD4o+FX4/lM8eFN1E/A6KRpNzGHUHbAbXm98NaBd+3xN4jzgdyIky57ER778KzA+/7w58EM7bLfy+e5A/+3C7k6k7wGRB7NPw1xhA4wfwLuWzB0UXBrE/o8zaj7pjTefUm98R6BTx/h1gbIA5jzn886auEG4O79+oPjOJyhle3oW6cfaOQezPuH6YWrjDvgxsDBfDW8Pz7qSulwuQDTwd/iAuBAZFrHtreL0NwCUB53wN2A4sD7/mhOefA6wKf/hWAVMCzvlrYE04TxFwcsS614f3czFwXdA/+/D0HcBv6q2XsH1KXc9rG1BF3ZjtFOBG4MbwcgPuD38Pq4CCAPdnc1lnAHsiPqOLw/MHhfflivBn49aAc06P+IzOJ+IXUEOfmaByhttMpu7kjMj1ErY/dem/iEiaSLYxdBERaSEVdBGRNKGCLiKSJlTQRUTShAq6iEiaUEEXEUkTKugiImlC93KRVsfMfgN87O73h6fvAGqALwCdqft/cZO7v2VmU4AfA3upuzCkwt2nB5FbpDnqoUtr9CTw9Yjpr1P3f+EVdz8TOANYbmZ9gJ9Rdwn/udTddkAkaamHLq2Ouy8zs97hgt2Lusvfi4CZZpYJvODuy83sIuBfHr5rnpk9DZwYWHCRZqiHLq3V08AE4BvUPU3qTeqeSLMFeMTMrgkynEhLqKBLa/UkdXfrnAA8HX5oxnZ3f4i6m1YNBxYBF5hZt/Ctmi8PLK1IFDTkIq2Su68xs07AFnffFn5o8w/NrAoIAdd43QMJfkXdXT13A+upe0KWSFLS3RZFmmBmOV73pJy21D2YYKa7Px90LpGGaMhFpGl3mNlyYDV1D6V4IdA0Ik1QD11EJE2ohy4ikiZU0EVE0oQKuohImlBBFxFJEyroIiJp4v8DfBc1prezlHgAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}],"source":["df.plot(x=\"vsg\", y=\"gm_id\", grid=True)\n","plt.show()"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":290},"id":"fuCOaerRn2EV","outputId":"51e206f2-aa22-44a9-d24c-7a5c0f1f74e4"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXQAAAERCAYAAABrWly6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAleUlEQVR4nO3deXxU9b3/8deHEAir7BFlVUBEWYOg4m2h2hbUyr2KFRcU0VJr7aptUVu12t7r0nt7teKuqK2KqNWLSqUuQalWZZHFIEiIiOwB2QJk//z+mEl/Q8wyCZM5s7yfj8c8mHPO98y8c2b45Jvv2czdERGR5Ncs6AAiIhIbKugiIilCBV1EJEWooIuIpAgVdBGRFKGCLiKSIgIt6Gb2mJltN7OPo2j7NTNbamblZjap2rLLzGxt+HFZ0yUWEUlcQffQHwfGR9l2AzAVeDpyppl1Am4GRgOjgJvNrGPsIoqIJIdAC7q7vwN8GTnPzI41s9fMbImZLTSzgeG26919BVBZ7WW+Dbzu7l+6+y7gdaL/JSEikjKaBx2gBg8BV7n7WjMbDdwHfKOO9kcDX0RMbwzPExFJKwlV0M2sLXAq8JyZVc1uGVwiEZHkkVAFndAQ0G53H9aAdTYBYyOmewALYhdJRCQ5BL1T9BDuvhf4zMzOB7CQofWsNh/4lpl1DO8M/VZ4nohIWgn6sMVngH8Cx5nZRjO7ArgYuMLMlgN5wMRw25PMbCNwPvCgmeUBuPuXwG3AovDj1vA8EZG0Yrp8rohIakioIRcREWm8wHaKdunSxfv06dOodffv30+bNm1iG6iJJEtW5YytZMkJyZNVOUOWLFmyw9271rjQ3QN55OTkeGPl5uY2et14S5asyhlbyZLTPXmyKmcIsNhrqav1DrnUd72V8JEo95hZvpmtMLMRh/f7R0REGiOaMfTHqftU+glA//BjOnD/4ccSEZGGqregew3XW6lmIvBk+K+B94EOZtY9VgFFRCQ6UR22aGZ9gFfc/cQalr0C3O7u/whPvwn8yt0X19B2OqFePNnZ2TmzZ8+uvpw2bdqQkZFRZx53J+LSAAmnoqKC/fv34+4UFRXRtm3boCPVSzljK1lyQvJkVc6QcePGLXH3kTUurG1wPfIB9AE+rmXZK8BpEdNvAiPre82adooWFBR4YWGhV1ZW1rlTYO/evQ3aiRBPlZWVXlhY6AUFBe6uHTmxppyxlyxZlTOEw9kpGoVNQM+I6R7heQ1WXFxM586dE7r3XR8zo3PnzhQXFwcdRUTSTCwK+lzg0vDRLicDe9x9S2NfLJmLeZVU+BlEJPlEc9jiV663YmZXmdlV4SbzgAIgH3gYuLrJ0oqIJLHKSuf3r65i/Y79TfL69Z4p6u4X1rPcgR/GLJGISIp66sMNPLzwM/p1a0ufLrE/m1TXcqnmnnvu4fjjj+fiiy8+ZP6sWbMYNmwYw4YNo0WLFgwePJhhw4YxY8aMgJKKSDLZtPsgt8/7hH/r34XvjuxZ/wqNkGg3uAjcfffdxxtvvEGPHj0OmX/55Zdz+eWXA9CnTx9yc3Pp0qVLEBFFJMm4O9f/dSUO/Od/DG6y/WwJW9B/+3IeqzbvrXFZRUVFvceq12TQUe25+Tsn1Lr8qquuoqCggAkTJjBt2jR+9rOfNfg9RESqe37JRt75tJBbJ55Az06tm+x9EragB+GBBx7gtddeU+9bRGJm+95ibntlFaP6dOKS0b2b9L0StqDX1ZPet28f7dq1i2MaEZGGc3dufOljSsoruf28wTRr1rSHNGunqIhIE3llxRZeX7WNa781gGO6Nv1lC1TQRUSawM6iEm6em8fQHkcwbUzfuLynCrqISBO45eVV7Csu485JQ2meEZ9Sm7Bj6EFZv359TNqISPr6e95WXl6+mZ9/cwDHHRm//X3qoYuIxND+MufXL33MwCPb8YOxx8b1vdVDr8GsWbO4++67D5k3ZswYZs6cGVAiEUkWs1eXsnN/BY9edhKZcRpqqZJwBd0T4OYVkWeFNoZHcdMQEUk9b39ayMJN5Vw99lgG9zgi7u+fUEMuWVlZ7Ny5M6kLoruzc+dOsrKygo4iInFUVFLODX9dSfc2xo9P7x9IhoTqoffo0YONGzdSWFhYZ7vi4uKELphZWVlfuRaMiKS2O/62ms17DnLjqCyyMht+aZJYSKiCnpmZSd++9R+vuWDBAoYPHx6HRCIi9Xu/YCd/fv9zpo3pS7922wPLkVBDLiIiyeZgaQW/emEFvTq15rpvDwg0S0L10EVEks1//30Nn+88wNPfG03rFsGWVPXQRUQaaemGXTz27mdcOKoXpx4b/BVaVdBFRBqhpLyCXz6/guz2Wdxw5sCg4wAachERaZR738onf3sRs6aeRLuszKDjAOqhi4g0WN7mPdy/YB3nDj+acQO7BR3nX1TQRUQaoKyikl8+v4IOrTP5zdmDgo5zCA25iIg0wEPvFJC3eS/3XTyCjm1aBB3nEOqhi4hEKX97EXe/uZYJJx7JmYO7Bx3nK1TQRUSiUFHp/PL55bTKzOC3E2u/53GQVNBFRKLwxHvrWbphNzedPYhu7RLzWlIq6CIi9diw8wB3zV/D1wd05dwRRwcdp1Yq6CIidXB3rn9xBRnNjP88d3Dg92uoiwq6iEgdnl30Be/m72TGhIEc3aFV0HHqpIIuIlKLLXsO8vtXP2F0305cNKpX0HHqpYIuIlIDd+fXL35MWWUld5w3hGbNEneopYoKuohIDeYu38ybq7dz3beOo0+XNkHHiUpUBd3MxpvZGjPLN7MZNSzvZWa5ZvaRma0wszNjH1VEJD52FJVwy9w8hvXswOVj6r+LWqKot6CbWQYwE5gADAIuNLPqFzD4NTDH3YcDk4H7Yh1URCRebp6bR1FJOXdOGkJGEgy1VImmhz4KyHf3AncvBWYDE6u1caB9+PkRwObYRRQRiZ/5eVt5dcUWfvyN/gzIbhd0nAYxd6+7gdkkYLy7XxmengKMdvdrItp0B/4OdATaAGe4+5IaXms6MB0gOzs7Z/bs2Y0KXVRURNu2bRu1brwlS1bljK1kyQnJkzUeOfeXOTf84yDtWxg3n5JF80b0zps657hx45a4+8gaF7p7nQ9gEvBIxPQU4N5qbX4OXBt+fgqwCmhW1+vm5OR4Y+Xm5jZ63XhLlqzKGVvJktM9ebLGI+d1c5b5Mde/6is37m70azR1TmCx11JXoxly2QT0jJjuEZ4X6QpgTvgXxD+BLCD4G+yJiETp7U8LeW7JRqZ/7RhOPPqIoOM0SjQFfRHQ38z6mlkLQjs951ZrswE4HcDMjidU0AtjGVREpKkUlZRzw19XckzXNvzk9P5Bx2m0egu6u5cD1wDzgU8IHc2SZ2a3mtk54WbXAt8zs+XAM8DU8J8GIiIJ787XVrN5z0HumjSErMyMoOM0WlR3LHL3ecC8avNuini+ChgT22giIk3vw8++5Ml/fs7UU/uQ07tT0HEOi84UFZG0VVxWwa9eWEGPjq34xbePCzrOYdM9RUUkbf3x9U/5bMd+nrpyNG1aJn85VA9dRNLS8i928/DCAiaf1JMx/VLjoDwVdBFJO6Xllfzy+RV0bdeSG846Pug4MZP8f2OIiDTQzNx81mzbxyOXjqR9VmbQcWJGPXQRSSt5m/cwMzeficOO4oxB2UHHiSkVdBFJG2UVlVz33Ao6tG7BLd85Ieg4MachFxFJGzNz8/lky14enJJDxzYtgo4Tc+qhi0haWLV5L/e+FRpq+fYJRwYdp0mooItIygsNtSynQ+vMlBxqqaIhFxFJefcvWMeqLXt54JLUHGqpoh66iKS0T7bs5U9vreWcoUcx/sTUHGqpooIuIimraqjliFaZ3HJO6g61VNGQi4ikrAcWrCNv814euGQEnVJ4qKWKeugikpJWb93LPW+t5ewh3Rl/Yveg48SFCrqIpJyqoZb2WZncOvHEoOPEjYZcRCTlPPj2Oj7etJf7L06PoZYq6qGLSEpZs3Ufd7+5lrOGdGfC4PQYaqmigi4iKaM8cqglDY5qqU5DLiKSMh58p4CVm/Zw38Uj6Ny2ZdBx4k49dBFJCWu27uPuN9Zy1uDunJlmQy1VVNBFJOmVV1Tyi+eX0zarOb+dmH5DLVU05CIiSe/BdwpYsXEP9140nC5pONRSRT10EUlqqzbv5X/f+JSzhnTn7CFHBR0nUCroIpK0Ssor+PmcZRzRqgW3pdEJRLXRkIuIJK173lzL6q2hmz2n0wlEtVEPXUSS0tINu7h/wTrOz+mRcjd7biwVdBFJOgdLK7huznK6H9GKm74zKOg4CUNDLiKSdO54bTUFO/bz9JWjaZeVGXSchKEeuogklffW7eDx99Yz9dQ+nNqvS9BxEooKuogkjX3FZfziuRX07dKGX40fGHSchBNVQTez8Wa2xszyzWxGLW2+a2arzCzPzJ6ObUwREfjdK5+wZc9B/nD+UFq1yAg6TsKpdwzdzDKAmcA3gY3AIjOb6+6rItr0B64Hxrj7LjPr1lSBRSQ9LdtezrNLv+AHY48lp3fHoOMkpGh66KOAfHcvcPdSYDYwsVqb7wEz3X0XgLtvj21MEUlnu/aXMiuvlIFHtuOnZ/QPOk7CMnevu4HZJGC8u18Znp4CjHb3ayLavAR8CowBMoBb3P21Gl5rOjAdIDs7O2f27NmNCl1UVETbtm0btW68JUtW5YytZMkJyZH1/mXFLN5Wzk2ntKJ3+8Qeamnq7Tlu3Lgl7j6ypmWxOmyxOdAfGAv0AN4xs8Huvjuykbs/BDwEMHLkSB87dmyj3mzBggU0dt14S5asyhlbyZITEj/rKys288HWjzi3fwsuO+f0oOPUK8jtGc2QyyagZ8R0j/C8SBuBue5e5u6fEeqt6+8iETks2/cV8+uXPmZozw6c1VfHm9cnmoK+COhvZn3NrAUwGZhbrc1LhHrnmFkXYABQELuYIpJu3J0ZL6zkYGkF/33+UDKaWdCREl69Bd3dy4FrgPnAJ8Acd88zs1vN7Jxws/nATjNbBeQCv3D3nU0VWkRS31MfbOCt1du5fsJA+nVL7DH+RBHVGLq7zwPmVZt3U8RzB34efoiIHJZ1hUX87tVV/Fv/Llx6Sp+g4yQNnSkqIgmlrKKSnz27jKzMDP5w/lCaaaglaro4l4gklD+9uZYVG/dw/8UjyG6fFXScpKIeuogkjCWf7+Le3HzOG9GDCYO7Bx0n6aigi0hCKCop52fPLuOoDq245Rxd47wxNOQiIgnhtpdXsXHXAWZPP0XXOG8k9dBFJHDz87by7OIvuOrrxzKqb6eg4yQtFXQRCdT2fcVc/9eVnHh0e356xoCg4yQ1FXQRCYy788vnV7C/pJz/vWAYLZqrJB0ObT0RCcxfPtjAgjWF3HDm8fTr1i7oOElPBV1EApG/fR+/f3UVXxvQlUtP6R10nJSggi4icVdcVsGPnllG6xbN+cOkIZjpbNBY0GGLIhJ3d7y2mk+27OWxqSPpprNBY0Y9dBGJq9zV25n17nqmntqHbwzMDjpOSlFBF5G42b6vmOueW87AI9sxY8LAoOOkHA25iEhcVFY6185Zzv7ScmZfeDJZmYl9b9BkpB66iMTFo//4jIVrd/CbswfRP1uHKDYFFXQRaXIrN+7hzvmr+fYJ2Vw0qlfQcVKWCrqINKn9JeX8ePZHdG7TktvP1SGKTUlj6CLSpH77ch7rd+7n6StPpmObFkHHSWnqoYtIk3llxWbmLN7ID8f245RjOwcdJ+WpoItIk9i46wDX/3Ulw3p24Cdn9A86TlpQQReRmCurqORHz3yEO9wzeTiZGSo18aAxdBGJubvmr+GjDbuZedEIenVuHXSctKFfmyISU29+so2H3ilgysm9OWuIbvQcTyroIhIzm3Yf5NrnljOoe3tuPOv4oOOkHRV0EYmJsopKfvT0UsrKK5l58Qid2h8AjaGLSEz84e9rWLphN/dcOJy+XdoEHSctqYcuIoftrdXbePDtAi4a3Ytzhh4VdJy0pYIuIodl8+6DXDtnOcd3b89NZw8KOk5aU0EXkUYrq6jkx898RGl5JTMvGq5x84BpDF1EGu1/Xv+UxZ/v4u7Jwzima9ug46Q99dBFpFFy12zn/gXruHBUTyYOOzroOEKUBd3MxpvZGjPLN7MZdbQ7z8zczEbGLqKIJJpNuw/y82eXMfDIdtz8nROCjiNh9RZ0M8sAZgITgEHAhWb2lT0fZtYO+AnwQaxDikjiKCmv4OqnllJW4TrePMFE00MfBeS7e4G7lwKzgYk1tLsNuAMojmE+EUkwt72yiuVf7OYP5w/hWI2bJxRz97obmE0Cxrv7leHpKcBod78mos0I4EZ3P8/MFgDXufviGl5rOjAdIDs7O2f27NmNCl1UVETbtsnxRUqWrMoZW8mSExqW9d1NZTy8spQJfTO54Lj43qwiWbZpU+ccN27cEneveVjb3et8AJOARyKmpwD3Rkw3AxYAfcLTC4CR9b1uTk6ON1Zubm6j1423ZMmqnLGVLDndo8+6avMeP+7X8/y7D7znZeUVTRuqBsmyTZs6J7DYa6mr0Qy5bAJ6Rkz3CM+r0g44EVhgZuuBk4G52jEqkjr2HCzjB39ZQvusTP500XCa6/rmCSmaT2UR0N/M+ppZC2AyMLdqobvvcfcu7t7H3fsA7wPneA1DLiKSfNyd655bzsZdB7nv4hF0a5cVdCSpRb0F3d3LgWuA+cAnwBx3zzOzW83snKYOKCLBeuDtAl5ftY3rzzyekX06BR1H6hDVmaLuPg+YV23eTbW0HXv4sUQkEby3bgd3zV/N2UO6M21Mn6DjSD00ECYiNdq46wDXPP0Rx3Rtyx3nDcHMgo4k9VBBF5GvOFhawff/vISyikoempJDm5a67FMy0KckIodwd2b8dQWrtuzlsctO0kW3koh66CJyiIcXFvB/yzZz3beOY9zAbkHHkQZQQReRf3nn00Ju/9tqzhx8JFePPTboONJAKugiAsDnO/fzo2c+YkB2O+6aNFQ7QZOQCrqIsL+knOlPLsEMHpoyUjtBk5QKukiaqzoTdO32fdx74Qh6dW4ddCRpJP0aFklzc9eV8bf8rfz6rOM5rX+XoOPIYVAPXSSNvbJiMy/ml3HuiKO54rS+QceRw6SCLpKmln2xm2vnLGdAx2b817mDtRM0BWjIRSQNbd59kO89uZhu7VtyzTCjZXPdRi4VqIcukmb2l5Rz5ROLKS6t4NHLTqJ9C/XMU4UKukgaqax0fvbsMlZv3cufLhrOgOx2QUeSGFJBF0kjd85fw99XbeM3Zw9i7HE6rT/VqKCLpInnFn/BA2+v4+LRvZh6ap+g40gTUEEXSQP/XLeTG15cyZh+nbnlnBN0REuKUkEXSXGfbtvH9D8vpnfnNtx3UQ6ZusFzytInK5LCtu0tZupjH9IqM4PHLz+JI1pnBh1JmpAKukiK2ldcxtRZi9hzsIxZl59Ej466Rkuq04lFIimorKKSq59aytpt+3hs6kmccNQRQUeSOFBBF0kx7s6MF1aycO0O7po0hK8N6Bp0JIkTDbmIpJg/vrGWF5Zu5GdnDOD8kT2DjiNxpIIukkJmf7iBe95cywUje/Lj0/sFHUfiTAVdJEXMz9vKDS+u5OsDuvK7/zhRx5qnIRV0kRTwbv4OfvT0Rwzr2YH7LxmhY83TlD51kSS37IvdfO/JxRzTtQ2zpo6idQsd65CuVNBFktjabfuYOutDurRtyZPTRunEoTSngi6SpL748gCXPPoBLTKa8ZcrRtOtfVbQkSRg+ttMJAlt31fMlEc/oLiskjnfP4VenXUWqKiHLpJ09hws49JHP2T7vhJmXX4Sxx2pm1RISFQF3czGm9kaM8s3sxk1LP+5ma0ysxVm9qaZ9Y59VBEpKinn8lkfUlC4n4emjGREr45BR5IEUm9BN7MMYCYwARgEXGhmg6o1+wgY6e5DgOeBO2MdVCTd7Q8X8+Ub93DPhcM5rX+XoCNJgommhz4KyHf3AncvBWYDEyMbuHuuux8IT74P9IhtTJH0dqC0nGmPL2Lpht3cM3k44088MuhIkoDM3etuYDYJGO/uV4anpwCj3f2aWtrfC2x199/VsGw6MB0gOzs7Z/bs2Y0KXVRURNu2bRu1brwlS1bljK1Y5iytcP64pJjVX1by/SEtOfmo2B7LkI7btCk1dc5x48YtcfeRNS509zofwCTgkYjpKcC9tbS9hFAPvWV9r5uTk+ONlZub2+h14y1ZsipnbMUq58HScr/kkfe9z4xX/IUlX8TkNatLt23a1Jo6J7DYa6mr0fyq3wREXrKtR3jeIczsDOBG4OvuXhLtbxsRqVlxWQVX/WUJC9fu4M7zhnDuCI1kSt2iGUNfBPQ3s75m1gKYDMyNbGBmw4EHgXPcfXvsY4qklwOl5VzxxCLe/rSQ288dzHdP0mVwpX719tDdvdzMrgHmAxnAY+6eZ2a3Eur6zwXuAtoCz4Wv8LbB3c9pwtwiKauopJxpsxax+PMv+cOkoZyXo565RCeqvSvuPg+YV23eTRHPz4hxLpG0tOdgGVNnfciKjXu4e/JwvjP0qKAjSRLRqf8iCWLX/lKmPPYBa7buY+ZFI3RoojSYCrpIAti2t5hLH/2Qz3aGzgAdN7Bb0JEkCamgiwSsoLCIKY9+yO4DpcyaehJj+ukMUGkcFXSRAK3cuIepsz7EgWemn8yQHh2CjiRJTAVdJCDv5e/ge08upkPrFvz5ilEc0zXxz4KUxKaCLhKAeSu38NPZy+jTpTVPThvNkUfo5hRy+FTQReLI3Xl4YQH/9bfVjOjVkUcvG0mH1i2CjiUpQgVdJE7KKiq5eW4eT3+wgTMHH8n/fHcYWZkZQceSFKKCLhIHe4vL+OFTS1m4dgc/GHssv/jWcTRrZkHHkhSjgi7SxDbuOsC0xxdRULifO88bouuySJNRQRdpQh9+9iVXP7WEkvJKnpg2SseYS5NSQRdpAu7OE++t57ZXVtGzU2tmX5pDv266mbM0LRV0kRgrLqvgkZWlvLs5jzOO78b/XDCM9lmZQceSNKCCLhJDG3cd4Kq/LOHjzeX89Iz+/Pgb/bXzU+JGBV0kRt5avY1r5yynvML5yYiW/PSMAUFHkjQTzR2LRKQOJeUV/PblPKY9vpjs9lm8dM0YhndTX0niT986kcNQUFjEj575iLzNe5l6ah9mTBhIVmYGXwQdTNKSCrpII7g7zy/ZyM1z82jZvBmPXDqSMwZlBx1L0pwKukgDbdtbzI0vruSNT7Yzum8n7p48XBfXkoSggi4Spape+W2vrKKkvJIbzzyeaaf1JUNHsUiCUEEXicLm3Qe5/q8refvTQkb16cQdk4bQt0uboGOJHEIFXaQO5RWVPPHPz/nj659S6c5vzzmBKSf31rHlkpBU0EVq8X7BTm7+vzzWbNvH1wZ05ff/fiI9O7UOOpZIrVTQRapZv2M/d/19Da+u2MLRHVrx4JQcvjUoGzP1yiWxqaCLhO0oKuFPb67lqQ82kJnRjJ+c3p+rvn4srVroJhSSHFTQJe3tKCrh4YUF/Pmfn1NSXskFJ/Xkp6f3p1t7HYooyUUFXdLW5t0HefQfn/HUB6FCfvaQo/jJ6f10mVtJWiroklbcnaUbdvHYu+t57eOtAEwcehRXj+tHv25tA04ncnhU0CUt7Npfyv8t28RzSzaSt3kv7bKac8VpfZlycm8duSIpQwVdUlZRSTkL1mzn1RVbePOT7ZRWVHLCUe25beIJnDuiB21a6usvqUXfaEkpG3YeYGF+IbmrC3lnbSGl5ZV0aduCi0/uxfk5PRl0VPugI4o0GRV0SVoVlc66wiI+2rCLjzbs5r11O9nw5QEAju7QiotH92LCid3J6d1R11uRtBBVQTez8cDdQAbwiLvfXm15S+BJIAfYCVzg7utjG1XSVXFZBVv2FLNuexHzC0p5efty8guLyN+2j/2lFQAc0SqTk/p04orT+nJa/y4c06WNTgSStFNvQTezDGAm8E1gI7DIzOa6+6qIZlcAu9y9n5lNBu4ALmiKwJI8KiqdsopKSisqKSuv+tcpraiktLySopJy9h4sY19JGfuKw8+Ly9l9oIyte4vZFn7sOlB2yOt2a1dI/+y2TMrpwdCeHRjWswN9VcBFouqhjwLy3b0AwMxmAxOByII+Ebgl/Px54F4zM3f3GGYFYM6iL/jfhQdovfRtIHQYWqSvvKHXOVnv+tV/Aq/W4ivLq00XFxeT9f5bTfd+9axfvUVt65eVlpK58PWG56ve3qGsMlSwKxvx6bdo3owjWmWS3b4lPTq2Iqd3R45sn0X3Dq04pmsbtq5ZxpnfHNfwFxZJA9EU9KPhkDtqbQRG19bG3cvNbA/QGdgR2cjMpgPTAbKzs1mwYEGDA2/aXk52q0qaNzv4/1+3nnWqL6+vI/eVxVZ90upafIjyFpVkZh7aw6w3bwPz1Z+3/vZlZU5mZmV0+apPV5vRvFkGzS2D5s0IP4wMg8zwdEYzI7MZZGUYrTOhVXOjdXOjVSZk/musuwLYH34A+2DvPqgs2d+o7028FRUVJUVOSJ6syhkFd6/zAUwiNG5eNT0FuLdam4+BHhHT64Audb1uTk6ON1Zubm6j1423ZMmqnLGVLDndkyercoYAi72Wutosipq/CegZMd0jPK/GNmbWHDiC0M5RERGJk2gK+iKgv5n1NbMWwGRgbrU2c4HLws8nAW+Ff5OIiEic1DuG7qEx8WuA+YQOW3zM3fPM7FZCXf+5wKPAn80sH/iSUNEXEZE4iuo4dHefB8yrNu+miOfFwPmxjSYiIg0RzZCLiIgkARV0EZEUoYIuIpIiVNBFRFKEBXV0oZkVAp83cvUuVDsLNYElS1bljK1kyQnJk1U5Q3q7e9eaFgRW0A+HmS1295FB54hGsmRVzthKlpyQPFmVs34achERSREq6CIiKSJZC/pDQQdogGTJqpyxlSw5IXmyKmc9knIMXUREvipZe+giIlKNCrqISIpIuIJuZuPNbI2Z5ZvZjBqWtzSzZ8PLPzCzPhHLrg/PX2Nm3w4458/NbJWZrTCzN82sd8SyCjNbFn5UvxRxvHNONbPCiDxXRiy7zMzWhh+XVV83gKx/jMj5qZntjlgWl21qZo+Z2XYz+7iW5WZm94R/hhVmNiJiWby3Z31ZLw5nXGlm75nZ0Ihl68Pzl5nZ4oBzjjWzPRGf700Ry+r8zsQ55y8iMn4c/k52Ci+Lz/as7c4XQTwIXZ53HXAM0AJYDgyq1uZq4IHw88nAs+Hng8LtWwJ9w6+TEWDOcUDr8PMfVOUMTxcl0PacSrU7UIXndwIKwv92DD/vGGTWau1/ROhSzvHepl8DRgAf17L8TOBvhO7UdzLwQRDbM8qsp1ZlACZUZQ1Pr6eeu47FMedY4JXD/c40dc5qbb9D6L4Qcd2eidZD/9cNqd29FKi6IXWkicAT4efPA6db6HbvE4HZ7l7i7p8B+eHXCySnu+e6+4Hw5PuE7vQUb9Fsz9p8G3jd3b90913A68D4JsoJDc96IfBME+apkbu/Q+ia/7WZCDzpIe8DHcysO/HfnvVmdff3wlkguO9oNNu0Nofz/W6wBuYM5PuZaAW9phtSH11bG3cvB6puSB3NuvHMGekKQr22KllmttjM3jezf2+CfFWizXle+E/v582s6naD8dyeDXq/8PBVX+CtiNnx2qb1qe3niPf2bKjq31EH/m5mSyx0c/egnWJmy83sb2Z2QnheQm5TM2tN6Jf1CxGz47I9o7rBhTSemV0CjAS+HjG7t7tvMrNjgLfMbKW7rwsmIS8Dz7h7iZl9n9BfP98IKEu0JgPPu3tFxLxE2qZJxczGESrop0XMPi28PbsBr5vZ6nAPNQhLCX2+RWZ2JvAS0D+gLNH4DvCuu0f25uOyPROth344N6SOZt145sTMzgBuBM5x95Kq+e6+KfxvAbAAGB5UTnffGZHtESAn2nVjrCHvN5lqf87GcZvWp7afI97bMypmNoTQ5z7R3f91Y/eI7bkdeJGmG76sl7vvdfei8PN5QKaZdSFBtyl1fz+bdns29SB9Qx6E/mIoIPTndNVOjhOqtfkhh+4UnRN+fgKH7hQtoOl2ikaTczihHTb9q83vCLQMP+8CrKWJduREmbN7xPP/AN4PP+8EfBbO2zH8vFOQn3243UBCO5gsiG0afo8+1L4D7ywO3Sn6YRDbM8qsvQjtazq12vw2QLuI5+8B4wPMeWTV502oEG4Ib9+ovjPxyhlefgShcfY2QWzPJv0yNXKDnQl8Gi6GN4bn3UqolwuQBTwX/iJ+CBwTse6N4fXWABMCzvkGsA1YFn7MDc8/FVgZ/vKtBK4IOOd/AXnhPLnAwIh1p4W3cz5wedCffXj6FuD2auvFbZsS6nltAcoIjdleAVwFXBVebsDM8M+wEhgZ4PasL+sjwK6I7+ji8Pxjwttyefi7cWPAOa+J+I6+T8QvoJq+M0HlDLeZSujgjMj14rY9deq/iEiKSLQxdBERaSQVdBGRFKGCLiKSIlTQRURShAq6iEiKUEEXEUkRKugiIilC13KRtGNmtwNfuPvM8PQtQAXwTaA9of8XP3D3hWZ2BfArYDehE0NK3P2aIHKL1Ec9dElHzwLfjZj+LqH/C/PdfRgwFFhmZkcBvyF0Cv8YQpcdEElY6qFL2nH3j8ysW7hgdyV0+nsu8JiZZQIvufsyMzsdeNvDV80zs+eAAYEFF6mHeuiSrp4DJgEXELqb1DuE7kizCXjczC4NMpxIY6igS7p6ltDVOicBz4VvmrHN3R8mdNGqEcAi4Otm1jF8qebzAksrEgUNuUhacvc8M2sHbHL3LeGbNv/CzMqAIuBSD92Q4D8JXdXzS2A1oTtkiSQkXW1RpA5m1tZDd8ppTujGBI+5+4tB5xKpiYZcROp2i5ktAz4mdFOKlwJNI1IH9dBFRFKEeugiIilCBV1EJEWooIuIpAgVdBGRFKGCLiKSIv4fwrADa7uwGQQAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}],"source":["df.plot(x=\"vsg\", y=\"f_T\", grid=True)\n","plt.show()"]},{"cell_type":"markdown","metadata":{"id":"_5Pg-YCXPJE_"},"source":["## III. Summary of your Idea\n","\n","This is where you summarize your work. Comparison tables and a description of your expected results should be listed here."]},{"cell_type":"markdown","metadata":{"id":"llYW0-ATPJE_"},"source":["## IV. Planification and Tasks\n","\n","Planning and breakdown of tasks are usually helpful for a successful project. Good Luck!"]}],"metadata":{"colab":{"provenance":[],"toc_visible":true},"kernelspec":{"display_name":"Python 3.9.13 64-bit","language":"python","name":"python3"},"language_info":{"name":"python","version":"3.9.13"},"vscode":{"interpreter":{"hash":"397704579725e15f5c7cb49fe5f0341eb7531c82d19f2c29d197e8b64ab5776b"}}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file +{"cells":[{"cell_type":"markdown","metadata":{"id":"view-in-github"},"source":["\"Open"]},{"cell_type":"markdown","metadata":{"id":"aK2t7aSWNojQ"},"source":["# 12-bit SAR ADC design for lab in a bench chip\n","\n","```\n","AC3E-UTFSM-PUC-Chile Team, May 2023\n","SPDX-License-Identifier: Apache-2.0\n","```\n","\n","\n","|Name|Email|Affiliation|IEEE Member|SSCS Member|\n","|:--:|:--:|:----------:|:----------:|:----------:|\n","|Jorge Marín (Lead)
|jorge.marinn@usm.cl|AC3E|Yes|Yes|\n","|Christian Rojas|c.a.rojas@ieee.org|AC3E, Universidad Técnica Federico Santa María|Yes|No|\n","|Alonso Rodríguez|alonso.rodb@gmail.com|AC3E|Yes/No|Yes/No|\n","|Kevin Pizarro|kevin.pizarroa@sansano.usm.cl|Universidad Técnica Federico Santa María|Yes|Yes|\n","|Vicente Osorio|vicente.osorio@usm.cl|Universidad Técnica Federico Santa María|Yes|Yes|\n","|Andrea Núñez|anunezd@usm.cl|Universidad Técnica Federico Santa María|Yes/No|Yes/No|\n","|Mario Romero|mario.romeron@usm.cl|Universidad Técnica Federico Santa María|Yes|Yes|\n","|Felipe Torres|felipe.torreso@sansano.usm.cl|Affiliation 3|Yes/No|Yes/No|\n","|Patricio Carrasco|patricio.carrascoo@sansano.usm.cl|Affiliation 3|Yes/No|Yes/No|\n","|Sebastián Sánchez|sebastian.sanchezp@usm.cl|Universidad Técnica Federico Santa María|Yes|Yes|\n","|Jesús Ávila|jesus.avila.05@gmail.com|Universidad Nacional de Tucumán|No| No|\n","|Martín Muñoz|martin.munozmun@usm.cl|Universidad Técnica Federico Santa María|Yes/No|Yes/No|\n","|Valeria Muñoz|valeria.munoz@usm.cl|Affiliation 4|Yes/No|Yes/No|\n","|Joaquín Saldías|joaquin.saldiasa@usm.cl|Affiliation 3|Yes/No|Yes/No|\n","|Felipe Rifo|felipe.rifo@sansano.usm.cl|Affiliation 3|Yes/No|Yes/No|\n","|Alper Kurt|alper.kurt@tera-micro.com|Istanbul Technical University|NO|NO"]},{"cell_type":"markdown","metadata":{"id":"W7JQJy7mvn2w"},"source":["**_Abstract_** - This work introduces a design of a small, high-performance, 12-bit SAR ADC intended for an integrated oscilloscope, targetting the open-source GlobalFoundries 180nm PDK.\n","\n","\n"]},{"cell_type":"markdown","metadata":{"id":"4ProrWGQPJEx"},"source":["## Tool Installation\n","\n","The tools to be used and therefore installed are ngspice and Icarus verilog."]},{"cell_type":"code","execution_count":2,"metadata":{"id":"aKoPD8cKw2UL","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1682615094067,"user_tz":240,"elapsed":14768,"user":{"displayName":"Kevin Pizarro","userId":"12197384060258896296"}},"outputId":"e92bf97b-fb12-4256-c239-1ed288835ca8"},"outputs":[{"output_type":"stream","name":"stdout","text":["\n"," __\n"," __ ______ ___ ____ _____ ___ / /_ ____ _\n"," / / / / __ `__ \\/ __ `/ __ `__ \\/ __ \\/ __ `/\n"," / /_/ / / / / / / /_/ / / / / / / /_/ / /_/ /\n"," / .___/_/ /_/ /_/\\__,_/_/ /_/ /_/_.___/\\__,_/\n"," /_/\n","\n","Empty environment created at prefix: /content/conda-env\n","\n"," __\n"," __ ______ ___ ____ _____ ___ / /_ ____ _\n"," / / / / __ `__ \\/ __ `/ __ `__ \\/ __ \\/ __ `/\n"," / /_/ / / / / / / /_/ / / / / / / /_/ / /_/ /\n"," / .___/_/ /_/ /_/\\__,_/_/ /_/ /_/_.___/\\__,_/\n"," /_/\n","\n","\n","Pinned packages:\n"," - python 3.7*\n","\n","\n","Transaction\n","\n"," Prefix: /content/conda-env\n","\n"," Updating specs:\n","\n"," - open_pdks.sky130a\n"," - ngspice=*\n"," - iverilog\n"," - git\n","\n","\n"," Package Version Build Channel Size\n","─────────────────────────────────────────────────────────────────────────────────────────────\n"," Install:\n","─────────────────────────────────────────────────────────────────────────────────────────────\n","\n"," \u001b[32m+ _libgcc_mutex \u001b[0m 0.1 main main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ _openmp_mutex \u001b[0m 5.1 1_gnu main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ bzip2 \u001b[0m 1.0.8 h7b6447c_0 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ c-ares \u001b[0m 1.19.0 h5eee18b_0 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ ca-certificates \u001b[0m 2023.01.10 h06a4308_0 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ curl \u001b[0m 7.88.1 h5eee18b_0 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ expat \u001b[0m 2.4.9 h6a678d5_0 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ gdbm \u001b[0m 1.18 hd4cb3f1_4 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ gettext \u001b[0m 0.21.0 h39681ba_1 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ git \u001b[0m 2.34.1 pl5262hc120c5b_0 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ icu \u001b[0m 58.2 he6710b0_3 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ iverilog \u001b[0m 0_8_6666_g014416872 20230412_103222 litex-hub/linux-64\u001b[32m Cached\u001b[0m\n"," \u001b[32m+ krb5 \u001b[0m 1.19.4 h568e23c_0 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ libcurl \u001b[0m 7.88.1 h91b91d3_0 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ libedit \u001b[0m 3.1.20221030 h5eee18b_0 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ libev \u001b[0m 4.33 h7f8727e_1 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ libgcc-ng \u001b[0m 11.2.0 h1234567_1 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ libgomp \u001b[0m 11.2.0 h1234567_1 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ libnghttp2 \u001b[0m 1.46.0 hce63b2e_0 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ libssh2 \u001b[0m 1.10.0 h8f2d780_0 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ libstdcxx-ng \u001b[0m 11.2.0 h1234567_1 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ libxml2 \u001b[0m 2.10.3 hcbfbd50_0 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ ncurses \u001b[0m 6.4 h6a678d5_0 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ ngspice \u001b[0m 39.3_87_g6eeb48bb5 20230412_103222 litex-hub/linux-64\u001b[32m Cached\u001b[0m\n"," \u001b[32m+ open_pdks.sky130a\u001b[0m 1.0.406_0_g0c37b7c 20230412_103222 litex-hub/noarch \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ openssl \u001b[0m 1.1.1t h7f8727e_0 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ pcre2 \u001b[0m 10.37 he7ceb23_1 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ perl \u001b[0m 5.34.0 h5eee18b_2 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ readline \u001b[0m 8.2 h5eee18b_0 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ tk \u001b[0m 8.6.12 h1ccaba5_0 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ xz \u001b[0m 5.2.10 h5eee18b_1 main/linux-64 \u001b[32m Cached\u001b[0m\n"," \u001b[32m+ zlib \u001b[0m 1.2.13 h5eee18b_0 main/linux-64 \u001b[32m Cached\u001b[0m\n","\n"," Summary:\n","\n"," Install: 32 packages\n","\n"," Total download: 0 B\n","\n","─────────────────────────────────────────────────────────────────────────────────────────────\n","\n","\n","\n","Transaction starting\n","Linking open_pdks.sky130a-1.0.406_0_g0c37b7c-20230412_103222\n","Linking _libgcc_mutex-0.1-main\n","Linking libstdcxx-ng-11.2.0-h1234567_1\n","Linking ca-certificates-2023.01.10-h06a4308_0\n","Linking libgomp-11.2.0-h1234567_1\n","Linking _openmp_mutex-5.1-1_gnu\n","Linking libgcc-ng-11.2.0-h1234567_1\n","Linking libev-4.33-h7f8727e_1\n","Linking c-ares-1.19.0-h5eee18b_0\n","Linking xz-5.2.10-h5eee18b_1\n","Linking icu-58.2-he6710b0_3\n","Linking ncurses-6.4-h6a678d5_0\n","Linking expat-2.4.9-h6a678d5_0\n","Linking zlib-1.2.13-h5eee18b_0\n","Linking openssl-1.1.1t-h7f8727e_0\n","Linking bzip2-1.0.8-h7b6447c_0\n","Linking libedit-3.1.20221030-h5eee18b_0\n","Linking readline-8.2-h5eee18b_0\n","Linking tk-8.6.12-h1ccaba5_0\n","Linking libxml2-2.10.3-hcbfbd50_0\n","Linking libnghttp2-1.46.0-hce63b2e_0\n","Linking libssh2-1.10.0-h8f2d780_0\n","Linking pcre2-10.37-he7ceb23_1\n","Linking krb5-1.19.4-h568e23c_0\n","Linking gdbm-1.18-hd4cb3f1_4\n","Linking gettext-0.21.0-h39681ba_1\n","Linking libcurl-7.88.1-h91b91d3_0\n","Linking perl-5.34.0-h5eee18b_2\n","Linking curl-7.88.1-h5eee18b_0\n","Linking git-2.34.1-pl5262hc120c5b_0\n","Linking ngspice-39.3_87_g6eeb48bb5-20230412_103222\n","Linking iverilog-0_8_6666_g014416872-20230412_103222\n","\n","Transaction finished\n","\n","To activate this environment, use:\n","\n"," $ [micro]mamba activate \n","\n","Or to execute a single command in this environment, use:\n","\n"," $ [micro]mamba run -n mycommand\n","\n","Getting repository\n","b''\n","downloading: https://github.com/google/globalfoundries-pdk-libs-gf180mcu_fd_pr/raw/main/models/ngspice/design.ngspice\n","downloading: https://github.com/google/globalfoundries-pdk-libs-gf180mcu_fd_pr/raw/main/models/ngspice/sm141064.ngspice\n","downloading: https://github.com/google/globalfoundries-pdk-libs-gf180mcu_fd_pr/raw/main/models/ngspice/smbb000149.ngspice\n","env: CONDA_PREFIX=/content/conda-env\n","env: PATH=/content/conda-env/bin:/opt/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/tools/node/bin:/tools/google-cloud-sdk/bin\n"]}],"source":["#@title Install dependencies {display-mode: \"form\"}\n","#@markdown - Click the ▷ button to setup the digital design environment based on [conda-eda](https://github.com/hdl/conda-eda).\n","\n","ngspice_version = 'latest' #@param {type:\"string\"}\n","gf180mcu_fd_pr_version = 'latest' #@param {type:\"string\"}\n","sky130_fd_pr_version = 'latest' #@param {type:\"string\"}\n","repository = 'https://git.1159.cl/Mario1159/sscs-chipathon-sar-adc.git' #@param {type:\"string\"}\n","\n","if ngspice_version == 'latest':\n"," ngspice_version = ''\n","\n","if gf180mcu_fd_pr_version == 'latest':\n"," gf180mcu_fd_pr_version = 'main'\n","\n","if sky130_fd_pr_version == 'latest':\n"," sky130_fd_pr_version = 'main'\n","\n","import os\n","import pathlib\n","import urllib.request\n","import subprocess\n","\n","!curl -Ls https://micro.mamba.pm/api/micromamba/linux-64/latest | tar -xj bin/micromamba\n","conda_prefix_path = pathlib.Path('conda-env')\n","CONDA_PREFIX = str(conda_prefix_path.resolve())\n","!bin/micromamba create --yes --prefix $CONDA_PREFIX\n","!echo 'python ==3.7*' >> {CONDA_PREFIX}/conda-meta/pinned\n","!CI=0 bin/micromamba install --yes --prefix $CONDA_PREFIX \\\n"," --channel litex-hub \\\n"," --channel main \\\n"," open_pdks.sky130a \\\n"," ngspice={ngspice_version} \\\n"," iverilog \\\n"," git\n","\n","print('Getting repository')\n","\n","if not os.path.exists(\"sscs-chipathon-sar-adc\"):\n"," result = subprocess.run([\"git\", \"clone\", \"--recurse-submodules\", repository], capture_output=True)\n"," print(result.stdout)\n","else:\n"," result = subprocess.run([\"git\", \"pull\", \"--recurse-submodules\", repository], cwd=\"sscs-chipathon-sar-adc\", capture_output=True)\n"," print(result.stdout)\n","\n","ngspice_models_dir = pathlib.Path('globalfoundries-pdk-libs-gf180mcu_fd_pr/models/ngspice')\n","ngspice_models_dir.mkdir(exist_ok=True, parents=True)\n","models = ['design.ngspice', 'sm141064.ngspice', 'smbb000149.ngspice']\n","for m in models:\n"," url = f'https://github.com/google/globalfoundries-pdk-libs-gf180mcu_fd_pr/raw/{gf180mcu_fd_pr_version}/models/ngspice/{m}'\n"," print('downloading:', url)\n"," with urllib.request.urlopen(url) as src:\n"," with (ngspice_models_dir / m).open('wb') as dst:\n"," dst.write(src.read())\n","\n","PATH = os.environ['PATH']\n","%env CONDA_PREFIX={CONDA_PREFIX}\n","%env PATH={CONDA_PREFIX}/bin:{PATH}"]},{"cell_type":"markdown","metadata":{"id":"Qnn9H_oowEgQ"},"source":["## I. Introduction\n","A successive approximation register (SAR) analog-to-digital converter (ADC) ia a type of device that converts an analog signal into a digital signal by comparing it to a series of reference voltages. SAR ADCs are used in a wide variety of data acquisition systems where a high resolution at a moderate sample speed (in the order of MS/s) it is needed. This 12-bit SAR ADC design targets Global Foundries 180nm PDK and aims to be small in size while having a good performance in ENOBs and low noise for a integrated oscilloscope inside in a lab on a bench chip application.\n","The basic architecture of a SAR ADC consists of a capacitive DAC, a comparator, and a control block. This can be seen in the figure depicted below:"]},{"cell_type":"markdown","source":["![ADC](https://git.1159.cl/Mario1159/sscs-chipathon-sar-adc/raw/branch/main/figures/adc.svg)\n","
Figure 1: SAR ADC architecture
"],"metadata":{"id":"zD8r-LNvLTLZ"}},{"cell_type":"markdown","metadata":{"id":"QNj3rwejPJE7"},"source":["## II. Implementation Details of your Idea\n","\n","**Sample & Hold**: A bootstraped switch was necessary for the sample and hold, due to the non linearity of a simple NMOS transistor, this topology can overcome this problem and make the on resistance a constant that will not depend of $V_{in}$ and since this switch will be connected to capacitors, the propagation time will be constant and not dependent of $V_{in}$.\n","\n"]},{"cell_type":"markdown","source":["\n","
Figure 2: Bootstrap switch
"],"metadata":{"id":"Zwk28HvhL7Dm"}},{"cell_type":"markdown","source":["**Comparator**: A dynamic comparator will be used to reduce the power consumption while inactive, the design shown is the same one designed by H.Pretl, the technology used in this comparator is SKY130 while is not the same technology that should be used (GF180) the challenge would change this design to make it compatible for GF180. The dynamic comparator was chosen for its non power consumption while it’s not being used."],"metadata":{"id":"SY4NFuL7ENfe"}},{"cell_type":"markdown","source":["![image-007.jpg]()"],"metadata":{"id":"M6FhPSgFEV8o"}},{"cell_type":"code","source":["%%writefile comparator_netlist.spice\n","** sch_path: /foss/designs/personal/SKY130_SAR-ADC/xschem/adc_comp_latch_tb.sch\n","**.subckt adc_comp_latch_tb\n","V1 VDD GND 1.8\n","V2 clk GND 0 PULSE(0 1.8 400n 1f 1f 400n 800n)\n","V3 inp GND 0 PULSE({vcm-5m} {vcm+5m} 0 8u 8u 8u 16u)\n","V4 inn GND 0 PULSE({vcm+5m} {vcm-5m} 0 8u 8u 8u 16u)\n","x1 VDD GND clk inp inn comp_trig qn q adc_comp_latch\n","**** begin user architecture code\n","\n",".param mc_mm_switch=0\n",".param mc_pr_switch=0\n","\n",".lib /content/conda-env/share/pdk/sky130A/libs.tech/ngspice/sky130.lib.spice TT\n",".include /content/conda-env/share/pdk/sky130A/libs.tech/ngspice/corners/tt.spice\n",".include /content/conda-env/share/pdk/sky130A/libs.tech/ngspice/r+c/res_typical__cap_typical.spice\n",".include /content/conda-env/share/pdk/sky130A/libs.tech/ngspice/r+c/res_typical__cap_typical__lin.spice \n",".include /content/conda-env/share/pdk/sky130A/libs.tech/ngspice/corners/tt/specialized_cells.spice\n","\n",".save all\n",".temp 25\n",".OPTIONS RELTOL=.001 TRTOL=1 ABSTOL=1e-16 CHGTOL=1.0e-16 DEFAD=1.0e-16\n",".param vcm=900m\n",".control\n"," tran 1n 8u\n"," wrdata vinp_vinn.txt v(inp)-v(inn)\n"," wrdata vq_vcomp_trig.txt V(q) V(comp_trig)\n"," wrdata delay.txt V(clk) V(comp_trig) V(q)\n"," wrdata cal_volt.txt V(x1.x1.on) V(x1.x1.op)\n"," wrdata eval_bits.txt V(x1.x1.bn) V(x1.x1.bp)\n",".endc\n","\n","**** end user architecture code\n","**.ends\n","\n","* expanding symbol: adc_comp_latch.sym # of pins=8\n","** sym_path: /foss/designs/personal/SKY130_SAR-ADC/xschem/adc_comp_latch.sym\n","** sch_path: /foss/designs/personal/SKY130_SAR-ADC/xschem/adc_comp_latch.sch\n",".subckt adc_comp_latch VDD VSS clk inp inn comp_trig latch_qn latch_q\n","*.iopin VDD\n","*.iopin VSS\n","*.ipin clk\n","*.ipin inp\n","*.ipin inn\n","*.opin comp_trig\n","*.opin latch_qn\n","*.opin latch_q\n","x4 VDD VSS clk net1 adc_inverter\n","x5 VDD VSS net1 net2 adc_inverter\n","x1 VDD VSS net2 net1 inp inn comp_outp comp_outn adc_comp_circuit\n","x3 comp_outp comp_outn VDD comp_trig VSS adc_nor\n","x2 comp_outp latch_qn VDD latch_q VSS comp_outn adc_nor_latch\n",".ends\n","\n","\n","* expanding symbol: adc_inverter.sym # of pins=4\n","** sym_path: /foss/designs/personal/SKY130_SAR-ADC/xschem/adc_inverter.sym\n","** sch_path: /foss/designs/personal/SKY130_SAR-ADC/xschem/adc_inverter.sch\n",".subckt adc_inverter VDD VSS in out\n","*.iopin VDD\n","*.iopin VSS\n","*.ipin in\n","*.opin out\n","XM2 out in VDD VDD sky130_fd_pr__pfet_01v8 L=0.15 W=0.84 nf=2 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'\n","+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'\n","+ sa=0 sb=0 sd=0 mult=1 m=1\n","XM1 out in VSS VSS sky130_fd_pr__nfet_01v8 L=0.15 W=0.42 nf=1 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'\n","+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'\n","+ sa=0 sb=0 sd=0 mult=1 m=1\n",".ends\n","\n","\n","* expanding symbol: adc_comp_circuit.sym # of pins=8\n","** sym_path: /foss/designs/personal/SKY130_SAR-ADC/xschem/adc_comp_circuit.sym\n","** sch_path: /foss/designs/personal/SKY130_SAR-ADC/xschem/adc_comp_circuit.sch\n",".subckt adc_comp_circuit VPWR VGND clk nclk inp inn outp outn\n","*.iopin VPWR\n","*.iopin VGND\n","*.ipin clk\n","*.ipin nclk\n","*.ipin inp\n","*.ipin inn\n","*.opin outp\n","*.opin outn\n","XM3 on inp in_stage_net1 VGND sky130_fd_pr__nfet_01v8_lvt L=0.15 W=8 nf=4 ad='int((nf+1)/2) * W/nf * 0.29'\n","+ as='int((nf+2)/2) * W/nf * 0.29' pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)'\n","+ nrd='0.29 / W' nrs='0.29 / W' sa=0 sb=0 sd=0 mult=1 m=1\n","XM4 op inn in_stage_net1 VGND sky130_fd_pr__nfet_01v8_lvt L=0.15 W=8 nf=4 ad='int((nf+1)/2) * W/nf * 0.29'\n","+ as='int((nf+2)/2) * W/nf * 0.29' pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)'\n","+ nrd='0.29 / W' nrs='0.29 / W' sa=0 sb=0 sd=0 mult=1 m=1\n","XM5 in_stage_net1 clk VGND VGND sky130_fd_pr__nfet_01v8 L=0.15 W=4 nf=8 ad='int((nf+1)/2) * W/nf * 0.29'\n","+ as='int((nf+2)/2) * W/nf * 0.29' pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)'\n","+ nrd='0.29 / W' nrs='0.29 / W' sa=0 sb=0 sd=0 mult=1 m=1\n","XM6 in_stage_net2 bp VPWR VPWR sky130_fd_pr__pfet_01v8 L=0.15 W=4 nf=2 ad='int((nf+1)/2) * W/nf * 0.29'\n","+ as='int((nf+2)/2) * W/nf * 0.29' pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)'\n","+ nrd='0.29 / W' nrs='0.29 / W' sa=0 sb=0 sd=0 mult=1 m=1\n","XM7 in_stage_net3 bn VPWR VPWR sky130_fd_pr__pfet_01v8 L=0.15 W=4 nf=2 ad='int((nf+1)/2) * W/nf * 0.29'\n","+ as='int((nf+2)/2) * W/nf * 0.29' pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)'\n","+ nrd='0.29 / W' nrs='0.29 / W' sa=0 sb=0 sd=0 mult=1 m=1\n","XM8 bn op in_stage_net2 VPWR sky130_fd_pr__pfet_01v8 L=0.15 W=4 nf=2 ad='int((nf+1)/2) * W/nf * 0.29'\n","+ as='int((nf+2)/2) * W/nf * 0.29' pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)'\n","+ nrd='0.29 / W' nrs='0.29 / W' sa=0 sb=0 sd=0 mult=1 m=1\n","XM9 bp on in_stage_net3 VPWR sky130_fd_pr__pfet_01v8 L=0.15 W=4 nf=2 ad='int((nf+1)/2) * W/nf * 0.29'\n","+ as='int((nf+2)/2) * W/nf * 0.29' pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)'\n","+ nrd='0.29 / W' nrs='0.29 / W' sa=0 sb=0 sd=0 mult=1 m=1\n","XM10 bn bp VGND VGND sky130_fd_pr__nfet_01v8 L=0.15 W=2 nf=1 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'\n","+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'\n","+ sa=0 sb=0 sd=0 mult=1 m=1\n","XM11 bn nclk VGND VGND sky130_fd_pr__nfet_01v8 L=0.15 W=2 nf=1 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'\n","+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'\n","+ sa=0 sb=0 sd=0 mult=1 m=1\n","XM12 bp nclk VGND VGND sky130_fd_pr__nfet_01v8 L=0.15 W=2 nf=1 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'\n","+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'\n","+ sa=0 sb=0 sd=0 mult=1 m=1\n","XM13 bp bn VGND VGND sky130_fd_pr__nfet_01v8 L=0.15 W=2 nf=1 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'\n","+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'\n","+ sa=0 sb=0 sd=0 mult=1 m=1\n","XM2 op clk VPWR VPWR sky130_fd_pr__pfet_01v8 L=0.15 W=2 nf=4 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'\n","+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'\n","+ sa=0 sb=0 sd=0 mult=1 m=1\n","XM1 on clk VPWR VPWR sky130_fd_pr__pfet_01v8 L=0.15 W=2 nf=4 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'\n","+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'\n","+ sa=0 sb=0 sd=0 mult=1 m=1\n","x1 VPWR VGND bp outp adc_comp_buffer\n","x2 VPWR VGND bn outn adc_comp_buffer\n","x3 VGND VGND on VGND VGND adc_noise_decoup_cell2\n","x4 VGND VGND op VGND VGND adc_noise_decoup_cell2\n","XM4_DUMMY in_stage_net1 inn in_stage_net1 VGND sky130_fd_pr__nfet_01v8_lvt L=0.15 W=2 nf=1 ad='int((nf+1)/2) * W/nf * 0.29'\n","+ as='int((nf+2)/2) * W/nf * 0.29' pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)'\n","+ nrd='0.29 / W' nrs='0.29 / W' sa=0 sb=0 sd=0 mult=1 m=1\n","XM3_DUMMY in_stage_net1 inp in_stage_net1 VGND sky130_fd_pr__nfet_01v8_lvt L=0.15 W=2 nf=1 ad='int((nf+1)/2) * W/nf * 0.29'\n","+ as='int((nf+2)/2) * W/nf * 0.29' pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)'\n","+ nrd='0.29 / W' nrs='0.29 / W' sa=0 sb=0 sd=0 mult=1 m=1\n","XM5_DUMMY2 in_stage_net1 clk in_stage_net1 VGND sky130_fd_pr__nfet_01v8 L=0.15 W=0.5 nf=1 ad='int((nf+1)/2) * W/nf * 0.29'\n","+ as='int((nf+2)/2) * W/nf * 0.29' pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)'\n","+ nrd='0.29 / W' nrs='0.29 / W' sa=0 sb=0 sd=0 mult=1 m=1\n","XM5_DUMMY1 in_stage_net1 clk in_stage_net1 VGND sky130_fd_pr__nfet_01v8 L=0.15 W=0.5 nf=1 ad='int((nf+1)/2) * W/nf * 0.29'\n","+ as='int((nf+2)/2) * W/nf * 0.29' pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)'\n","+ nrd='0.29 / W' nrs='0.29 / W' sa=0 sb=0 sd=0 mult=1 m=1\n","XM2_DUMMY VPWR clk VPWR VPWR sky130_fd_pr__pfet_01v8 L=0.15 W=0.5 nf=1 ad='int((nf+1)/2) * W/nf * 0.29'\n","+ as='int((nf+2)/2) * W/nf * 0.29' pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)'\n","+ nrd='0.29 / W' nrs='0.29 / W' sa=0 sb=0 sd=0 mult=1 m=1\n","XM1_DUMMY VPWR clk VPWR VPWR sky130_fd_pr__pfet_01v8 L=0.15 W=0.5 nf=1 ad='int((nf+1)/2) * W/nf * 0.29'\n","+ as='int((nf+2)/2) * W/nf * 0.29' pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)'\n","+ nrd='0.29 / W' nrs='0.29 / W' sa=0 sb=0 sd=0 mult=1 m=1\n","XM8_DUMMY in_stage_net2 op in_stage_net2 VPWR sky130_fd_pr__pfet_01v8 L=0.15 W=2 nf=1 ad='int((nf+1)/2) * W/nf * 0.29'\n","+ as='int((nf+2)/2) * W/nf * 0.29' pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)'\n","+ nrd='0.29 / W' nrs='0.29 / W' sa=0 sb=0 sd=0 mult=1 m=1\n","XM9_DUMMY in_stage_net3 on in_stage_net3 VPWR sky130_fd_pr__pfet_01v8 L=0.15 W=2 nf=1 ad='int((nf+1)/2) * W/nf * 0.29'\n","+ as='int((nf+2)/2) * W/nf * 0.29' pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)'\n","+ nrd='0.29 / W' nrs='0.29 / W' sa=0 sb=0 sd=0 mult=1 m=1\n","XM6_DUMMY in_stage_net2 bp in_stage_net2 VPWR sky130_fd_pr__pfet_01v8 L=0.15 W=2 nf=1 ad='int((nf+1)/2) * W/nf * 0.29'\n","+ as='int((nf+2)/2) * W/nf * 0.29' pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)'\n","+ nrd='0.29 / W' nrs='0.29 / W' sa=0 sb=0 sd=0 mult=1 m=1\n","XM7_DUMMY in_stage_net3 bn in_stage_net3 VPWR sky130_fd_pr__pfet_01v8 L=0.15 W=2 nf=1 ad='int((nf+1)/2) * W/nf * 0.29'\n","+ as='int((nf+2)/2) * W/nf * 0.29' pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)'\n","+ nrd='0.29 / W' nrs='0.29 / W' sa=0 sb=0 sd=0 mult=1 m=1\n","XM12_DUMMY VGND VGND VGND VGND sky130_fd_pr__nfet_01v8 L=0.15 W=2 nf=1 ad='int((nf+1)/2) * W/nf * 0.29'\n","+ as='int((nf+2)/2) * W/nf * 0.29' pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)'\n","+ nrd='0.29 / W' nrs='0.29 / W' sa=0 sb=0 sd=0 mult=1 m=1\n","XM11_DUMMY VGND VGND VGND VGND sky130_fd_pr__nfet_01v8 L=0.15 W=2 nf=1 ad='int((nf+1)/2) * W/nf * 0.29'\n","+ as='int((nf+2)/2) * W/nf * 0.29' pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)'\n","+ nrd='0.29 / W' nrs='0.29 / W' sa=0 sb=0 sd=0 mult=1 m=1\n",".ends\n","\n","\n","* expanding symbol: adc_nor.sym # of pins=5\n","** sym_path: /foss/designs/personal/SKY130_SAR-ADC/xschem/adc_nor.sym\n","** sch_path: /foss/designs/personal/SKY130_SAR-ADC/xschem/adc_nor.sch\n",".subckt adc_nor b a VDD q VSS\n","*.iopin VDD\n","*.iopin VSS\n","*.ipin b\n","*.ipin a\n","*.opin q\n","XM5 q b VSS VSS sky130_fd_pr__nfet_01v8 L=0.15 W=0.42 nf=1 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'\n","+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'\n","+ sa=0 sb=0 sd=0 mult=1 m=1\n","XM6 q a VSS VSS sky130_fd_pr__nfet_01v8 L=0.15 W=0.42 nf=1 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'\n","+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'\n","+ sa=0 sb=0 sd=0 mult=1 m=1\n","XM1 q b net1 VDD sky130_fd_pr__pfet_01v8 L=0.15 W=0.8 nf=1 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'\n","+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'\n","+ sa=0 sb=0 sd=0 mult=1 m=1\n","XM2 q a net2 VDD sky130_fd_pr__pfet_01v8 L=0.15 W=0.8 nf=1 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'\n","+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'\n","+ sa=0 sb=0 sd=0 mult=1 m=1\n","XM3 net2 b VDD VDD sky130_fd_pr__pfet_01v8 L=0.15 W=0.8 nf=1 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'\n","+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'\n","+ sa=0 sb=0 sd=0 mult=1 m=1\n","XM4 net1 a VDD VDD sky130_fd_pr__pfet_01v8 L=0.15 W=0.8 nf=1 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'\n","+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'\n","+ sa=0 sb=0 sd=0 mult=1 m=1\n",".ends\n","\n","\n","* expanding symbol: adc_nor_latch.sym # of pins=6\n","** sym_path: /foss/designs/personal/SKY130_SAR-ADC/xschem/adc_nor_latch.sym\n","** sch_path: /foss/designs/personal/SKY130_SAR-ADC/xschem/adc_nor_latch.sch\n",".subckt adc_nor_latch s qn VDD q VSS r\n","*.iopin VDD\n","*.iopin VSS\n","*.ipin s\n","*.ipin r\n","*.opin q\n","*.opin qn\n","x1 q s VDD qn VSS adc_nor\n","x2 qn r VDD q VSS adc_nor\n",".ends\n","\n","\n","* expanding symbol: adc_comp_buffer.sym # of pins=4\n","** sym_path: /foss/designs/personal/SKY130_SAR-ADC/xschem/adc_comp_buffer.sym\n","** sch_path: /foss/designs/personal/SKY130_SAR-ADC/xschem/adc_comp_buffer.sch\n",".subckt adc_comp_buffer VDD VSS in out\n","*.iopin VDD\n","*.iopin VSS\n","*.ipin in\n","*.opin out\n","XM5 buf_mid in VSS VSS sky130_fd_pr__nfet_01v8 L=0.15 W=0.5 nf=1 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'\n","+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'\n","+ sa=0 sb=0 sd=0 mult=1 m=1\n","XM1 buf_mid in VDD VDD sky130_fd_pr__pfet_01v8 L=0.15 W=1 nf=1 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'\n","+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'\n","+ sa=0 sb=0 sd=0 mult=1 m=1\n","XM2 out buf_mid VDD VDD sky130_fd_pr__pfet_01v8 L=0.15 W=2 nf=2 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'\n","+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'\n","+ sa=0 sb=0 sd=0 mult=1 m=1\n","XM6 out buf_mid VSS VSS sky130_fd_pr__nfet_01v8 L=0.15 W=1 nf=2 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'\n","+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'\n","+ sa=0 sb=0 sd=0 mult=1 m=1\n",".ends\n","\n","\n","* expanding symbol: adc_noise_decoup_cell2.sym # of pins=5\n","** sym_path: /foss/designs/personal/SKY130_SAR-ADC/xschem/adc_noise_decoup_cell2.sym\n","** sch_path: /foss/designs/personal/SKY130_SAR-ADC/xschem/adc_noise_decoup_cell2.sch\n",".subckt adc_noise_decoup_cell2 mimcap_top mimcap_bot nmoscap_top nmoscap_bot pwell\n","*.iopin nmoscap_top\n","*.iopin mimcap_top\n","*.iopin mimcap_bot\n","*.iopin nmoscap_bot\n","*.iopin pwell\n","XC1 mimcap_top mimcap_bot sky130_fd_pr__cap_mim_m3_1 W=18.9 L=5.1 MF=1 m=1\n","XC2 nmoscap_top nmoscap_bot pwell sky130_fd_pr__cap_var_lvt W=18.4 L=3.9 VM=1 m=1\n",".ends\n","\n",".GLOBAL GND\n",".GLOBAL VDD\n",".end"],"metadata":{"id":"hLOfJ7cZ0yib","executionInfo":{"status":"ok","timestamp":1682615111354,"user_tz":240,"elapsed":2275,"user":{"displayName":"Kevin Pizarro","userId":"12197384060258896296"}},"colab":{"base_uri":"https://localhost:8080/"},"outputId":"c689441b-1dfb-4032-d447-5e787a7503a4"},"execution_count":3,"outputs":[{"output_type":"stream","name":"stdout","text":["Writing comparator_netlist.spice\n"]}]},{"cell_type":"code","source":["!ngspice -b comparator_netlist.spice"],"metadata":{"id":"0WVpyndkilkY","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1682615159586,"user_tz":240,"elapsed":21698,"user":{"displayName":"Kevin Pizarro","userId":"12197384060258896296"}},"outputId":"6e86e0fc-f8a4-4517-9f1d-52535ef3708f"},"execution_count":4,"outputs":[{"output_type":"stream","name":"stdout","text":["\n","Note: No compatibility mode selected!\n","\n","Warning: redefinition of .subckt sky130_fd_pr__nfet_01v8, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__nfet_01v8_lvt, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__pfet_01v8, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__nfet_03v3_nvt, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__nfet_05v0_nvt, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__esd_nfet_01v8, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__pfet_01v8_lvt, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__pfet_01v8_hvt, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__esd_pfet_g5v0d10v5, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__pfet_g5v0d10v5, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__nfet_g5v0d10v5, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__nfet_g5v0d16v0, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__nfet_g5v0d16v0__base, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__esd_nfet_g5v0d10v5, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__nfet_20v0, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__nfet_20v0_reverse_iso, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__nfet_20v0_iso, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__nfet_20v0_zvt, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__pfet_20v0, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__nfet_20v0_nvt, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__pnp_05v5_w3p40l3p40, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__npn_05v5_w1p00l1p00, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__npn_05v5_w1p00l2p00, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__pnp_05v5_w0p68l0p68, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__pfet_g5v0d16v0__base, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__pfet_g5v0d16v0, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_var_hvt, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_var_lvt, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__res_iso_pw, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_08p6x07p8_l1m1m2_noshield_o1, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_mim_m3_1, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_mim_m3_2, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_04p4x04p6_m1m2_noshield_o1nhv, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_04p4x04p6_m1m2_noshield_o1phv, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__special_nfet_pass, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__special_nfet_latch, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__special_pfet_pass, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__special_nfet_pass_flash, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_08p6x07p8_m1m2m3_shieldl1, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_04p4x04p6_m1m2m3_shieldl1, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_11p5x11p7_m1m2m3_shieldl1, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_11p5x11p7_l1m1m2m3_shieldm4, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_11p5x11p7_l1m1m2m3_shieldpom4, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_06p8x06p1_l1m1m2m3_shieldpom4, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_06p8x06p1_m1m2m3_shieldl1m4, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_11p5x11p7_l1m1m2m3m4_shieldm5, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_11p5x11p7_l1m1m2m3m4_shieldpom5, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_11p5x11p7_m1m2m3m4_shieldl1m5, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_11p5x11p7_m1m4_noshield, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_11p5x11p7_m1m2m3m4_shieldm5, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_08p6x07p8_m1m2m3_shieldl1m5_floatm4, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_04p4x04p6_m1m2m3_shieldl1m5_floatm4, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_11p5x11p7_m1m2m3_shieldl1m5_floatm4, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_11p3x11p8_l1m1m2m3m4_shieldm5_nhv, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_11p3x11p8_l1m1m2m3m4_shieldm5_nhv__base, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_11p5x11p7_l1m1m2m3m4_shieldpom5_x, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_02p9x06p1_m1m2m3m4_shieldl1_fingercap2, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_02p7x11p1_m1m2m3m4_shieldl1_fingercap, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_02p7x21p1_m1m2m3m4_shieldl1_fingercap, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_02p7x41p1_m1m2m3m4_shieldl1_fingercap, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_02p7x06p1_m1m2m3m4_shieldl1_fingercap, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_11p3x11p3_m1m2m3m4_shieldl1_wafflecap, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_05p9x05p9_m1m2m3m4_shieldl1_wafflecap, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__cap_vpp_44p7x23p1_pol1m1m2m3m4m5_noshield, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__model__parasitic__res_po, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__res_xhigh_po, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__res_high_po, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__res_xhigh_po_0p35, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__res_xhigh_po_0p69, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__res_xhigh_po_1p41, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__res_xhigh_po_2p85, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__res_xhigh_po_5p73, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__res_xhigh_po__base, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__res_high_po_0p35, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__res_high_po_0p69, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__res_high_po_1p41, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__res_high_po_2p85, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__res_high_po_5p73, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_g5v0d10v5_bm10w3p00l0p50, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_g5v0d10v5_bm04w3p00l0p50, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_g5v0d10v5_bm10w5p00l0p50, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_g5v0d10v5_bm04w5p00l0p50, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_g5v0d10v5_bm10w7p00l0p50, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_g5v0d10v5_bm04w7p00l0p50, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_g5v0d10v5_bm02w5p00l0p50, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_g5v0d10v5_bm02w3p00l0p50, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_lvt_af02w0p84l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_lvt_af04w0p84l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_lvt_af04w3p00l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_lvt_af02w0p42l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_lvt_af02w3p00l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_lvt_af08w3p00l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_lvt_af08w0p84l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm02w1p65l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm04w1p65l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm02w1p65l0p18, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm04w1p65l0p18, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm02w1p65l0p25, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm04w1p65l0p25, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm02w3p00l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm04w3p00l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm02w3p00l0p18, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm04w3p00l0p18, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm02w3p00l0p25, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm04w3p00l0p25, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm02w5p00l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm04w5p00l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm02w5p00l0p18, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm04w5p00l0p18, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm02w5p00l0p25, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm04w5p00l0p25, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm02w1p65l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm04w1p65l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm02w1p65l0p18, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm04w1p65l0p18, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm02w1p65l0p25, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm04w1p65l0p25, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm02w3p00l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm04w3p00l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm02w3p00l0p18, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm04w3p00l0p18, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm02w3p00l0p25, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm04w3p00l0p25, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm02w5p00l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm04w5p00l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm02w5p00l0p18, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm04w5p00l0p18, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm02w5p00l0p25, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm04w5p00l0p25, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_af02w1p68l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_af02w5p00l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_af02w0p84l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_af04w1p68l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_af02w3p00l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_mvt_af02w1p68l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_mvt_af02w0p84l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_mvt_af04w1p68l0p15, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm02, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm02w3p00, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm02w5p00, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm04, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm04w3p00, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_bm04w5p00, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_lvt_bm02, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_lvt_bm02w3p00, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_lvt_bm02w5p00, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_lvt_bm02w5p00l0p18, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_lvt_bm02w5p00l0p25, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_lvt_bm04, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_lvt_bm04w3p00, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_lvt_bm04w5p00, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_lvt_bm04w5p00l0p18, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_01v8_lvt_bm04w5p00l0p25, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_g5v0d10v5_bm02, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_g5v0d10v5_bm02w5p00, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_g5v0d10v5_bm04, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_g5v0d10v5_bm04w5p00, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_g5v0d10v5_bm04w7p00, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_g5v0d10v5_bm10, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_g5v0d10v5_bm10w5p00, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_nfet_g5v0d10v5_bm10w7p00, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm02, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm02w3p00, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm02w5p00, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm04, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm04w3p00, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__rf_pfet_01v8_bm04w5p00, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__pfet_01v8_mvt, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__res_generic_po, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__res_generic_nd, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__res_generic_pd, ignored\n","Warning: redefinition of .subckt short, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__diode_pw2nd, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__diode_pw2nd_05v5, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__res_generic_nd__hv, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__res_generic_pd__hv, ignored\n","Warning: redefinition of .subckt sky130_fd_pr__special_nfet_pass_lvt, ignored\n","\n","Circuit: ** sch_path: /foss/designs/personal/sky130_sar-adc/xschem/adc_comp_latch_tb.sch\n","\n","Too few parameters for subcircuit type \"adc_comp_latch\" (instance: xx1)\n"," Simulation interrupted due to error!\n","\n","Note: No \".plot\", \".print\", or \".fourier\" lines; no simulations run\n"]}]},{"cell_type":"code","source":["import math\n","import pandas as pd\n","import matplotlib.pyplot as plt\n","df = pd.read_csv(\"delay.txt\", delim_whitespace=True, header=None)\n","df.columns = [\"t\", \"V(clk)\", \"V(comp_trig)\", \"V(q)\"]\n","# df.plot(x=\"t\", y=\"V(out)\", grid=True)\n","df[\"ytarget\"] = df[\"V(clk)\"] + df[\"V(comp_trig)\"] + df[\"V(q)\"]\n","df.plot(x=\"t\", y=\"ytarget\", grid=True)\n","plt.show()"],"metadata":{"id":"b6hwc_YEnJdr"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["\n","**SAR**: The SAR logic consists mainly of shift-registers using SR flip-flops. The behaviour of this logic will be simulated with Icarus verilog."],"metadata":{"id":"e0fj6DsEDrwF"}},{"cell_type":"markdown","source":["**DAC**: Each DAC use a capacitive fully-differential structure to achieve low noise. To reduce the capacitor total area, the structure of each converter will be dictated by an split array architecture. In this configuration a capacitor between the LSB and MSB regions is placed as an attenuator, bridging the capacitor sizes of the MSB bits. The unit capacitance $C_u$ in the schematic is the lowest capacitance we can achieve in this technology, this correspond to $37.5fF$ using $\\leq 6 \\mu m^2$ MIM capacitors provided by the PDK. Each switch in this array is intended to be either an NMOS/PMOS pair, a pair of transmission gates or a complete boostraped switch (similar to the one used in the S&H block) depending of the size available in the layout.\n","A slight upgrade in this array would be the use of MOM capacitors instead of MIM, however there is not a model or information about this primitive in the PDK. "],"metadata":{"id":"iiJSusU2n3VK"}},{"cell_type":"markdown","source":["\n","
Figure 2: Bootstrap switch
"],"metadata":{"id":"VypXjZL5NELF"}},{"cell_type":"markdown","source":["A simulation of this design is provided using a pull-down NMOS and pull-up PMOS for every switch."],"metadata":{"id":"WY1WfyERByqR"}},{"cell_type":"code","execution_count":null,"metadata":{"id":"6Qs0DbgP02vN","colab":{"base_uri":"https://localhost:8080/","height":881},"executionInfo":{"status":"ok","timestamp":1682605006776,"user_tz":240,"elapsed":2121,"user":{"displayName":"Mario Romero","userId":"07311777259789224808"}},"outputId":"ff116887-f3eb-4bbc-8675-b83b4e35d180"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAiwAAAGwCAYAAACKOz5MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbEklEQVR4nO3deXgUVb4//nd1pbuTAGEL2SASNmURiILEoI6IQDCOyh3vd3AZQAbxXjTfC0ZF4gKC/IyjXmS8l5GRK4t6GRh11PkODJAJBrcACjIiAhp2hIQ1Cwkkne76/RG60k26k67q7lq636/nyQPp1Kk+ffpU1afOVoIkSRKIiIiIDMyidwaIiIiI2sKAhYiIiAyPAQsREREZHgMWIiIiMjwGLERERGR4DFiIiIjI8BiwEBERkeHF6J2BUHC5XDhx4gQ6dOgAQRD0zg4REREFQJIk1NTUIC0tDRZL620oERGwnDhxAunp6Xpng4iIiFQ4duwYevTo0eo2ERGwdOjQAUDTB05ISAjpvh0OBzZt2oRx48bBarWGdN9mxnLxj2XjG8vFP5aNbywX/yKlbKqrq5Geni5fx1sTEQGLuxsoISEhLAFLfHw8EhISTF0pQo3l4h/LxjeWi38sG99YLv5FWtkEMpyDg26JiIjI8BiwEBERkeExYCEiIiLDY8BCREREhseAhYiIiAyPAQsREREZHgMWIiIiMjxVAcuSJUuQkZGB2NhYZGVlYfv27a1uX1lZicceewypqamw2+24+uqrsX79evnvL7zwAgRB8Prp37+/mqwRERFRBFK8cNzatWuRn5+PpUuXIisrC4sXL0ZOTg7279+PpKSkFts3NDRg7NixSEpKwgcffIDu3bvjyJEj6NSpk9d2gwYNwj/+8Y/mjMVExJp2REREFAKKo4JFixZh+vTpmDp1KgBg6dKlWLduHZYvX445c+a02H758uU4d+4cvvrqK3k1voyMjJYZiYlBSkpKQHmor69HfX29/Ht1dTWAppX/HA6H0o/UKvf+Qr1fs2O5+Mey8Y3l4h/LxjeWi3+RUjZK8i9IkiQFunFDQwPi4+PxwQcfYMKECfLrU6ZMQWVlJT755JMWaXJzc9GlSxfEx8fjk08+Qbdu3fDAAw/g6aefhiiKAJq6hF599VV07NgRsbGxyM7ORmFhIa666iqf+XjhhRcwf/78Fq+vXr0a8fHxgX4cIiIi0lFdXR0eeOABVFVVtfloHUUtLGfOnIHT6URycrLX68nJydi3b5/PNAcPHsTmzZvx4IMPYv369SgrK8Ojjz4Kh8OBefPmAQCysrKwcuVKXHPNNTh58iTmz5+PW265Bd9//73PByIVFBQgPz9f/t398KRx48aF5VlCRUVFGDt2bEQ8ryFUWC7+sWx8Y7n4x7LxjeXiX6SUjbuHJBBhHyjicrmQlJSEt956C6IoYtiwYfj555/x6quvygHLHXfcIW8/ZMgQZGVloWfPnvjzn/+MadOmtdin3W6H3W5v8brVag3bFxfOfZsZy8U/lo1vWpaLw+mCVfQ9t8DhdKGuwQkAuPK5azbRglirGO7stcA641skl0ttfSNO1dRDACABuPIRgIIAuPtBPOtpjND0otnLRkneFQUsiYmJEEURFRUVXq9XVFT4HX+SmpoKq9Uqd/8AwIABA1BeXo6GhgbYbLYWaTp16oSrr74aZWVlSrJHGtry42nM3ykiceA53NQvue0ERBr7suwMHvyfbarSWkUBb9x3He4YnBriXBE1O3auDre88qnq9L+8SkBuCPNjdIoCFpvNhmHDhqG4uFgew+JyuVBcXIy8vDyfaW666SasXr0aLpcLFkvTnc6PP/6I1NRUn8EKAFy4cAEHDhzApEmTlGSPNPTwu98CEPDg29+oSv/pk6PQK7FdaDNF5GH3z1Wq0zqcErYePMuAhcLqmyPngkp/qObK9pjIprhLKD8/H1OmTMHw4cMxYsQILF68GLW1tfKsocmTJ6N79+4oLCwEAMyYMQP//d//jZkzZ+L//t//i59++gkvvfQS/uM//kPe55NPPom77roLPXv2xIkTJzBv3jyIooj7778/RB+TjGb0f5bgUOGdemeDIpi7Gf1fh/XAa/9naIu/1zU0QvBogJfQlOD1oh+x7PNDCHg2ApFK7jqamd4Jq6aOkPuD/HUDua3edhQv/30fxOiKV5QHLBMnTsTp06cxd+5clJeXIzMzExs2bJAH4h49elRuSQGA9PR0bNy4EY8//jiGDBmC7t27Y+bMmXj66aflbY4fP477778fZ8+eRbdu3XDzzTdj69at6NatWwg+IhlRLu9cKczcAYi/c3q8zffpL+7y64HPnyRSx13HEuKs6Bgf+FiODrHRWUdVDbrNy8vz2wVUUlLS4rXs7Gxs3brV7/7WrFmjJhukowdHpON/tx8DANyQ0Rnt7DHo2s6O3t3aITO9EzrGWSFaBMRYBIgWAV3b25EQG4NnP/4eq7cdxdVJLWd/EYWDrzvUVrcPTzaI/FJa54QoraVcTpZUsViaDphHb+2N2XcMCDid+zCT2OBOYRbs3SfrKIUba5gyfPghacp9txttTZmkH6V3o6yjpBX3uq2KWwHddTTE+TE6BiykKffFI9oONNKP8i6h6GxuJ/0o7xKKTgxYSFPyxYO3rxRmCp464jt9iPJB5A/rmDIMWEhTzWNYiMKrtWmhrWGXEGlGrqMquy1DnB2jY8BCmnIfmLwYULg1VzGFF4NQZ4SoDZwlFBgGLKQLzsAg42MdpfAK9jwYbTd+DFhIU2xuJ62wS4iMTm0djdIGFgYspC3OEiKttLXSrT9KxxMQBY/dloFgwEKa4t0rmQXrKIVbsFUs2qooAxbSFFe6Ja2obm53p2cdpTBT320ZnW0sDFhIUwLnNZNG3FWMK92SUanutgx9VkyBAQtpSp7WrHM+KHpwpVsyOtWtgFF2ImXAQppqXug2yo400h5XuiWDU1tFo7RHiAELaYzN7aSR5i4hZdglRFoJutsytNkxPAYspClOayatNA9o5JRRMjZ2WwaGAQtpinevZBacJURhx25LRRiwkKY4rZm0oraOcSYbaUXuElK5GnO0YcBCmmILC2lF9RoXUdrcTvphnQsMAxbSFA9MMgvG1BRuwd64RduNHwMW0lRzC0uUHWmkueAXjmMdpfCS6xhXug0IAxbSFIcHkFaCXZqfSCtc6TYwDFhIW+6VbhmxkMGxilK48eGHyjBgIU1xlhBpRfVzWhhUk0ZUrxUkbx5dbS0MWEhTnCVEmlE9S4hIW8q7hKKzljJgIU1xpVvSCpvbyeiCrqNRVkkZsJCm2MJCWlPb3M5ZQhRu7jrGheMCw4CFNNV8nPFiQOElXwwUpuNMNtIaZwkFhgELaYotLKQVqXkhFkWidY0L0o/aOhdtp1EGLKQpzsAg02AdpTBTex6Ub/xClxVTYMBCuuC0Zgq3oFe6ZR2lMFM79T5aO4UYsJCm2CVEWlH/8EMijbHSBYQBC2mK05rJLBhUU7gF3SUUZXWUAQtpKloPNNKe6uZ2jrMijajutgx9VkyBAQtpikvzk1bYJURmoXwdluispQxYSFMCF7kgk2BQTeEWbCtetNVQVQHLkiVLkJGRgdjYWGRlZWH79u2tbl9ZWYnHHnsMqampsNvtuPrqq7F+/fqg9knmxDEspDXVs4RYSSnMVD+gM/RZMQXFAcvatWuRn5+PefPmYefOnRg6dChycnJw6tQpn9s3NDRg7NixOHz4MD744APs378fy5YtQ/fu3VXvk8yLy56TVlQvex61lwPSC5fmD0yM0gSLFi3C9OnTMXXqVADA0qVLsW7dOixfvhxz5sxpsf3y5ctx7tw5fPXVV7BarQCAjIyMoPZZX1+P+vp6+ffq6moAgMPhgMPhUPqRWuXeX6j3a3Yul1P+V0nZuFwuAIDT5YrYMmWd8U3rcnG665pTWV1zOt11W7s6yjrjW6SXi7PRXdckRZ+x8XIdlSTzl42S/AuSglvdhoYGxMfH44MPPsCECRPk16dMmYLKykp88sknLdLk5uaiS5cuiI+PxyeffIJu3brhgQcewNNPPw1RFFXt84UXXsD8+fNbvL569WrEx8cH+nEoCB8esuCzcgvGdXfhzqtcAacrOSngo8Oi12szBzWid0Koc0jR7oODFnxeYUFOdxdyFdTRryoErD0o4trOLkzvH3g6IqU2HRew7piIG5NcuL9P4HVtz3kBb+0Tkd5OwpNDnGHMYfjV1dXhgQceQFVVFRISWr8QKGphOXPmDJxOJ5KTk71eT05Oxr59+3ymOXjwIDZv3owHH3wQ69evR1lZGR599FE4HA7MmzdP1T4LCgqQn58v/15dXY309HSMGzeuzQ+slMPhQFFREcaOHSu3EBGw/f/tAcp/Ru/evZA77pqA05V8uBvASa/Xfr+nqRr+9OK4UGZRN6wzvmldLtv/316g4hj69euL3Nv7BpzuwjfHsfbgD0hOTkZu7nVhzGEz1hnfIr1cjmw5iHXHynBVejpycwcFnC7+x9N4a9+3AGD6snH3kARCcZeQUi6XC0lJSXjrrbcgiiKGDRuGn3/+Ga+++irmzZunap92ux12u73F61arNWxfXDj3bUYWiyj/q6RcDp696Pdv49/4EsVPjAo2a4bBOuObVuUiWJo6+i2isjoqik11WxAEzb8/1hnfIrVcLBaL/K+SzxcjNl+6zV42ij63kh0nJiZCFEVUVFR4vV5RUYGUlBSfaVJTU2G1WuWTAAAMGDAA5eXlaGhoULVPMq/WxoodOF0LSZKido0BCg/FMzA4S4g0onatIHeljrYqqmiWkM1mw7Bhw1BcXCy/5nK5UFxcjOzsbJ9pbrrpJpSVlcmDLQHgxx9/RGpqKmw2m6p9knm1dWB+9O3P2mSEIp76heM49Z600VzHuNJtIBRPa87Pz8eyZcuwatUq7N27FzNmzEBtba08w2fy5MkoKCiQt58xYwbOnTuHmTNn4scff8S6devw0ksv4bHHHgt4nxQ52jrQ8v/8T03yQZFPdcARrVcD0g0blQOjeAzLxIkTcfr0acydOxfl5eXIzMzEhg0b5EGzR48elfvlACA9PR0bN27E448/jiFDhqB79+6YOXMmnn766YD3SeGz48h5/O/WI5iT2x9JHWLD/n7s7iGtyC0sKiMQrhVE4ab+4YfR+bwrVYNu8/LykJeX5/NvJSUlLV7Lzs7G1q1bVe+TwufeN78CAFRedGD5QzeE/f0YrpBSLpeEH0/VoF9SB4gW5TVI7bOEouxaQEFodLrwj70VGJ7RBYntW04I8Ycr3SoT9llCZA4/VtRo8j6BXDwy5qzz+7f1/3ELBqZx0ZZo8ruN+/DHLQcBALmDAx+Iv/vnKgBqBt02pSjZfxqP/e9OOF0SJEgQLQJcLsBigd9/YywWPPKL3ri2e0eF70pm9sfPDuLVjftVp7/oULaWitPVFOj8XCeg3/ObFL/f0t9cj/HXpipOpzcGLAQAOH7+YquBgj+NLmULawW77PmUFdvx9bNjgtoHmYs7WAGA9bvLFafv3M6mbPv45mmW63afbGVL3ywCsPg+bdZvIWNYuuVAUOl7dIpTtL0tJrjnFi/7/BADFoo+b31+GM/cGfiCR8G2ZY66ultwOyDTuXtoGv76zxMAgBfvUVDXACTEWZEzSNnyCKP7J+GPk4bhVPUluCTAYnGPF2iacu/v31VfHUbZqQuob+TquNFm5u39sHDdXtXp/31UH0Xbj+zTFb26xuPQ2TpV73eq5pKqdHpjwEKaCiReOfzynS1eW7RpP97YXIY4m+gjBUWyru2bWkhmjOqDSdkZYX8/QRAUBzkAAEnC85/sCX2GyPDc56WxA5OxbPLwsL+fIAjYNOtmrF+/Hrm5uQEvvrZxTzn+7d0disbZGElw7Upkej27BvfspW+euU3R9ha1s4Q4uyjqmaUGRNvMDWpm9DoqDyg3aR1lC0uUu7Z7Rxw5W4f5dw/ClJEZAadzOBxYv349OsYpWxI62LjDrAcaqWea79w91ZTzi6KOWeqoPB1a53yoxRYWMgWj37lQ+Bm9kc3g2aMwcgcApqmjZomwrsCAhTQVdAuLae8NKFjBzjDTikmvBRQMyb2eirHrqNEDqrYwYCFTMPuBRuqZZcVZ+aGJ+maDdGT085TZ6ygDFtKU6kG3l5nk2kUhZJ7mdoNnkMLGbKcls55HGbCQKfBiQGapAWa9GJB6ap8MrrXmJ5Gbs5IyYCFTMedhRsEwSwDQfLEySYYp5Ax/Y+XuEjJpFWXAQppS+7Rmo9+5UPjId4MGrwTGzh2Fk2nGWV3+1yTZbYEBC2lKxcN2vZj1QCP15OZ2fbMRMNbR6CN/5QavpFyHhUiBto7nX13XvY10Zj3UKFgGb2Ax/QwMCp7Bq6hHC4s5aykDFjKUSdk99c4CGYxZTq2GH79AYWOW67/Rg/62MGAhQ8lM7+TzdcHkg8VIveYuIXOcbc1690rqNU+9N3YdNcsx5A8DFjIUfwe80U8EFH6GrwLsEop6hq+iJr/xY8BChlH4q8FtbmPWA42CYY4v3ewzMEg9s7SqyXXUJMfUlRiwkKZaO0zuH3GVZvkg8zDbLCGKXoZvBbzMJPFVCwxYyBD+mndTQNuZ9c6Agmf0i4HZp4xS8AxeRU3fbcmAhXT3yC96Y0iPTq1uY/SLFYWPWe4GzT5llNQzy1cuL81vlgxfgQEL6erBrKvwTO6AgLc36XFGQXC3qhl94LXBs0dhZLY6atbTKAMW0tSjo/rK/1/6m2H4//6l7YG2gPmn4xFR5DP6Wcrsj7uK0TsDFF1G9OqC0oLR6NbejhhRebxs0uOMgmCWVjWzTxkl9czynZt9nBUDFtJcasc4xWkM3tJKYdS8KJeu2WgTWwGjl3meJaR3DoLDLiEyFbPcyVDomSUg4Ey26GX0Omr2geEMWMgUjH0aoHAyy7mVXULRyyzfOQfdEmmId6/Rp3kGhs4ZIfLDPHXUPa1Z52yoxICFTEE+EZj0QKPgGf5acJlZLwYUPKPX0eYWFnNWUgYsRGRsJjm3Ns/AMEmGKWTMFqSaLb9uDFjIFOQVGnXOB2nPPLOEKNqZpY4yYCEKI6OfCCh83DMajD4Dw82sFwMKntHrqNFX4m0LAxYyFbNOx6PgGf1ca/YZGKSeWc5LnNZMRBRGZjm1Gv3umsLHff03S1BtVqoCliVLliAjIwOxsbHIysrC9u3b/W67cuVKCILg9RMbG+u1zUMPPdRim/Hjx6vJGkU4s1y8KHRMdzNotvxS0MwzzsrcYwEVL82/du1a5OfnY+nSpcjKysLixYuRk5OD/fv3IykpyWeahIQE7N+/X/7dVz/a+PHjsWLFCvl3u92uNGsUwcze90rBM3odMPuUUQoFk9RRk1ZRxS0sixYtwvTp0zF16lQMHDgQS5cuRXx8PJYvX+43jSAISElJkX+Sk5NbbGO327226dy5s9KsURQw64FG6pnlKzf2pYrCyWznJbMG1YpaWBoaGrBjxw4UFBTIr1ksFowZMwalpaV+0124cAE9e/aEy+XC9ddfj5deegmDBg3y2qakpARJSUno3LkzRo8ejYULF6Jr164+91dfX4/6+nr59+rqagCAw+GAw+FQ8pHa5N5fqPdrFJLLBQBwOp2KPqPW5eJyOS//6zL8dxHpdUYtteXicjbVUZdLWR3VWqPTXUclxflknfHNLOXivPzdS5J25yc1ZeN0NgJoCrCMUqZK8iFICoYLnzhxAt27d8dXX32F7Oxs+fXZs2djy5Yt2LZtW4s0paWl+OmnnzBkyBBUVVXhtddew2effYY9e/agR48eAIA1a9YgPj4evXr1woEDB/DMM8+gffv2KC0thSiKLfb5wgsvYP78+S1eX716NeLj4wP9OARg5Y8WfHvWgnsznPhFqnGj7pKTAj46LOL6ri5Mudqld3ZIQ+46+qsMJ241cB3951kBy38U0auDhFnXOvXODmno78cEbDgu4qZkF37d27jnp59rgVe+i0GCVcKLw41RR+vq6vDAAw+gqqoKCQkJrW6reAyLUtnZ2V7BzciRIzFgwAD88Y9/xIsvvggAuO++++S/Dx48GEOGDEGfPn1QUlKC22+/vcU+CwoKkJ+fL/9eXV2N9PR0jBs3rs0PrJTD4UBRURHGjh0Lq9Ua0n0bwcaaf+LbsxUYNGgQcm+8KuB0WpfL6dIj+OjwfqSmpSE3d0jY3y8YkV5n1FJbLu46OnDgQORm9wxjDoMT80MFlv/4T3Tu3Bm5uSMUpWWd8c0s5VK2uQwbjh/EVVddhdzcgZq8p5qy2XuyBq98Vwqb3Y7c3FHhzWCA3D0kgVAUsCQmJkIURVRUVHi9XlFRgZSUlID2YbVacd1116GsrMzvNr1790ZiYiLKysp8Bix2u93noFyr1Rq2Sh3OfetJsDQNYxJFUdXn06pc3C1tgiCY5nuI1DoTLKXlIghNdTRGZR3Viig2n07V5pN1xjejl4tgaTo/iaJF83wqKRurNfg6GmpK8qFo0K3NZsOwYcNQXFwsv+ZyuVBcXOzVitIap9OJ3bt3IzU11e82x48fx9mzZ1vdhqILBzSSeWYJUbQy+lo8Bj+E2qR4llB+fj6WLVuGVatWYe/evZgxYwZqa2sxdepUAMDkyZO9BuUuWLAAmzZtwsGDB7Fz50785je/wZEjR/Dwww8DaBqQ+9RTT2Hr1q04fPgwiouLcc8996Bv377IyckJ0cekSMGLQfQxy4wGsz+nhYJgki9dXofFHNltQfEYlokTJ+L06dOYO3cuysvLkZmZiQ0bNshTlY8ePQqLpTkOOn/+PKZPn47y8nJ07twZw4YNw1dffYWBA5v6+URRxHfffYdVq1ahsrISaWlpGDduHF588UWuxUIyo99dU/iYZxVRg2eQwsY0C8eZvBVQ1aDbvLw85OXl+fxbSUmJ1++vv/46Xn/9db/7iouLw8aNG9VkgzyUnbqA0oNncf8N6YgRI/iJC2Y90ihoBr8WyFhFo5fR66jZnyUU9llCpI0xi7YAAOodTjx8S2+dcxN6XEU0epnl3CpfrMySYQoZs3zlZm9hieBb8ei048h5vbMQFjWXmhY8Wr+7XOeckNbkINXg7e0Gzx6FkbuOGr9b0NxjWBiwRBiXWWtiG9Z+fUz+v8Np3IWZKHyMfilwi8wjkCJB87OEzFlLGbBEmEi9lnt2BX3+02kdc0JaM8u51ewPliP1zPKdy2NYdM2FegxYIoxZI2clFv/jJ72zQBoyzQwM07QBUaiZpY7KTHqZYMASYSK1S8jzYvDd8Sodc0Jq7T1Zgz8ftODshfq2N/bBLAEBB4ab177yakxY8iW++OmMqvRGr6PGH2PTOs4SijDOCD1XXnmcZcxZpyj9tmduR3JCbAhzRErd/YdSABbc+LstemclrL7/udpv/bSKAkSLAKtoQYxFQIxogSgI6NE5FqNC+xg0UuG3K77GiapL+M3bLR/kG4jKuoYQ5yi03KfRmvpGxedQAFj+0HCM7p8c2kwpwBaWCNPQ6IyKbiGlnv1ot95ZoCDFWo19uvrn8co2t3E4JVxyuFBzqRHn6xw4XVOP8upL+OZIJVYfaPlketLWiapLQaXv2t4WopyER7ANLA+v+gZlp2pCkxkV2MISYbYePIdeBesVpztyti4MuQmdYBsyz9c5QpIP0sfE4enIHWzsZ4vdenW3gMdXCQJgtVhgFQXUNjgBAJec4cwdBaJjnBVVF9WfK+4bEfgT7/UQbJfVpBt7om9ShxDlRjkGLATA+GNfrux7PfzynQGle6f0MOZ+sgfJCXzMg97GDkhC0d5TePz2vpg59hq9sxNy113VGX+feQvSOsWhY1zgT6DdceQ87n3zK4OPfogOU7J74o3NZchM74SPH7tJ7+yEnOdpdPsztyNJQTe5EVruGbBEiA6xMfLiakrFWi2Yc0f/EOcotNQeLLwIGIft8iMj2tkjt+tjQKrygShmX300krgfa6LmezQbpY9wMcKAXQYsEWJAagK2HzqHJQ9cjzuHGLvpXI1gT+YGuDmgy4xw4jMSC8vDMMzyoE21nK7mE6FoMd+HNPYoNqLLVAcckXrmMSFO9/XNXUNdLB4Ks0aPSmYVzXduZMBCphDsxY4tLPqT7171zYbhMKY2DvmZQDrnI1w8xyqyhYUoTNQGHOY7JCMfL9De3DM3GFPrL9K7hBo9FuqyWsx3+TdfjikqeQYsMSruDNgdoT9+A77JF0cWEIWZ5xgWC1tYiMLDc5bQxBvSA04XqXdKZuT+DvmV+MZ4RX/yM4EitJZmJMbrnYWgcJYQmYLnyVzNrAqOYTEQRpFeOEvIQNxBdYR+JR1irdjx3BjYYszZVsGAhUzBM+BQMlgsUu+UzIgxo29ch4W01LW9eRfRNGeYRVEn2NHtvBjoj7OEfJMDFlZS3TV3CZERMWAhU/A8l88Y1SfgdJHatGtm/E68cZaQcTTPEmIlNSIGLGQKnnefiSqaNHn3SkbFayNRYBiwkCn0TWqnKh2vBcbRPEuI34onzmo2Di5/YGwMWMgUrr+qc5B74InIKNii4E3gqFvDiPSF48yOs4TIFP7j9n7oEGvFmAFJitLxxGMcvB77xniFKDAMWMgUYq2iosG2V+IYFv1xlpBvLA/jiPSF48yOXUIU0TgDw3jY6uXN3SXk0jkfxC4ho2PAQpGNJx7D4IBG3+QqyuLRHeuosTFgoaggsU9Id81fAaNITxzDYjysocbEgIUiGk88xsPmdm98lpCBsEvI0BiwUFTg3av++B20juWjP34HxsaAhSIal9g2EM4S8kngynGGw/OGMTFgoajAISzGwWuBN/fFkVVUf82rMZMRMWChiMYTj3FwBoZvbGAxDt7YGBsDFooKPA/pr3nhOIaRnjhLyIBYRQ2JAQtFNHY/GA+/E29yAMeIRXdc6dbYVAUsS5YsQUZGBmJjY5GVlYXt27f73XblypUQBMHrJzY21msbSZIwd+5cpKamIi4uDmPGjMFPP/2kJmtEPnEdFv3xG/DNwnjFMHiaMDbFAcvatWuRn5+PefPmYefOnRg6dChycnJw6tQpv2kSEhJw8uRJ+efIkSNef3/llVfwxhtvYOnSpdi2bRvatWuHnJwcXLp0SfknIvLAu3nj4LOE/GCBGA7PG8akOGBZtGgRpk+fjqlTp2LgwIFYunQp4uPjsXz5cr9pBEFASkqK/JOcnCz/TZIkLF68GM899xzuueceDBkyBO+88w5OnDiBjz/+WNWHIiLjkbgql0/Nz7tiuejNXUf5TRiToqc1NzQ0YMeOHSgoKJBfs1gsGDNmDEpLS/2mu3DhAnr27AmXy4Xrr78eL730EgYNGgQAOHToEMrLyzFmzBh5+44dOyIrKwulpaW47777Wuyvvr4e9fX18u/V1dUAAIfDAYfDoeQjtcm9v1DvN9TcXR5OZ6MmeTVLuTidTY+Uc7kkzfJqlrLRmuTSto6ahbOxuSwaGhp0zInxaH0sNZ8vXIavo5FynlGSf0UBy5kzZ+B0Or1aSAAgOTkZ+/bt85nmmmuuwfLlyzFkyBBUVVXhtddew8iRI7Fnzx706NED5eXl8j6u3Kf7b1cqLCzE/PnzW7y+adMmxMfHK/lIASsqKgrLfkPl3FkRgICd334L6ah2HbFGL5d/nhYAiDh95jTWr1+v6XsbvWy0dvacBYAF3+/+HrHlu/XOjmFccADuU/Gmon/IY1qomVbH0uHDTXX0wIEDWO8wxzhKs59n6urqAt5WUcCiRnZ2NrKzs+XfR44ciQEDBuCPf/wjXnzxRVX7LCgoQH5+vvx7dXU10tPTMW7cOCQkJASdZ08OhwNFRUUYO3YsrFZrSPcdSu+d/BoHas7j+uuuwx3XpoT9/cxSLo3/PIl3y3YjMTERubnDNXlPs5SN1laf3A5UVWLIkMHIva6H3tkxjHO1DXj2mxIAwJgxYxBrt+mbIQPR+lj6Zt0+oPwo+vbtg9wx/cL+fsGIlPOMu4ckEIoClsTERIiiiIqKCq/XKyoqkJIS2EXSarXiuuuuQ1lZGQDI6SoqKpCamuq1z8zMTJ/7sNvtsNvtPvcdri8unPsOBfdqmaIYo2k+jV4uMTEigKby0TqfRi8brVksTUPmYkSR5eLBbmtuEY2J0fb4NQutjiX3gyhFi3nqqNnPM0ryrmjQrc1mw7Bhw1BcXCy/5nK5UFxc7NWK0hqn04ndu3fLwUmvXr2QkpLitc/q6mps27Yt4H0SkfFxarlvnmt+sIT0Ja/Dwm45Q1LcJZSfn48pU6Zg+PDhGDFiBBYvXoza2lpMnToVADB58mR0794dhYWFAIAFCxbgxhtvRN++fVFZWYlXX30VR44cwcMPPwyg6c531qxZWLhwIfr164devXrh+eefR1paGiZMmBC6T0pRjddK/TVfDHg18OJRHKynxsAaakyKA5aJEyfi9OnTmDt3LsrLy5GZmYkNGzbIg2aPHj0qN/0CwPnz5zF9+nSUl5ejc+fOGDZsGL766isMHDhQ3mb27Nmora3FI488gsrKStx8883YsGFDiwXmiJTixdF4+I1486yijFf0xYDR2FQNus3Ly0NeXp7Pv5WUlHj9/vrrr+P1119vdX+CIGDBggVYsGCBmuwQtYknIv3xO/DNK4BjIemKawUZG58lRBGNpx3j4PgA3zxbAV2MVwyBVdSYGLBQVJDY2E4GZfHqEmI91RMbuIyNAQtFNN7NGwdnCfnmNUuIRaQrtgIaGwMWigq8EBgHB0J746Bb4xHYKWRIDFgMZsmnZbhnyZeorW/UOysRgSce4+E34h8Da32x/I2NAYvBvLpxP/55rBLvbT2id1YiyrZD5/TOQtTjxcA37wYnFpK+Lj+tmVG1ITFgMaj6RpfeWYgI+8qbn1PBMRT64vgA3ziGxXhYRY2JAYtBuXjmCokzF+rl/2/cU9HKlqQVdtN585wlxGnN+pK4DIuhMWAxKJ64QqX5zDPvr9/rmA9iC5dvnoOQOa1ZX6yixsaAxaB4cg+9iur6tjeisGGXkG+exeHknUrIBDNxgTPZjIkBi0GxSyg0eN4Jvb/sPI5/+cOXqKi+pCo9vxJvnnX0gx0/65eRCPK/245g0LyNWPv1UUXp2MJlbKqeJUThxxut0Ljy4nii8iIEIbBxFPYYCzq3s4UnYyaW/+d/AgCyXirGkB4dIQgCLAIgCgIsTYXb9H9LUzkLAmARBOw6VqVzzo3J827+P/9Rhut6dkWs1YKOcVav7eQWKjQHOYIgIKNrO4gWhoGenv2oqfv36Q934/1vjkO0NNVNi6WpLgJN/1qEpjK0igIyEtvhz98c1zPb1AYGLAb1ZskBpCTEop09Bu1sIuJsImKtIuJtIuwxImwxFthiLLCKAqwWC2oucd2WQIx8ebOi7f/91j6Yc0f/MOXG/L47rjwIEXhxbdVv3t6maPusXl2w9t+yw5Qb8/vmyHnFaS42OMOQEwoWAxYDm/fXPYrTnKy6GIacRBbRIniNEfIa9Hj5dXcL104VJztqXWaPjnpnwRTirCJixOa66f6fu+a6b1J2/8yWq1C7rX83vbNAPjBgiTD/8/khPHxLb72zYRhXjmE5/PKdAaVbv/skHv3fnezTbsXIPl2xevqNAW/vcDiwfv16dGE3W6sCraPHztXhllc+5cyWNgRanv5uYsg4OOg2whTksvvCk9o1P3i68u/G3l0AAPePuErnnBDAgaK+uOumkjoqCIL8Q8bEFhaTEgSgU5wVHeOs6BhvQ0JsDCbekI5fDknTO2sRhXev/vG8ri93+bOOtmS93JXWrT1b8yIJAxaD6d2tHQ6ersWf/y0bI3p10Ts7pqf2osqLsX+8QIZPasfYgLd1twTw62gFD+SIwi4himjBnq54MWipeXotLwah9uTYfgFva7lyFC7JGFRHJgYsRD7xYtwW3ryGXju7GPC27oCRi0y25B7XwyoaWRiwUEQLdgAdH5HgA4skbJTUV3kMS5jyEgkYVEcWBixEPvBE5x/vXsNHSZnKPUIMqltgkUQmBixEreB5zz8GdaGnaBFgtrC0ieOsIgsDFopoqmcJhTYbEYV3r+GjaJbQ5VrK76MlFklkYsBCUaOrihVWeTFoyWM9UB1zEVlWPTQMD/Zx4urkDgGnYQuXf+7jlmUUWbgOC0U01Svd8kzXJhZR6Izs0xWV+5VFx5YrnoHFOtsSSySysIWFIprnOfy2/kmK07OBpSUO8jQGz4uxi1/JFVggkYgBC0WNh0ZmBLwt78z8a144jvTkGYwziPTGLqHIxICFokZ653jliXgh8ItdEPry7O5kLfWNdTSyMGChiOYZb3SMtwacjuc5/xjDGYRXC4t+2TAilkdkYsBCEW3aLb1gFQXcd0O6qvQ877XELiFj8OoSYk31wvKITJwlRBGte6c4/LBgPKyisticLSxtYxnpy3uWkI4ZMTDW0cjCFhaKeEqDFU+8EPjAQjEEz2sxvxJvLI/IxICFyAcu6e2f3CXEItIVu4T8a+62ZCWNJAxYiFrBC4F/vBjoy2uWEKupTwyqIwsDFiJfeKLzixdHY/BuYSFPrKORSVXAsmTJEmRkZCA2NhZZWVnYvn17QOnWrFkDQRAwYcIEr9cfeughCILg9TN+/Hg1WSMKKZ74WpJbnRjUGQYXjvPmrqOsopFFccCydu1a5OfnY968edi5cyeGDh2KnJwcnDp1qtV0hw8fxpNPPolbbrnF59/Hjx+PkydPyj9/+tOflGaNKGR4omsby0hfbGFpG7uEIovigGXRokWYPn06pk6dioEDB2Lp0qWIj4/H8uXL/aZxOp148MEHMX/+fPTu3dvnNna7HSkpKfJP586dlWaNKOR449oSy8QYOK25FSyPiKRoHZaGhgbs2LEDBQUF8msWiwVjxoxBaWmp33QLFixAUlISpk2bhs8//9znNiUlJUhKSkLnzp0xevRoLFy4EF27dvW5bX19Perr6+Xfq6urAQAOhwMOh0PJR2qTe3+h3q9fl888jY2N2r2nCpqXi8ZcTieApqZ2pZ8x4svm8pP2XE6nos8Y6eUSDDVl0+h0yf9vaHDAEYGraqmtM05XU9m4XK6IrW+Rcjwpyb+iKn7mzBk4nU4kJyd7vZ6cnIx9+/b5TPPFF1/g7bffxq5du/zud/z48fjVr36FXr164cCBA3jmmWdwxx13oLS0FKIotti+sLAQ8+fPb/H6pk2bEB+v4nkxASgqKgrLfq904YIIQMDWraU4/YMmbxkUrcpFa3srBQAiqqursX79elX7iNSyqa5uqqNff/01an5SfisbqeUSCkrKpilujJHTtQv8yROmo7TO/PyzBYAF+/buxfoqE5xIg2D246muri7gbcMak9fU1GDSpElYtmwZEhMT/W533333yf8fPHgwhgwZgj59+qCkpAS33357i+0LCgqQn58v/15dXY309HSMGzcOCQkJIf0MDocDRUVFGDt2LKzW8J8Rfv/TFzh1qQ433piNGzKM2y2mdblorUPZGSzduxMdEhKQm5utKG2kl82bh0qBuhrcMOIG3NLX/3F9pUgvl2CoKRuXS8LjW5suVrePGYMu7WzhzKIu1NaZ4vd3A2dOYsCAAci9KSN8GdRRpBxP7h6SQCgKWBITEyGKIioqKrxer6ioQEpKSovtDxw4gMOHD+Ouu+6SX3NdbqqLiYnB/v370adPnxbpevfujcTERJSVlfkMWOx2O+x2e4vXrVZr2L64cO7by+V+6ZiYGFNUQs3KRWMxYvOhofbzRWrZuFlV1tFIL5dgKCkbz5lBZjlfqKW0zgiWpvOoKIoRXS6A+Y8nJXlXNOjWZrNh2LBhKC4ull9zuVwoLi5GdnbLu9D+/ftj9+7d2LVrl/xz991347bbbsOuXbuQnu77gXTHjx/H2bNnkZqaqiR7RCHD2QVt48Jx+hI8B93qmA8jE3ggRxTFXUL5+fmYMmUKhg8fjhEjRmDx4sWora3F1KlTAQCTJ09G9+7dUVhYiNjYWFx77bVe6Tt16gQA8usXLlzA/Pnzce+99yIlJQUHDhzA7Nmz0bdvX+Tk5AT58YiIIpcgNI3T5ywhbyyPyKQ4YJk4cSJOnz6NuXPnory8HJmZmdiwYYM8EPfo0aOwWAJvuBFFEd999x1WrVqFyspKpKWlYdy4cXjxxRd9dvsQaYGtB/65Lwa8edWfgKbWFS4c5635WUIUSVQNus3Ly0NeXp7Pv5WUlLSaduXKlV6/x8XFYePGjWqyQRR2vA74x4uB/oTLTSyspr4xqI4sfJYQkQ880fnHy6NxuKspA2tvbHGKTAxYiFrBi3NLEtvbDcMdWLOeemMVjUwMWIh84ImubRznoz/3d8AGBd84SyiyMGAJk5NVF/HDicAXxCFj4oWgJRaJgcgtLOSFBRKRIvDpE8aQXbgZAPDF07ehR+fwPC6Awog3Zn65xwfw5lV/FnfAwsjai7uLjHU0srCFpRUOpwtTVnyDJT9YUFvfqGof+07WhDhXpCVeBvzjtUB/7BJqHetoZGELSyskCfjq4DkAFrhUnhF4HjEnjs/wj3XaOORBt/xSvLA8IhNbWMJMbaBDxsCmdh/kheMY1OlNntbMMNJL80w21tFIwoAlQGqvW7zemRPPc21jGenPHTTyPOMbq2hkYcDSilCckHmHbm6XHC69s2A4rNHG0dzCQp7Y4hSZGLCEGQ8bc3K5mr65nysvwunit+hJniWkcz7IcwwL66gnPu8qMjFgCZDa0wHHsJjT+TqH/P/PfjytY06MixcD/bm7hBhT+8bB85GFAUsrQlHVGa+Yk+fFeOrKr/XLiAGxShtHcz3lt+KJpRGZGLCEGQ8cijTNQTjvXvXGhx/6xi6hyMSAJUDqZwnxTGJGPM+1jRcD/cmzhHTOR7g0NLpwvFb9eZRVNLIwYGlFKNaZYLxiTtFwMf7vzT9h/OLPUOUxXicQnIFhHOdqGwAAe05U6ZyT8Mh//zu8+l0MVpYeVZiSdTQSMWAJMw66jQyXHE69sxByr236EfvKa7CkpExROrm5PQx5InUeX/tPvbMQFht/OAUAeOnv+xWlY5dQZOLS/AFSe1fJeMWsvM90/Z/foCj14M4W5OaGMj/h89ZnB/HWZwcVp+NKt8Yy6e1tiLH4/k6cEhBjESBJTWcyiyAgu3dXTP9Fb20zGYSMOesUp+H5N7IwYGlFKE7HT7z/TzzxfmTe/ZB/u89HfuNl13Y2vbNAHj7/6Yyi7T/dfwqTsnsi1iqGKUf668w6GlEYsBCRYg+NzEB6l3i9s0EeCn81GKKfVi+LRYDT5YIAAZcanZj7yR5IUmR3WV9/VSeM7p+kdzYohBiwBEjr47pTvFXbN6QreH/h3zw3Bont7W2m+vrwOfyfpaXoFmueC8GzuQNM1TVAvt0/4qqAtrvY0BSwmM3hl+/UOwuks8hvtw6CXl30cVYRVyd30OfNCUDLANUqBnaomGlUR9+k9gCAwT066pwT0ovRG1hGX9MNADDr9r4654SMgC0sYZIQG4PqS43Y/MSt6N2tvd7ZIYWuPI/7G8wYaHoj4hpB0cnzRszoNSDW2nSjkBDLSxWxhSVgRj+wKbSuvJbH2wIbmGimiTPuj2iiLJMfv7kxsO4gs2FMTZ4YsLSC0zaj15XT2BXXBROdaFnPzS+5Q6yqdEZvZZODalZRAgMWIp/Un8dNdGY19rWKFLAo6LI0U5eQm4mOKgojBiyBMvidCIVWsN+2GWoL714jh5LvUPC4/Bv9tGb0FiDSFgMWIh9UP2zNhBd/E2aZrmBRUPHMVEebHwxuokxT2DBgIYpSvHs1vw72ptkzt17dTd0OTFIFGK4QwGnNATPJcU06M9OJlV1C5vdVwWicqqlHHwVLJ3h+3UZ/8jZjavLEgKUNgsCDJhoF+52bq8owYjGrDrFWdIhVtiq2GWeFmTDLFAbsEiLyQe2dp5kuBgzEiXWAzIQBS4B4YEeXaPi+3UGZiWIsCgHvLiFjc4+zEtgKSGDA0iYeJtHJM2C5e2hawOnMWF/MmGdSz4wBqhnzTKHHgIXIB887z9zBqcrTG/3WFebII4WX0WeKGTt3pDUGLAHigRNdPE/kYwcmB5zOTHeC7o9opnE3FDzP79vo5zW5juqbDTIIVQHLkiVLkJGRgdjYWGRlZWH79u0BpVuzZg0EQcCECRO8XpckCXPnzkVqairi4uIwZswY/PTTT2qyFnI8mUenLu1s8v9FhU9qBox/IfDEGk5Gx9MwASoClrVr1yI/Px/z5s3Dzp07MXToUOTk5ODUqVOtpjt8+DCefPJJ3HLLLS3+9sorr+CNN97A0qVLsW3bNrRr1w45OTm4dOmS0uwRhcTo/kmYdnMvLJ6YqSgdBweSmRi8R8jw68SQthQHLIsWLcL06dMxdepUDBw4EEuXLkV8fDyWL1/uN43T6cSDDz6I+fPno3fv3l5/kyQJixcvxnPPPYd77rkHQ4YMwTvvvIMTJ07g448/VvyBwsXofb0UWoIg4PlfDsSE67rrnZWwkWdgMMaKOu7v3OgBQfNpl5WUFC4c19DQgB07dqCgoEB+zWKxYMyYMSgtLfWbbsGCBUhKSsK0adPw+eefe/3t0KFDKC8vx5gxY+TXOnbsiKysLJSWluK+++5rsb/6+nrU19fLv1dXVwMAHA4HHA6Hko/UJvdh0tjYqGrfatMZnfszReJnC4bT2Sj/3+hl474WOBudmuSVdcY/rctGQNP373AY+/zkDqpdLm3qqJlEyvGkJP+KApYzZ87A6XQiOdl7EGJycjL27dvnM80XX3yBt99+G7t27fL59/LycnkfV+7T/bcrFRYWYv78+S1e37RpE+Lj49v6GIq4JBGAgM8++wwdbW1uLnM4mtJt2bIFe+NCmiVDKSoq0jsLhnLsAgDEQILxy+bixaY6+uWXX+Bo4Cu7B83o5aInzcrm8nmtuLhY0XlNa6dPWwBYsGfPHqw//b3e2TEksx9PdXV1AW8b1qX5a2pqMGnSJCxbtgyJiYkh229BQQHy8/Pl36urq5Geno5x48YhISEhZO8DAE9sK4JLknDLLb9Aj66Bn9Wf/3YzLjobceutt6JXYruQ5skIHA4HioqKMHbsWFitypYGj2R7TlTjtd1bAcDwZfPSni1AQz1uvvlmDEoL7XHjC+uMf1qXTf62IsAlYfTo0UhOiA37+6n1welvgMpzuHbQIOTecJXe2TGUSDme3D0kgVAUsCQmJkIURVRUVHi9XlFRgZSUlBbbHzhwAIcPH8Zdd90lv+ZyuZreOCYG+/fvl9NVVFQgNbV5vYuKigpkZmb6zIfdbofdbm/xutVqDfkX5+7rjbHGqNp3TIy6dGYRjjI3s5iYy4eUZPyycQ8Q1rqOGr1c9KRV2bi7umNijP1dWISmYZYxMaKh86knsx9PSvKuaNCtzWbDsGHDUFxcLL/mcrlQXFyM7OzsFtv3798fu3fvxq5du+Sfu+++G7fddht27dqF9PR09OrVCykpKV77rK6uxrZt23zuk8jIzDSA1egDLil8zFJPWUfJk+Iuofz8fEyZMgXDhw/HiBEjsHjxYtTW1mLq1KkAgMmTJ6N79+4oLCxEbGwsrr32Wq/0nTp1AgCv12fNmoWFCxeiX79+6NWrF55//nmkpaW1WK9FT5wkREqYobo0Lxynbz5IP0YPCJoXjmMlJRUBy8SJE3H69GnMnTsX5eXlyMzMxIYNG+RBs0ePHoXFomy29OzZs1FbW4tHHnkElZWVuPnmm7FhwwbExhq3b5XIFzOeWM2YZwqOcHmekFluxBhUE6By0G1eXh7y8vJ8/q2kpKTVtCtXrmzxmiAIWLBgARYsWKAmO0SkgkmuVRQOJgkAWEfJE58lRBRCZroTZJcQGT0g4LOEyBMDFqIwMPqFwBMDlujj/spNs4I3KymBAUub+PBDUsJc1cUkFysKOXlpfoNXAaMPCiZtMWAhCgMznGY5AyN6meY7Z5cQeWDAEiDTNJ2SrkxzIfBgrlYhikasowQwYGkTjxNSxQTxrQmySGFini4homYMWIhCyEx3gu5WQxNlmULELN856yh5YsASIEb6pISZ6ouZgiwKLbMMauXkBwIYsLSJxwkpYabqYo5LFYWDOwBglxCZCQMWoijVfLEyU5hFoWCWb5wLx5EnBiwBMvqdCBmDGVvkzJhnCg2znNZYRwlgwNImHiekhhkuBJyqH8XkWULGrgPGzh1pjQELUUiZJ8R1XwzMk2MKFXlpfl1zQaQMA5YAmWU0PRmEiaoLZ2BEH7N850ZvASJtMWBpg1kObDIGd3Wpcwpwugx+sjV49ij8zBIP8DxMAAMWorD509fH9M5Cq9glFL2ar//miFhYRwlgwBIws9yJkL48T6zz/7ZPt3wowZvX6GOWr5znXfLEgKUNZjmwiZTi+AAyehWQWwF5IiYwYCEKKTP1tTd3CZknzxQa8kq3OucjUKyjBDBgCZhZDmyKPi6XhIZGl+r0JoqxKES0/sp/rKjBmyUHcMnhVJSOrYDkKUbvDBgeT+akgB7VZdLybfjm8Hlsf3YMOsZZA07Ha0H0OlvbAACouujQ5P3Gvf4ZAOBCvQNP5fQPOB27hMgTW1iIwmjD9yfD/h5flp1FfaMLn+47pSgd1xaix9fu0vT9/rLzZ1XpGK8QwBaWwPHcTgG48k7w39/bqSj9/SOuQuGvBqt671lrd2GWigsQ716j1/HzF7H266OwipaA68HVyR0wKK2jqvc7WXUJGXPWyb+LFgFWUUCMxdL0r2iBTbRAtAiIsQg4eKZW1ftQZGLA0gYO9iIt/Wn7UdUBi1qxVlHT9yNjefrD3Yq2t4kWfP3sGHSMD7z70R+nS7q8wGLrY7BEkedhYsASsNl/+R4Zie0C3v6iwsFlRHpJbG/XOwuko6HpnZAQG9il4MuyM2hwulB10RGSgCUQvTtIGN6zsybvRcbGgKUNneJicKG+ETuPVmLn0UpFaQUB6BCrzUFNxnWoMLfN6c6HztTittdK0MGu/pD8xdXd8M5vR6hOT9Hpk8duCnjbQXM3oLbBGdT4p8Mv3xnwtg6HA+vXr0f7II4LihysBW1Y8kAm3v7blxgwYABEUdkY5WtSEtCtA+9eo8mVM29WP5wV0NosoWjwnnl7vxDshahtameYdWlnC21GKKowYGnDwNQE3N5dQu7NGbBa2VpCrbvyPC5alIUiaq4DCbExqL7UqGhKM5EaahdGvO6qTvj2aCWezR0Q4hxRNOG0ZqIQUrvQVTAzdbhWBal1T2aaou3dVUxpLY+NaRrYbY3hJYfUY+0hCiOld6TBrOzJeIWUElVGuUrrqXvMC+soBYMBC1EIXXkaD/R6ENT0ea4RRFoJMuJgKyAFgwELUQgFu9y9muTNXUK8GpAySuub2i4hPgaCQoEBC1FIeZ+Zr+oSH1CqUMQaDFdIK0oDED4ZnEKBAQtRGCUnxCraXs2dKJ9oS2oNU7ggW3MrnvaDy4k4rZkohPSIHThLiJT69MlR+PrQOdw7rIeidKrrGGNqCgEGLEQhFOx5OZgVRNncToHqldgOvRQ8auRKyruEOEuIgqeqS2jJkiXIyMhAbGwssrKysH37dr/b/uUvf8Hw4cPRqVMntGvXDpmZmXj33Xe9tnnooYcgCILXz/jx49VkjUhXaltYglqHhXevpJHgOoTYCkjBUdzCsnbtWuTn52Pp0qXIysrC4sWLkZOTg/379yMpKanF9l26dMGzzz6L/v37w2az4W9/+xumTp2KpKQk5OTkyNuNHz8eK1askH+327mkPUUfVWNY3HevvBhQmKmdicagmkJBccCyaNEiTJ8+HVOnTgUALF26FOvWrcPy5csxZ86cFtuPGjXK6/eZM2di1apV+OKLL7wCFrvdjpSUlIDyUF9fj/r6evn36upqAE0PynI4HEo/Uqvc+wv1fs2O5eLbleURaPk4GxsVp7lSY2Ojob8P1hn/zFI27gHeSs+17nROp1NROrOUix4ipWyU5F9RwNLQ0IAdO3agoKBAfs1isWDMmDEoLS1tM70kSdi8eTP279+P3/3ud15/KykpQVJSEjp37ozRo0dj4cKF6Nq1q8/9FBYWYv78+S1e37RpE+LjA5tGqlRRUVFY9mt2LBdvP9cCnofV+vXrA0p3rr4pndPpDDiNm7NRBCDg008/RVdlk5J0wTrjn9HLxtHQVNc+++xzlCkYAnPufFO6HTt2ovGw8uYWo5eLnsxeNnV1dQFvqyhgOXPmDJxOJ5KTk71eT05Oxr59+/ymq6qqQvfu3VFfXw9RFPGHP/wBY8eOlf8+fvx4/OpXv0KvXr1w4MABPPPMM7jjjjtQWloKURRb7K+goAD5+fny79XV1UhPT8e4ceOQkJCg5CO1yeFwoKioCGPHjuXDDz2wXHzbe7IGr3zXHLzn5uYGlO5k1SXM3/kZLKKI3NycthN4eOrrfwCNLowefRu6d4pTlFZLrDP+maVsFnxXgguNDbjllltwTUqHgNOtPL4NqKnC8GHDMHZgy6ED/pilXPQQKWXj7iEJhCazhDp06IBdu3bhwoULKC4uRn5+Pnr37i13F913333ytoMHD8aQIUPQp08flJSU4Pbbb2+xP7vd7nOMi9VqDdsXF859mxnLxVtMTPMhNXF4j4DLJibmcpeQBNXlaZbvwiz51IPRy8Y9hEWMiVGUT/fYl5gYUdXnM3q56MnsZaMk74oClsTERIiiiIqKCq/XKyoqWh1/YrFY0LdvXwBAZmYm9u7di8LCwhbjW9x69+6NxMRElJWV+QxYiIzKc1rywzf3DDhdUANmOaCRNNNUUdWudEsUDEXTmm02G4YNG4bi4mL5NZfLheLiYmRnZwe8H5fL5TVo9krHjx/H2bNnkZqaqiR7RLrzPJFndFW/zoWi9+QaF6QRtYG1+7jg864oGIq7hPLz8zFlyhQMHz4cI0aMwOLFi1FbWyvPGpo8eTK6d++OwsJCAE0DZIcPH44+ffqgvr4e69evx7vvvos333wTAHDhwgXMnz8f9957L1JSUnDgwAHMnj0bffv29ZpFRGQGA1ITMCClA3CpSlX6oBaO47WAwqx5HRaVS/OHLisUhRQHLBMnTsTp06cxd+5clJeXIzMzExs2bJAH4h49ehQWS3PDTW1tLR599FEcP34ccXFx6N+/P9577z1MnDgRACCKIr777jusWrUKlZWVSEtLw7hx4/Diiy9yLRYyHdEi4OMZN+Lvf/+7onTBrFLLNS5Ia+wSIj2oGnSbl5eHvLw8n38rKSnx+n3hwoVYuHCh333FxcVh48aNarJBZEgWixB007miNJf/5dL8FG7qnyXExQ0peHxaM5EBhOJEzosBhVuwQTHrKAWDAQuRgahpOpfYJ0QaY5cQ6YEBC5EBhGJWM29eKdyCniXEWkpBYMBCZCBBtZbwWkBhFuwsIdZRCgYDFiIjCOJEzh4h0pryLiFWUgoeAxYiAwnmtM7mdgq3YBd+Yw2lYDBgITKAUAQbnIFBWlEaWLMVkEKBAQuRgShuaueVgHSgtN5xaX4KBQYsRAYQioXmeCmgcAs23mAdpWAwYCEiooC4AxbFXUIhzwlFIwYsRAagesVzz32wuZ00orbrklWUgsGAhchg1I5L4bWAwk3wWIkluPREyjFgITIAta0jHHRLWmILCemJAQuRwSiJQby7hEKeFSKflHcJNf3LOkrBYMBCZAChOI+zuZ3CLbgOIXZbUnAYsBAZjJKLAXuESEuquy45T4hCgAELkQGoXocFXIiFtKe2S4h1lILBgIXIYFTPEuLFgMJM7hJSPZONlZTUY8BCZABqT+TsEiJNqW4JJAoeAxYig9m875SqdLx3Ja2oHnTLSkpBYMBCZAQeJ/JH3t2hbhe8GlCYNXcJKUvH9YIoFBiwEJkYrwOkJfWzhC6nD11WKAoxYCEygCuvA/WNzoDSec4S4sWAtKJ2mjJbASkYDFiIDKiiql5xGl4LKNzkKsbHNZMOGLAQGcCVscbRc3UBpWOXEGlJ/XpBwaUnAhiwEBnSwnU/BLSd17OE2ClEGuHS/KQHBixEBrSvvEZxGt69Urj9WHEBAPDVgTOK0nGWEIVCjN4ZICLfgxFzXv8MSQl2xNtExNti0M4uIs7a9BNra/rX4XTpkFuKdks+PYCncvoHvD27hCgUGLAQGdT+ihrsr1De0kKkhfGLP0PPrvEQIECCBAECBAFwXW5NsVyOTiQJOHLWPSaLEQupx4CFyABCcRq3x7CHl7Szr7xGcddl13a2MOWGogEDFqIIIFoErnFBmnoq5xokxFmbmlAEAZCaVmcR5JYVqSkQv/y3Pt3aIyOxnZ5ZJpNjwEJkAL5ijX0vjm8KRNDUvO7ehoEJGcFjt/XVOwsUZRiwEBlUrFXUOwtERIbBTm8iA+AaKkRErWPAQkREivTsGq93FigKRU2XkCRJaGxshNMZ2EPl3BwOB2JiYnDp0iXFaSNZa+UiiiJiYmI41kKBK4vq6fGBr3FBpLU4dleSDlQFLEuWLMGrr76K8vJyDB06FP/1X/+FESNG+Nz2L3/5C1566SWUlZXB4XCgX79+eOKJJzBp0iR5G0mSMG/ePCxbtgyVlZW46aab8Oabb6Jfv37qPtUVGhoacPLkSdTVBfZ8Fk+SJCElJQXHjh3jBdhDW+USHx+P1NRU2GycxqhGOzsvCEREnhQHLGvXrkV+fj6WLl2KrKwsLF68GDk5Odi/fz+SkpJabN+lSxc8++yz6N+/P2w2G/72t79h6tSpSEpKQk5ODgDglVdewRtvvIFVq1ahV69eeP7555GTk4MffvgBsbGxQX1Al8uFQ4cOQRRFpKWlwWazKQo8XC4XLly4gPbt28NiYQ+am79ykSQJDQ0NOH36NA4dOoR+/fqx3IgiDFfaJz0oDlgWLVqE6dOnY+rUqQCApUuXYt26dVi+fDnmzJnTYvtRo0Z5/T5z5kysWrUKX3zxBXJyciBJEhYvXoznnnsO99xzDwDgnXfeQXJyMj7++GPcd999LfZZX1+P+vp6+ffq6moATd0UDoejxbZOpxPdu3dHfLzyflf3Bdhut7OFxUNr5WK32yGKIo4ePYq6ujrY7XadcqkPdx28si62ptHh3a3mcjoVpTcDNeUSLcxSNt07xeLnyku4vX83TfJqlnLRQ6SUjZL8C5KCp1I1NDQgPj4eH3zwASZMmCC/PmXKFFRWVuKTTz5pNb0kSdi8eTPuvvtufPzxxxg7diwOHjyIPn364Ntvv0VmZqa87a233orMzEz8/ve/b7GfF154AfPnz2/x+urVq1sEJTExMUhJSUF6ejq7JzTU0NCAY8eOoby8HI2NjXpnx/AaXcAT25rvH/61lxO3pPA2loylugH4sUpAZlcJXFiZQqGurg4PPPAAqqqqkJCQ0Oq2ilpYzpw5A6fTieTkZK/Xk5OTsW/fPr/pqqqq0L17d9TX10MURfzhD3/A2LFjAQDl5eXyPq7cp/tvVyooKEB+fr78e3V1NdLT0zFu3LgWH/jSpUs4duwY2rdvr6p7SZIk1NTUoEOHDmxh8dBWuVy6dAlxcXH4xS9+EXS3ntk4HA4UFRVh7NixsFqtAaWpb3ThiW3/kH+/9tprkTsiPVxZ1IWacokWLBvfWC7+RUrZuHtIAqHJLKEOHTpg165duHDhAoqLi5Gfn4/evXu36C4KlN1u99nNYLVaW3xxTqcTgiDAYrGoGkvhcjU9Dde9D2rSVrlYLBYIguDzO4kWSj67JHg/dVkUxYgtt2iuE21h2fjGcvHP7GWjJO+KApbExESIooiKigqv1ysqKpCSkuI3ncViQd++Tcs4Z2ZmYu/evSgsLMSoUaPkdBUVFUhNTfXap2cXEVE0GZTWetMoEVG0UdRkYLPZMGzYMBQXF8uvuVwuFBcXIzs7O+D9uFwuedBsr169kJKS4rXP6upqbNu2TdE+o9nzzz+PRx55JOzv09DQgIyMDHzzzTdhf69oc2Wv2vVXddYnI0REBqW4jyM/Px/Lli3DqlWrsHfvXsyYMQO1tbXyrKHJkyejoKBA3r6wsBBFRUU4ePAg9u7di//8z//Eu+++i9/85jcAmroUZs2ahYULF+Kvf/0rdu/ejcmTJyMtLc1rYG+0ueuuuzB+/Hiff/v8888hCAK+++47lJeX4/e//z2effbZkL7/Cy+80KKFy2az4cknn8TTTz8d0vciIiJqi+IxLBMnTsTp06cxd+5clJeXIzMzExs2bJAHzR49etRrTENtbS0effRRHD9+HHFxcejfvz/ee+89TJw4Ud5m9uzZqK2txSOPPILKykrcfPPN2LBhQ9gGa0qShIuOwFatdblcuNjgRExDY0jGsMRZxYAG706bNg333nsvjh8/jh49enj9bcWKFRg+fDiGDBmChQsXYuTIkejZs2fQeQvEgw8+iCeeeAJ79uxBenpkDQrVE4dzExG1TtWg27y8POTl5fn8W0lJidfvCxcuxMKFC1vdnyAIWLBgARYsWKAmO4pddDgxcO5GTd7rSj8syEG8re1i/+Uvf4lu3bph5cqVeO655+TXL1y4gPfffx+vvvoqAGDNmjWYMWOGV9r6+no89dRTWLNmDaqrqzF8+HC8/vrruOGGGwAAK1euxKxZs1BZWSmn+fjjj/Ev//IvkCQJK1eulKeNu4OrFStW4KGHHkLnzp1x0003Ye3atXjyySeDKgsiIqJAcdqLQcXExGDy5MlYuXIlPJfKef/99+F0OnH//ffj3Llz+OGHHzB8+HCvtLNnz8aHH36IVatWYefOnejbty9ycnJw7ty5gN574sSJeOKJJzBo0CCcPHkSJ0+e9GoRGzFiBL744ovQfFACAE6ZJyJqQ9Q8/NBTnFXEDwtyAtrW5XKhproGHRI6hKxLKFC//e1v8eqrr2LLli3yFPAVK1bg3nvvRceOHbFr1y5IkoS0tDQ5TW1tLd58802sXLkSd9xxBwBg2bJlKCoqwttvv42nnnqq7TzGxaF9+/byontXSktLw5EjRwL+HERERMGKyoBFEISAumWApoCl0SYi3haj+Tos/fv3x8iRI7F8+XKMGjUKZWVl+Pzzz+Wus4sXLwKA11ifAwcOwOFw4KabbpJfs1qtGDFiBPbu3RuSfMXFxal6kCT559m+snhipl7ZICIyLHYJGdy0adPw4YcfoqamBitWrECfPn1w6623AmhaFwcAzp8/r2ifFosFVz6RQcnzHM6dO4du3bopek8K3OAeHfXOAhGR4TBgMbhf//rXsFgsWL16Nd555x389re/lcc79OnTBwkJCfjhhx/k7fv06QObzYYvv/xSfs3hcODrr7/GwIEDAQDdunVDTU0Namtr5W127drl9b42mw1Op++ZVN9//z0X9Qsxi0XAL4ek4pZ+ieid2E7v7BARGQ4DFoNr3749Jk6ciIKCApw8eRIPPfSQ/DeLxYIxY8Z4DYBt164dZsyYgaeeegobNmzADz/8gOnTp6Ourg7Tpk0DAGRlZSE+Ph7PPPMMDhw4gNWrV2PlypVe75uRkYFDhw5h165dOHPmjNfTsT///HP5WVAUOv/9wPV4d1oWB+ASEfnAgMUEpk2bhvPnzyMnJ8drgC0APPzww1izZo38bB8AePnll3Hvvfdi0qRJuP7661FWVoaNGzeic+em1VO7dOmC9957D+vXr8fgwYPxpz/9CS+88ILXfu+9916MHz8et912G7p164Y//elPAIDS0lJUVVXhX//1X8P7oYmIiDxE5aBbs8nOzm4x5sRt/PjxSEtLw9q1a3H//fcDaBqE+8Ybb+CNN97wu88JEya0WEl4+vTp8v/tdjs++OCDFukWL16Mp556CnFxcYrGvRAREQWDLSwmJwgC3nrrLTQ2Nob9vRoaGjB48GA8/vjjYX8vIiIiT2xhiQCZmZmaDIK12WzyqrueXVBEREThxhYWIiIiMryoCVj8jQGh8GB5ExFRKEV8wGK1WgGAK7NqzF3e7vInIiIKRsSPYRFFEZ06dcKpU6cAAPHx8YrWuXC5XGhoaMClS5c0X5rfyPyViyRJqKurw6lTp9CpUyeIYuDPTiIiIvIn4gMWAPID/NxBixKSJOHixYuIi4vjgl4e2iqXTp06+XxwIhERkRpREbAIgoDU1FQkJSUpXjvE4XDgs88+wy9+8Qt2b3horVysVitbVoiIKKSiImBxE0VR8YVUFEU0NjYiNjaWAYsHlgsREWmJgzKIiIjI8BiwEBERkeExYCEiIiLDi4gxLO5Fyqqrq0O+b4fDgbq6OlRXV3OshgeWi38sG99YLv6xbHxjufgXKWXjvm4HsthoRAQsNTU1AID09HSdc0JERERK1dTUoGPHjq1uI0gRsIa6y+XCiRMn0KFDh5CvlVJdXY309HQcO3YMCQkJId23mbFc/GPZ+MZy8Y9l4xvLxb9IKRtJklBTU4O0tLQ2F2eNiBYWi8WCHj16hPU9EhISTF0pwoXl4h/LxjeWi38sG99YLv5FQtm01bLixkG3REREZHgMWIiIiMjwGLC0wW63Y968ebDb7XpnxVBYLv6xbHxjufjHsvGN5eJfNJZNRAy6JSIiosjGFhYiIiIyPAYsREREZHgMWIiIiMjwGLAQERGR4TFgAbBkyRJkZGQgNjYWWVlZ2L59e6vbv//+++jfvz9iY2MxePBgrF+/XqOcaktJuaxcuRKCIHj9xMbGaphbbXz22We46667kJaWBkEQ8PHHH7eZpqSkBNdffz3sdjv69u2LlStXhj2felBaNiUlJS3qjCAIKC8v1ybDGiksLMQNN9yADh06ICkpCRMmTMD+/fvbTBfp5xk15RIt55k333wTQ4YMkReFy87Oxt///vdW00R6fQEYsGDt2rXIz8/HvHnzsHPnTgwdOhQ5OTk4deqUz+2/+uor3H///Zg2bRq+/fZbTJgwARMmTMD333+vcc7DS2m5AE0rLp48eVL+OXLkiIY51kZtbS2GDh2KJUuWBLT9oUOHcOedd+K2227Drl27MGvWLDz88MPYuHFjmHOqPaVl47Z//36vepOUlBSmHOpjy5YteOyxx7B161YUFRXB4XBg3LhxqK2t9ZsmGs4zasoFiI7zTI8ePfDyyy9jx44d+OabbzB69Gjcc8892LNnj8/to6G+AACkKDdixAjpsccek393Op1SWlqaVFhY6HP7X//619Kdd97p9VpWVpb0b//2b2HNp9aUlsuKFSukjh07apQ7YwAgffTRR61uM3v2bGnQoEFer02cOFHKyckJY870F0jZfPrppxIA6fz585rkyShOnTolAZC2bNnid5toOc94CqRcovE849a5c2fpf/7nf3z+LVrqS1S3sDQ0NGDHjh0YM2aM/JrFYsGYMWNQWlrqM01paanX9gCQk5Pjd3szUlMuAHDhwgX07NkT6enprd4NRJNoqC/ByszMRGpqKsaOHYsvv/xS7+yEXVVVFQCgS5cufreJxnoTSLkA0XeecTqdWLNmDWpra5Gdne1zm2ipL1EdsJw5cwZOpxPJyclerycnJ/vtRy8vL1e0vRmpKZdrrrkGy5cvxyeffIL33nsPLpcLI0eOxPHjx7XIsmH5qy/V1dW4ePGiTrkyhtTUVCxduhQffvghPvzwQ6Snp2PUqFHYuXOn3lkLG5fLhVmzZuGmm27Ctdde63e7aDjPeAq0XKLpPLN79260b98edrsd//7v/46PPvoIAwcO9LlttNSXiHhaM+kvOzvbK/ofOXIkBgwYgD/+8Y948cUXdcwZGdU111yDa665Rv595MiROHDgAF5//XW8++67OuYsfB577DF8//33+OKLL/TOiqEEWi7RdJ655pprsGvXLlRVVeGDDz7AlClTsGXLFr9BSzSI6haWxMREiKKIiooKr9crKiqQkpLiM01KSoqi7c1ITblcyWq14rrrrkNZWVk4smga/upLQkIC4uLidMqVcY0YMSJi60xeXh7+9re/4dNPP0WPHj1a3TYazjNuSsrlSpF8nrHZbOjbty+GDRuGwsJCDB06FL///e99bhst9SWqAxabzYZhw4ahuLhYfs3lcqG4uNhvX2F2drbX9gBQVFTkd3szUlMuV3I6ndi9ezdSU1PDlU1TiIb6Ekq7du2KuDojSRLy8vLw0UcfYfPmzejVq1ebaaKh3qgplytF03nG5XKhvr7e59+iob4A4CyhNWvWSHa7XVq5cqX0ww8/SI888ojUqVMnqby8XJIkSZo0aZI0Z84cefsvv/xSiomJkV577TVp79690rx58ySr1Srt3r1br48QFkrLZf78+dLGjRulAwcOSDt27JDuu+8+KTY2VtqzZ49eHyEsampqpG+//Vb69ttvJQDSokWLpG+//VY6cuSIJEmSNGfOHGnSpEny9gcPHpTi4+Olp556Stq7d6+0ZMkSSRRFacOGDXp9hLBRWjavv/669PHHH0s//fSTtHv3bmnmzJmSxWKR/vGPf+j1EcJixowZUseOHaWSkhLp5MmT8k9dXZ28TTSeZ9SUS7ScZ+bMmSNt2bJFOnTokPTdd99Jc+bMkQRBkDZt2iRJUnTWF0mSpKgPWCRJkv7rv/5LuuqqqySbzSaNGDFC2rp1q/y3W2+9VZoyZYrX9n/+85+lq6++WrLZbNKgQYOkdevWaZxjbSgpl1mzZsnbJicnS7m5udLOnTt1yHV4uafiXvnjLospU6ZIt956a4s0mZmZks1mk3r37i2tWLFC83xrQWnZ/O53v5P69OkjxcbGSl26dJFGjRolbd68WZ/Mh5GvMgHgVQ+i8Tyjplyi5Tzz29/+VurZs6dks9mkbt26SbfffrscrEhSdNYXSZIkQZIkSbv2HCIiIiLlonoMCxEREZkDAxYiIiIyPAYsREREZHgMWIiIiMjwGLAQERGR4TFgISIiIsNjwEJERESGx4CFiIiIDI8BCxERERkeAxYiMrRRo0Zh1qxZemeDiHTGgIWIiIgMj88SIiLDeuihh7Bq1Sqv1w4dOoSMjAx9MkREumHAQkSGVVVVhTvuuAPXXnstFixYAADo1q0bRFHUOWdEpLUYvTNARORPx44dYbPZEB8fj5SUFL2zQ0Q64hgWIiIiMjwGLERERGR4DFiIyNBsNhucTqfe2SAinTFgISJDy8jIwLZt23D48GGcOXMGLpdL7ywRkQ4YsBCRoT355JMQRREDBw5Et27dcPToUb2zREQ64LRmIiIiMjy2sBAREZHhMWAhIiIiw2PAQkRERIbHgIWIiIgMjwELERERGR4DFiIiIjI8BixERERkeAxYiIiIyPAYsBAREZHhMWAhIiIiw2PAQkRERIb3/wOKIruVIIMD9AAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAiwAAAGwCAYAAACKOz5MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABT00lEQVR4nO3de3wU1d0/8M/ecoMkXHOTcBMEQe5CDCKiAgG8oZYqthUUtRfoU5qfWvHxQtCaWu8XKn1qBa2loLWglYhEEBABkUsoUEkBA+GSBLCQJQlJNrvz+yPsJEt2k53ZnZ0zO5/368VLdzNn9uyZ785858yZMxZJkiQQERERCcyqdwWIiIiI2sKEhYiIiITHhIWIiIiEx4SFiIiIhMeEhYiIiITHhIWIiIiEx4SFiIiIhGfXuwLh4PF4cOLECSQmJsJisehdHSIiIgqCJEk4d+4cMjIyYLW23ocSFQnLiRMnkJmZqXc1iIiISIWjR4+iW7durS4TFQlLYmIigMYvnJSUFNZ1u1wurFmzBhMnToTD4Qjruo2M7RIY28Y/tktgbBv/2C6BRUvbOJ1OZGZmysfx1kRFwuK9DJSUlKRJwpKQkICkpCRDB0W4sV0CY9v4x3YJjG3jH9slsGhrm2CGc3DQLREREQmPCQsREREJjwkLERERCY8JCxEREQmPCQsREREJjwkLERERCY8JCxEREQlPUcKSn5+PkSNHIjExESkpKZg6dSqKi4t9lqmtrcXs2bPRuXNntG/fHnfccQcqKipaXa8kSXjyySeRnp6O+Ph4jB8/HgcOHFD+bYiIiCgqKUpYNmzYgNmzZ2Pr1q0oLCyEy+XCxIkTUV1dLS/z61//Gv/85z/xwQcfYMOGDThx4gRuv/32Vtf7+9//Hq+99hoWLVqEr7/+Gu3atUNOTg5qa2vVfSsiIiKKKopmul29erXP6yVLliAlJQU7duzA2LFjUVlZiT//+c9YunQprr/+egDA4sWLcfnll2Pr1q246qqrWqxTkiS88sorePzxx3HrrbcCAN59912kpqZi5cqVuOuuu9R+NyIiIooSIU3NX1lZCQDo1KkTAGDHjh1wuVwYP368vEz//v3RvXt3bNmyxW/CUlJSgvLycp8yycnJyMrKwpYtW/wmLHV1dairq5NfO51OAI1TFbtcrlC+Ugve9YV7vUbHdgmMbeMf2yUwto1/bJfAoqVtlNRfdcLi8Xgwd+5cXH311bjiiisAAOXl5YiJiUGHDh18lk1NTUV5ebnf9XjfT01NDbpMfn4+8vLyWry/Zs0aJCQkKP0qQSksLNRkvUbHdgmMbeMf2yUwto1/bJfAjN42NTU1QS+rOmGZPXs29u7di02bNqldhWrz5s1Dbm6u/Nr7tMeJEydq8vDDwsJCTJgwISoeMBUuLpcLKwsKMXL0NXA4lIVRQowNHRNiNKqZ/hgz/unRLmdrXKiub1BcLs5uRef2sRrUyD/GjH9maJdztS44a5XHqMXjRtHWjYZvG+8VkmCoSljmzJmDTz75BBs3bkS3bt3k99PS0lBfX4+zZ8/69LJUVFQgLS3N77q871dUVCA9Pd2nzNChQ/2WiY2NRWxsy52Jw+HQbMNpuW4j+qL4FP53uw3S9i2Ky1otwFszrsT1/VPbXtjAGDP+RapdvjxwCjMXfwO3R1JV/vkfDMa0KzPDXKvWMWb8i9Z2+bbMiVsXfoX6Bo+q8jd1t2CKwdtGSd0V3SUkSRLmzJmDFStWYN26dejVq5fP30eMGAGHw4G1a9fK7xUXF6O0tBTZ2dl+19mrVy+kpaX5lHE6nfj6668DliH97TvhhAQLrBYg1m4N+p/VAngkYN/x4LNqIjX2nXDC7ZEUx6jN2viY+73HK3X+BhTt9pc7Ud/ggUVhjNovxGhplUXnbxBZinpYZs+ejaVLl+Kjjz5CYmKiPMYkOTkZ8fHxSE5OxqxZs5Cbm4tOnTohKSkJv/zlL5Gdne0z4LZ///7Iz8/HbbfdBovFgrlz5+KZZ55B37590atXLzzxxBPIyMjA1KlTw/plKfx+eGU3/O6OIUEvP+8fe/C3baVQd85LFDzpQpDdMbwbnp8WfIy+VPgfvLb2AGOUNOeN0TF9uuAvs7KCLvfXr4/gf1fs1ahW4lKUsLz55psAgHHjxvm8v3jxYsycORMA8PLLL8NqteKOO+5AXV0dcnJy8Ic//MFn+eLiYvkOIwB45JFHUF1djQcffBBnz57FmDFjsHr1asTFxan4ShQJ3JmT6KQQo1RikJPGQo0xs8WoooRFCqJ14uLisHDhQixcuDDo9VgsFixYsAALFixQUh0yIMuFHkyz/dBIPxaFvebm6mQnEVgUBqnFpFHKZwmROhcSDrU/m1DPfonaEvLZK2OUNMYIU4YJC0WUOc8LSE9Kz0aV9sgQhUppyJk1RpmwUEgUd7fzkhBFmPJLQo0FGKOkNe/wCLWXLc0WokxYSJWQBzSGqR5EgQQz5q7V8mGqB1EgjDFlmLBQRJl1sBjpR20vIFGk8JJQcJiwkCqSPOhW5fgA9reTxppCTOkdGBeXJ9KIdz+q8i4hs4UoExbShdl+aBR5occYo5S0xbmClGHCQiHhHBckOl4SItEpDjmTxigTFlJFbWLv7fo025kBRZ6kcq4gxihFihyjPPELChMWIopK7G4n0YUaYmYLUSYspIras1e5vOl+aqQXXuIh8Sm9ecGcQc2EhSKKE8dRpHBqfhKd2ktCZsWEhULDXxoJyptuqL31nkk1aU1tUmzWW++ZsJAq6n9o5pw/gPSjdmp+okjhxHHBYcJCEcWzV4oYTs1PguMlIWWYsJA6IQ66JdJa0yUhZZhUU6Sonx4itPJGxYSFIqrpKaNm+6mRXpRPe04UWYrHWZk0SpmwUEhUzyLKfIU0xruESHgXglTtJSGzRSgTFlLFbD8UMh7VA8OZVFOEhHpJyGyYsFBEydOe61wPMg/eJUSiM2sCohQTFlJF9XNawl4TIv9CvyREpK2m/ai6PaPZBoYzYSFdSGb7pVHEhT5xHGOUtKU2xjg1P5EKin84vGWUiMiXOfMPxZiwkCqhznRLpLVQJ+ViTk1aUz1X0EXlzYIJC+nCbD80ijxvUq184rgLA8MZpKQxtTHWlISb6wSQCQuponrQLS8JERH5MOuYFKWYsFBE8WdJEaPykpBZu9sp8tRfEjJnLyATFgqJ+vEBJvulUcTJBwOlU/PzLiGKEPV3CYW5IgbBhIVUCfmhXTwWEBEBMG8CohQTFiKKSt6zV96BQdHGrDHKhIVUUd2VyVEsFGmKH9DJGKXIUnvzgtkoTlg2btyIm2++GRkZGbBYLFi5cqXP3y0Wi99/zz//fMB1zp8/v8Xy/fv3V/xlSHxm/aFR5IV82dFsp68UcU1zBamcmj+MdTECxQlLdXU1hgwZgoULF/r9e1lZmc+/t99+GxaLBXfccUer6x04cKBPuU2bNimtGulA9Q+Ng1hIYyFPzW+6wwFFmvoYM+eZn11pgcmTJ2Py5MkB/56Wlubz+qOPPsJ1112H3r17t14Ru71FWYo+Zr32SkQUiDnTD+UUJyxKVFRUYNWqVXjnnXfaXPbAgQPIyMhAXFwcsrOzkZ+fj+7du/tdtq6uDnV1dfJrp9MJAHC5XHC5XOGp/AXe9YV7vUbndnsAAB63W1HbeDwe+b/R2qaMGf8i3S5utxsAICmMNc+Fcm535GKUMeNftLdLgzdGJXUxKknGbxsl9dc0YXnnnXeQmJiI22+/vdXlsrKysGTJEvTr1w9lZWXIy8vDNddcg7179yIxMbHF8vn5+cjLy2vx/po1a5CQkBC2+jdXWFioyXqN6vARKwArjhw5goKCkqDLHTjaWO7wYWXljIgx41+k2qWkpDHWDn13CAUFB4Iut6/cAsCGsvJyFBQUaFY/fxgz/kVru+w/3hhrx44fR0HB0aDL7flvYznA+G1TU1MT9LKaJixvv/02fvSjHyEuLq7V5ZpfYho8eDCysrLQo0cPvP/++5g1a1aL5efNm4fc3Fz5tdPpRGZmJiZOnIikpKTwfQE0Zn+FhYWYMGECHA5HWNdtZDtXfQuUHUXPnj0xZXLwA6QPrjuIz459h+49umPKlAEa1lA/jBn/It0uOwv2Y0N5KfpceimmTOgbdLkz247ig5JvkZaWhilThmpXwWYYM/5Fe7sc+7IEKD2Abt26YcqUK4IuF/PtSbxVXAQAhm8b7xWSYGiWsHz55ZcoLi7G8uXLFZft0KEDLrvsMhw8eNDv32NjYxEbG9vifYfDodmG03LdRmSzNo7XttmsitrFZms8K7BalZUzIsaMf5FqF4tFXYzaL8SoxWKJ+PZjzPgXre1itTbGmk3h/tBubzx0SzB+2yipu2bzsPz5z3/GiBEjMGTIEMVlq6qqcOjQIaSnp2tQMwqHkO8Y5ahbihDVdwkxRkljau8SMusgXcUJS1VVFYqKilBUVAQAKCkpQVFREUpLS+VlnE4nPvjgA9x///1+13HDDTfgjTfekF8/9NBD2LBhAw4fPozNmzfjtttug81mw/Tp05VWjwQnP7RL53oQEYnCrAmIUoovCW3fvh3XXXed/No7lmTGjBlYsmQJAGDZsmWQJClgwnHo0CGcPn1afn3s2DFMnz4d33//Pbp27YoxY8Zg69at6Nq1q9LqUYQ0TXuu7uyVSGtyjCp+WjOTaoqMponjlJUzay+g4oRl3LhxbU769eCDD+LBBx8M+PfDhw/7vF62bJnSapDBme2HRpHXNHGcMmY9GJBxNE1uaC58lhCFRPnZKxERNcdnrAWHCQuponpCafl3abZzA4o0uYdEYVbdtDRjlLQV6mVLs2HCQrpgdztpLdRnATFGSWuhxpjZQpQJC6kiDxZTWE7twxKJ1FI7hoUoUhTHnEljlAkL6YJnr6Q11Xdg8C4hipCmGFN72dJcmLBQaFT+ckLtridqS+iTGzJGSVshXxIyWYgyYSFVQh90SxQZigcoMkYpwpTPw2LOIGXCQhEld7eb7MyAIk/9JaEL5cNaG6KWvD3NHMISHE2f1kzG8H1VHc673IrKVNU1AFB/e111fQOOnQn+seIAEOewoUv7lg+9pOinJkarL8SoWufr3YpjNMZuRUpi60+np+h0rtaFyvMuRWWc50OL0QYJOH72POz24D/XZrUgLSnOkL00TFhMbsWuY/j18t0R+zzvb6RgTzkK9pQrLv/8DwZj2pWZYa4VieyjouOYu7xIda+c2jvZvi75L8Y894Xiz3t0cn/87NpLFZcj4/ruVBUmv/ol6ho8qsqrnZq/4rwF4178UvHn3Xt1Tzx180DF5fTGhMXkdh+tBNCYddutyn41MRY3runbWVGZqy/tgtSkWJytUXYm0uCR4PZI2Hu8kgmLyfzrWCUkSV2MJsU7cHXfLorKjOzZEd06xuPUuTpF5dweCQ0eCf86dlZROTK+4vJzqGvwwGIBYmzKRlokxNhwff8URWUGXZKM3l3a4ej3VbDabEGX80gSXG4Ju4+eVfR5omDCQgCAn197KR7K6Rf08i6XCwUFBbiyR0dFnzOoWzK+fmy80urhpTXFeG3dQY4rMCFvz8qDY3vjN5P6a/55PTq3w6bfXK+43F+2HMYTH+3j+CwT8m7ykT064f2fZWv+eR0SYvDZr65GQUEBpkzJgcPhCKrcZ/vK8dO/7DDsfpSDbslQeDAgItEYZb9kvFErvpiwkDEYcIAYhYfaOykizsI74MxKnldK+CBtZNQYZcJicmofvqUXTjhnPkbbuTJGzUv03ah3QLlRI5QJCxmC6DsC0p7oSbXg1SMNqZ3zJ9Lk6hntLOACJiwm5w1bwX9n8o7AoL8zCgO1c/5ECmPUvJr2owaJUX2roRoTFjIUo/7QSD2jPdPHWLWlcDDKpXWjJ9VMWExODlzBf2min7mQ9gQPUcYoGSZGjTrOigkLGYLRzwxIPV62JNHJY1hEj1KDxygTFpMzzC2jMoP+0kg14+1cDVdhCpG8HxV8Ryo/2NOgIcqEhQxB8P0ARYLgRwOxa0daMkoCwNuaKSoIfixgd7uJGaUXkDFqXk23NYsdpU09LMYMUiYsJme0uDVafYko+hltnJVRMWEhQxD9zIW0Y5xJuYzd3U7qGea2Zm+MGjRImbCYnFEmPPIy6u14pJ7RtrhRu9tJPaP1sBh1P8qEhQyFxwLzEj6pFrx6pCHDjWHRtRqqMWExOcN0twteP9KOYWL0wn8NeiygEBhlYLg8D4u+tVCNCQsZAscHmJmxtrpRz15JPeMk1d4xLMYMUiYspmeQM4MLDPo7ozAQPUZFvxxA2mnaLYkdA3z4IVEE8FhgXsY5e21k1IMBqWe0GDVqkDJhMTmj/dCMOrqd1DNar5pRu9tJPaOMYTHdTLcbN27EzTffjIyMDFgsFqxcudLn7zNnzoTFYvH5N2nSpDbXu3DhQvTs2RNxcXHIysrCtm3blFaNzMCovzQKmeiXXASvHmnIMCd+8mzMxtyRKk5YqqurMWTIECxcuDDgMpMmTUJZWZn8729/+1ur61y+fDlyc3Px1FNPYefOnRgyZAhycnJw8uRJpdUjlXgwIFEZpVeNMWpeRpnPyuiXLe1KC0yePBmTJ09udZnY2FikpaUFvc6XXnoJDzzwAO69914AwKJFi7Bq1Sq8/fbbePTRR1ssX1dXh7q6Ovm10+kEALhcLrhcrqA/Nxje9YV7vaJwezyN/3W7FX3HSLeLx1tPj0f4bRHtMaOW2nbxeBp3rx6FMRpp7gY3gMb6Kq0nY8Y/o7SLu6EBACBJkds/qWkbt1t9jGpFST0UJyzBWL9+PVJSUtCxY0dcf/31eOaZZ9C5c2e/y9bX12PHjh2YN2+e/J7VasX48eOxZcsWv2Xy8/ORl5fX4v01a9YgISEhPF/iIoWFhZqsV29Hj1oBWFFcXIyC6v2Ky0eqXb49YQFgw7Hjx1FQcDQinxmqaI2ZUCltFzlG/6MuRiNl96nGGD11+hQKCgpUrYMx45/o7bK3vHHbV5SXq972ailpm5JzAGBHTU1NxOsZSE1NTdDLhj1hmTRpEm6//Xb06tULhw4dwmOPPYbJkydjy5YtsNlsLZY/ffo03G43UlNTfd5PTU3F/v3+d07z5s1Dbm6u/NrpdCIzMxMTJ05EUlJSWL+Py+VCYWEhJkyYAIfDEdZ1i+DLFfuAk8fRv18/TLm2d9DlIt0u5V8dxkdH/oNLMi7BlCmDNP+8UER7zKiltl02/GMvcOoE+vfrjylje2lYw9C4dpfhLwf3oEvnLpgy5UplZRkzfhmlXb7fWgqU7Ed6ejqmTBkSkc9U0za7jp7FK3u3IT4+HlOmjNW4hsHxXiEJRtgTlrvuukv+/0GDBmHw4MG49NJLsX79etxwww1h+YzY2FjExsa2eN/hcGgW1FquW09Wa+NVTavNpur7RapdvMmuxWoxzHaI1pgJldJ2sVobh9rZVMZopDjsoccoY8Y/0dvFG6NWmzXi9VTSNg574yFfgjj7UUX7Ag3rAQDo3bs3unTpgoMHD/r9e5cuXWCz2VBRUeHzfkVFhaJxMKSOUUa3exl0cDuFgDFKojPOww9Fr2HrNE9Yjh07hu+//x7p6el+/x4TE4MRI0Zg7dq18nsejwdr165Fdna21tUjgzD6D43UM8pdQl5MWMynKakWez/V9PBDYwap4oSlqqoKRUVFKCoqAgCUlJSgqKgIpaWlqKqqwsMPP4ytW7fi8OHDWLt2LW699Vb06dMHOTk58jpuuOEGvPHGG/Lr3Nxc/OlPf8I777yDb7/9Fj//+c9RXV0t3zVE2uHteGQUYkeo+Acr0o5R9ktGD1HFY1i2b9+O6667Tn7tHfw6Y8YMvPnmm/jXv/6Fd955B2fPnkVGRgYmTpyIp59+2mfMyaFDh3D69Gn59Z133olTp07hySefRHl5OYYOHYrVq1e3GIhLZNQzAwqBQS4JcTZm8/LulwQPUcM/RFZxwjJu3LhWDxqfffZZm+s4fPhwi/fmzJmDOXPmKK0Ohcgo4wNErx9px2g7V+bU5iX6fqppplt966EWnyVEhmLQ3xmFgfCXLcWuHmlIPvHTtxpBM2ovIBMWAiD+D030+pF25O52wYPA6N3tpJ788EPBg5Q9LGRoRsm05R2BMapLRCZilB4WoyfVTFjIUIySYFH4GGWLW3grm2nJm1zwjIU9LGRsHHRLgjPazpVJtfk09bCIvaNq2o8aM0aZsJAhNE14pGs1SEfCjw/QuwKkm6YxLDpXpA3yJSGD7keZsJicUSaO8zLqD43UM860543/ZYyaj2HGsBh8KCATFjIG0U9dSDNGmyzQWLWlcBJ9N2W6qfkpuhjnltFGHB9gXqLHqPjn16SVppluxY4B9rAQRZBBTwwoBMa7JMQgNRujzBgOjmEhIzNK3Iq/IyDNGCVILzBYdSkM5KRa8P2U0ZNqJixkCEaf8IhCx7uESFRNx3+xo8DoUwUxYSEA4h8MvAx6YkAhMMwtoxZjd7eTekaLUaNmLExYTM4oO1fRdwREZF6Gua35wn8NsttvgQkLGULTjsCoPzVSiwcDEh3HsEQGExaTM8odGF4G/Z1RCAy3zQ1XYQqZUW5rNvhYQCYsZAiin7lQBAgeBIJXjzRkvB4WfeuhFhMWkzPOxHHGPjMg9eQBjTrXoy0GH89IITDKZUsvo07AyYSFDMWo115JPaNtcqPVl0LXdJeQ2CkLe1jI0AwzhkX4CpLWBD8WCD9+gbRjlARAvvVe53qoxYSFDIF3YJiXYZ4oLl8SYpSajWHGsHj/x6Ahate7AhQ+J8/Vor7Bo6jM+Xo3APG7Mr3O17tx7EyNojIxditSEuM0qhEp4awHjp89D7vdFXSZWpdbwxqFX32DR3GMuhsaDHOWHu3O1tSjqq5BUZlztY3xLHpS7d3NeyRJcYx6deuYEMYaKcOEJUos2nAIv/t0v97V0Iw3ofq65L8Y89wXisvPm9wfP7320nBXixRYvPkInt1hB3Z8qaq86Dm1t3r/qahSFaPDO1txY3irRAqtLz6J+5Z8A4/K5FH8GG2sYINHUhWjMXYr/vPM5HBXK2hMWKLE7qNnAQB2qwU2q7JfTad2Mbiqd2cNahU+I3t2RLeO8Th1rk5RObdHQoNHwr+OVWpUMwrWnuON20BNjHZpH4tRvTppUa2wGdKtA3p3bYfjZ84rKueRJLjcEkqrBD/amcC+E054JMBqARw2ZSMm2sXaMa5fV41qFh4pibHI7t0ZO0vPqCofY9d3FAkTlijz1C0D8ZOreuhdjbDr0bkdNv3mesXl/rLlMJ74aB/HFQjAe8njkZzL8OC1ffStjAY6tovBuv83TnG5HUfO4I43NzNCBeC9C/HOkZnIv32wzrUJP6vVgr89eJXe1VCNg26jBK9/t47tQ0Rt4X5CbExYKLqJflHZRIxyJ0WksT1ExI0iIiYsUYY/M/945iQAboNWsXn0x20gNiYsUYJjNPxjAicebhNfbA/xsNdLTExYKKpZOJmXMIwyfXmksT3EYbRnApkNE5YoIf/Q+Evzi5eE9Mdt0Dq2j/54YiM2xQnLxo0bcfPNNyMjIwMWiwUrV66U/+ZyufCb3/wGgwYNQrt27ZCRkYF77rkHJ06caHWd8+fPh8Vi8fnXv39/xV+G6GKizzxpRtwivtge4uGJn5gUJyzV1dUYMmQIFi5c2OJvNTU12LlzJ5544gns3LkT//jHP1BcXIxbbrmlzfUOHDgQZWVl8r9NmzYprRqBB+iLNV0SIr3xLiH/GKPiaLokxCAVkeKJ4yZPnozJk/1PzZucnIzCwkKf99544w2MGjUKpaWl6N69e+CK2O1IS0tTWh26gDu71rG7XX8SNwIJjhEqNs1nuq2srITFYkGHDh1aXe7AgQPIyMhAXFwcsrOzkZ+fHzDBqaurQ11d0xTtTqcTQOMlKZcr+IeqBcO7vnCvN9wkT+NDD91ud0TqapR28bgbH5wnSZ6I1dUobRNp3oTF447ctjACd0PTwx3ZLr4i/VvSY3+hVrTsZ5TU3yKFcNpjsViwYsUKTJ061e/fa2trcfXVV6N///7461//GnA9n376KaqqqtCvXz+UlZUhLy8Px48fx969e5GYmNhi+fnz5yMvL6/F+0uXLkVCgn5PktTTW/ut2HPGijt7uzE6lecJXlsqLFj2nQ1XdPTggf7KnmRN4fXnYiv+9V8rpvVyY0waY9TraBXwwh47kmMkLBhhrCdTR5uCUis+O27FNWke/KAX9xeRUFNTg7vvvhuVlZVISkpqdVnNelhcLhd++MMfQpIkvPnmm60u2/wS0+DBg5GVlYUePXrg/fffx6xZs1osP2/ePOTm5sqvnU4nMjMzMXHixDa/sFIulwuFhYWYMGECHA5HWNcdTh+f2QWcOYVBgwZhypXdNP88o7RL9Y5jWPbdv9E1JQVTpgyPyGcapW0i7ZMzu4D/nsLll1+OKdk99a6OMPadcOKFPVsBgDFzkUj/loo/Pwgc/w49e/TAlCmXa/55oYiW/Yz3CkkwNElYvMnKkSNHsG7dOsVJRIcOHXDZZZfh4MGDfv8eGxuL2NjYFu87HA7NNpyW6w4Hi6Vx/LTNZotoPUVvF7utMcStFmvE6yl620TchdGlkY5R0dntF3bDEmMmkEi1i82mz340FEaPGSV1D/s8LN5k5cCBA/j888/RuXNnxeuoqqrCoUOHkJ6eHu7qRbELk3LpXAtR8QKEOHiXkH+MUf1xXLjYFCcsVVVVKCoqQlFREQCgpKQERUVFKC0thcvlwg9+8ANs374df/3rX+F2u1FeXo7y8nLU19fL67jhhhvwxhtvyK8feughbNiwAYcPH8bmzZtx2223wWazYfr06aF/QzI37y2j3BORoJjAiYMTx4lN8SWh7du347rrrpNfe8eSzJgxA/Pnz8fHH38MABg6dKhPuS+++ALjxo0DABw6dAinT5+W/3bs2DFMnz4d33//Pbp27YoxY8Zg69at6Nq1q9LqmR53fr7YHOLwJo2c48IX20M83I+KSXHCMm7cuFbPVoM5kz18+LDP62XLlimtBl2EHQitY/PojxPHtY4xqj/uR8XGZwlRVPM+WI47IhIVEzhxyEk1e72ExIQlSvCH5h9bQxx8Eq5/nJpfPEwixcSEhUyBBwP9eQc08mAQAINUd+yJFRsTlmjDg4EPC+8SIsGxV1QcEqeHEBoTlijBA7J/PJsXR1OIcqM0x0tC4uF+Q0xMWIgoongwIGExaxQaE5Yow2OBL293Ozug9MdN4B9/s+JouvWeW0VETFiiBA8GJDzeJdQq/oaJWseEhaJa0/gAHg5EwZNXX2wPcTTNxkwiYsISJeQ5Lrj384uXhPTHpDEQjroVhdQ0oRUJiAkLEUVE08RxPBr4w3yFqHVMWKIMDwW+ODW/eNgJ6IvtIQ7OGC42JixRgsdj/7y7HV6O0B+3gH88NIqj6dK6vvUg/5iwEFFE8FlCrWNCR9Q6JixRQh7dzqOBj6ap+fWtB1EgHCgvDk7NLzYmLBTVeC1aHPJlOR6gfTRdtiRRMETFxIQlyvCH5h8PBuJgiJKo2BMrNiYsFNUsPH0VB7eBX4xR8bBnVkxMWIgoIpqe06JrNYTFfIWodUxYogzPDHzxtmbxMEJ98TcrDt68IDYmLFGC1179411C4pC4EfziwVEcnJlfbExYiCgimi4J8XDgD9M5otYxYYkS8vwBPBZc5MLU/DrXgpowRElUEgdaCY0JC0W1pktCTFn0xk3gH+8SEgcnjhMbExYiigievLaO+QpR65iwRAmevfrHk1cSHcf0iIMPPxQbExaKat6DARM6/fGynH9MqsXRdJcQMxYRMWGJMjxbI9ExRolIDSYsUYInr/7x7FU8TFd8MX8TBy8JiY0JC5kDMzrdcRO0js0jAm4FkTFhiRK8Hc8/nimJh9vEF8dLiIdbRExMWCiqyfOw6FsNAgc0BsJ5WMTBS0JiU5ywbNy4ETfffDMyMjJgsViwcuVKn79LkoQnn3wS6enpiI+Px/jx43HgwIE217tw4UL07NkTcXFxyMrKwrZt25RWjcAfWiC8HKE/3iXUOraO/hiiYlOcsFRXV2PIkCFYuHCh37///ve/x2uvvYZFixbh66+/Rrt27ZCTk4Pa2tqA61y+fDlyc3Px1FNPYefOnRgyZAhycnJw8uRJpdUzLf7Q/OPZvHiYVPtic4iHd7KJya60wOTJkzF58mS/f5MkCa+88goef/xx3HrrrQCAd999F6mpqVi5ciXuuusuv+VeeuklPPDAA7j33nsBAIsWLcKqVavw9ttv49FHH22xfF1dHerq6uTXTqcTAOByueByuZR+pVZ51xfu9Yab9+zV3eCOSF2N0i5udwMAwCN5IlZXo7RNpHk8F2LUHZkYNYqGhgb5/9kuviL9W3J7PAAAjwFiNFr2M0rqrzhhaU1JSQnKy8sxfvx4+b3k5GRkZWVhy5YtfhOW+vp67NixA/PmzZPfs1qtGD9+PLZs2eL3c/Lz85GXl9fi/TVr1iAhISEM36SlwsJCTdZ7MUkCKusBj8JyFadtACzYVbQLOBq57pZItYta/z5jAWDD92eceG9FgaKyVgDJMep7BERvm1BU1gNuhWH2/dnGGC0qKoK7dJcm9TIiZz0A2CHBguWfKI+ZDjGANco7BNT8lqpcQL3CHemhI1YAVhT/pxgF1fsVf6YejL6fqampCXrZsCYs5eXlAIDU1FSf91NTU+W/Xez06dNwu91+y+zf7z9g5s2bh9zcXPm10+lEZmYmJk6ciKSkpFC+QgsulwuFhYWYMGECHA5HWNftz4JV+/GXnaWqyw8fNgyTr0gLY438i3S7qNX+wGn8cf9OlJ+3IG+n8nC/b3QPzJvcT1EZo7SNWi8WHsCiLSWqyw8bOhQTr0gPY42M7XRVHZ7YsQEAVMXoVb064i/3jQx3tYSg9rf0UdEJ/O+He1V/bv9+/TFlbC/V5SMhWvYz3iskwQhrwhIpsbGxiI2NbfG+w+HQbMNpue7m9hxv3HgOmwVWhaf2aclxGNm7S0SDN1LtotbwHp3Ru2s7HD9zXlE5jyTB5Zaw98Q51d9P9LZRa8+Jxhi1Wy2wKTy1T7S7Mbxnp6hsF7VSk+0YfWknfPPd97DabEGXkySg3u3BnuPOqG9Ppb+lfeVVAACb1QK7whhNjndgbL8Uw7Sp0fczSuoe1oQlLa3xzL6iogLp6U1nUBUVFRg6dKjfMl26dIHNZkNFRYXP+xUVFfL6zOjNH43A+AGpbS9IrerYLgbr/t84xeU+3VOGn/91pzy/DTXxDvB+8YdDcOvQS4Iu53K5UFBQgC7tW55smJnVasE7M69EQUEBpkzJCXoHXvp9DcY+/wUj1A9vjP7s2t54OKe/vpWhsAnrPCy9evVCWloa1q5dK7/ndDrx9ddfIzs722+ZmJgYjBgxwqeMx+PB2rVrA5YhIv3wjjQi0oPiHpaqqiocPHhQfl1SUoKioiJ06tQJ3bt3x9y5c/HMM8+gb9++6NWrF5544glkZGRg6tSpcpkbbrgBt912G+bMmQMAyM3NxYwZM3DllVdi1KhReOWVV1BdXS3fNWQmPBaIQZ5wjhskIN76qS/GaNs4rUF0UZywbN++Hdddd5382jv4dcaMGViyZAkeeeQRVFdX48EHH8TZs2cxZswYrF69GnFxcXKZQ4cO4fTp0/LrO++8E6dOncKTTz6J8vJyDB06FKtXr24xEJco0ngsaImXycTC7dESJymMTooTlnHjxrUaDBaLBQsWLMCCBQsCLnP48OEW782ZM0fucSFOrqU/boC2sIVIdNyPRhc+S0g0PDMQQlN3O7fHxfi8FTHwklBgTc+tomjChIWoFTwWtMQ2EQu3R0tM4qITExZB8exVX2z+tnFAo7446DkIbKOowoRFMDwxEIP3YMAzNT94SUgIcvMzRlvwDkRmiEYXJixEreCxoCXelSIWbo+WeKIRnZiwCIrd7fpi67eNbaQv9nC1jW0UXZiwCIZnBmKQd3TcIC3wLiExeE9qGKItNd0lxCCNJkxYiEgRHh+JSA9MWETFEwNdyXNc6FsNwTFI9cQYDYy9gNGJCQtRK9jd3pJ3Mj0eDPTVdNWSQdoS7xKKRkxYBMMR/2Lgte/AGKFEpAcmLET+yN3tPDwHwpROZ7wkFBAvCUUnJiyC4u9MDOxtb6npYMAo1RPvEgqMMRqdmLAIhjsfMXA3FxhDlIj0wISFyA9Ozd82JnX6YudBYLyUG52YsAiKXZli4G7PD94lJITmzc87hXxxDEt0YsIiGO53xMD9XGAMUSLSAxMWIj/kSbmYQQbEs1d9Ne+FZZj64tT80YkJi6D4MyNRyd3tjFJdsfXbxqQ6ujBhEQxPlMTAg3FgHNAoHm4RX+xxik5MWIhawR1fK5jT6ap57wEvXfqSODV/VGLCIih2ZeqL7R9Y0yUh0hN7AdvG33F0YcJC5If8YDl2trfAk3nxcJNchA0SlZiwCIZdu2Lh5giMcwXpzOeSkH7VEBHvEopOTFiI/OF+LqCmgwHpifli29hG0YUJi6B4ZqAv+cFyOtdDROwFFA8vXfpijEYnJixEreCOLzCeverLd2p+3aohJDZHdGLCQuQHD8ZERGJhwiIoHjD11XSXEAXCy5b64qDnwJoefsg2iiZMWATDrl0SHZ+EKwY2f9vYRtGFCQuRH/KZGRPIFjjAUzw80fHF5ohOYU9YevbsCYvF0uLf7Nmz/S6/ZMmSFsvGxcWFu1qGwzMDMXDHFxhjVF8+U/MzUn14B8uzFzC62MO9wm+++QZut1t+vXfvXkyYMAHTpk0LWCYpKQnFxcXyazNfd+SORwwmDsE2SZyIRQgcQ9Q2tlB0CXvC0rVrV5/Xv/vd73DppZfi2muvDVjGYrEgLS0t3FUhUk0edMu+9hbYIuJhmPpic0SnsCcszdXX1+O9995Dbm5uq70mVVVV6NGjBzweD4YPH45nn30WAwcODLh8XV0d6urq5NdOpxMA4HK54HK5wvcFLqyz+X+15j1Aut3uiH2mGpFul0hraGgAAHgkSfF3jPa28caoR2GMRnu7hEJN2zQ0NPVk17tciLFG32Fabcx43J7G/3o8URtv0fJ7UlJ/i6ThKeT777+Pu+++G6WlpcjIyPC7zJYtW3DgwAEMHjwYlZWVeOGFF7Bx40bs27cP3bp181tm/vz5yMvLa/H+0qVLkZCQENbvEGn5RTaUn7dgzgA3+iZH3w7IKErOAa/staNLrIQnhrvbLmAizxbZUHHegl8OaECfZL1rY14uD/DQ143nnM+NakCcTecKCWTxf6wo+t6KH/Ry45o07kdFVlNTg7vvvhuVlZVISkpqdVlNE5acnBzExMTgn//8Z9BlXC4XLr/8ckyfPh1PP/2032X89bBkZmbi9OnTbX5hpVwuFwoLCzFhwgQ4HI6wrtufya99hYOnqvGXe6/EVb07af55akW6XSJtV+lZ/PBP25DZMR7rcq9RVDba2ybn1U347nQN3rvvSmT1Cj5Go71dQqGmbepcblyxYC0AYOf/Xo/EOE07zHWhNmZ+uWw3Vu+rwFM39cePs7prWEP9RMvvyel0okuXLkElLJpF+JEjR/D555/jH//4h6JyDocDw4YNw8GDBwMuExsbi9jYWL9ltdpwWq67Oe+lM7vdboggjFS7RJrNfuGnYYHq7xetbeMdkexQGaNR2y5hoKRtPJammzztDmPsL9RSGjPyftRmi+p2AYz/e1JSd83mYVm8eDFSUlJw4403KirndruxZ88epKena1QzorbxLqFWcBZRIfAuoSAwRqOKJgmLx+PB4sWLMWPGDNjtvp0499xzD+bNmye/XrBgAdasWYPvvvsOO3fuxI9//GMcOXIE999/vxZVEx6vtoqh6S4hXashJDaJeBinvtge0UmTS0Kff/45SktLcd9997X4W2lpKazWpjzpzJkzeOCBB1BeXo6OHTtixIgR2Lx5MwYMGKBF1YgoTHjyqi+2f9vYRNFFk4Rl4sSJAeevWL9+vc/rl19+GS+//LIW1TA07oz05b3cwTO1luRZRHWuh9n5tD/j1Id3Ak7uR6MLnyUkGE5URqJjhIqHM2T74m40OjFhIfKDJ2Zt49mrvjjouW0cmBxdmLAIij8zfckPa+apWgtNTcIo1VPz1meY+pIfd8UQjSpMWATD/Y5YuD1a4uUH8XCL+GICF52YsBD5wa7ktvHsVV9s/7axiaILExZB8fq0vpouCelbDxF524QRqq/m+wheurwY7xKKRtH38AlBSJKEE5W1inckDW7ueETS4JFw7EyNojLuhgZDJDqSJKGsshYehZV1ewzw5UymrLIW513KHtKZmhQHh038c1ZnPXD87HnY7cE/1VdpW5AxMGHRyNzlRfio6ITe1aAQna6qw5jnvlBcbkQXK5Q9lCLyfvPhv/D+9mOqy7MXUBw3vb5JcZnLUttj9a/GwmoVdzsu3nwEz+6wAzu+VFWel3ajCxMWjew+ehYA4LBZYFW4Y+/ROQEDMsL71GlSpk9Ke1xxSRIOVFQpKueRJLjcEo5Wib+j3H20EoC6GO3VpR36pSZqUS1S4NahGVi9t1xRGQlAfYMH/6moQl2DB/ExNm0qFwZ7jjfGqN1qgU1hYtWlfSxGKniaOImPCYvGlj14FUb04I/GaOIcNnzyy2sUl/vm8H8xbdEWQ9y14b3b5537RmH0pV10rg2p8epdwxSXOV/vxuVPrgYg/h1f3quVj+Rchgev7aNvZUh34l/ANCixdwNEHFBMjAEyFiYsRGEkP+VZ11oow+v85mKkoUecAI6aY8KiOf7STMkAGYsBqkgaEz4GhK8gRRITFo2wq9WcjHgmaMQ6k7kwRAlgwkIUZo27ViPkq945gngwMJfmCaroE85J8gRwjFJiwqIZiTMtkuDEPlRRJIgeA4LnUxRhTFiIwsiICSrPXs3FiIOsjVdj0gITFo3xh2YuhrpLyPtMIAapqfheEtKvHsHgXULUHBMWjYi+IyBiiJLoQSD6GBuKLCYsRGFkxMsrxqsxhcKI29uIdabwY8KiMSMewEg9+ZKQAU4M5buEGKKm0nyfJPzU/N7/YZASmLBoxggHLDI3hihxP0VGwoSFKIy8J4LGOg7w7NVMjLS1vQmVkepM2mHCojH+0MzFSLeM8uyajBICvCJEABMWItPi5IbmZKSZbomaY8KiMR4MzMWIl4QYouZipBsBmh4fYZw6k3aYsGiEZy4mZ4DNzxAl0UOAE8dRc0xYiExKHtDIo4FpMWklI2HCohH5zIBdmabCS0JkBEbJUXmXEDXHhIUojJigkpGIP3EcB4ZTEyYsGuMPjUTFmW7NS97kYucrRD7CnrDMnz8fFovF51///v1bLfPBBx+gf//+iIuLw6BBg1BQUBDuakUcrw2bkzEvCTFjMRujjFtq2o8ao76kLU16WAYOHIiysjL536ZNmwIuu3nzZkyfPh2zZs3Crl27MHXqVEydOhV79+7VompEmjLIcQCAsZIq0oZRYsBIvyvSjiYJi91uR1pamvyvS5cuAZd99dVXMWnSJDz88MO4/PLL8fTTT2P48OF44403tKgaUUQY4UDQdJeQvvWgyDPKQzoFrx5FmF2LlR44cAAZGRmIi4tDdnY28vPz0b17d7/LbtmyBbm5uT7v5eTkYOXKlQHXX1dXh7q6Ovm10+kEALhcLrhcrtC/QDPe9Sldr3d8QENDQ9jrJAK17RLt3A0Njf8jid823gGNkYpRxkxgerWNq8EFl8sW0c9UwuPxNP7X7WbcXCRafk9K6h/2hCUrKwtLlixBv379UFZWhry8PFxzzTXYu3cvEhMTWyxfXl6O1NRUn/dSU1NRXl4e8DPy8/ORl5fX4v01a9YgISEh9C/hR2FhoaLla2ttACz46qtNONJOkyoJQWm7RLuyGsD7sxK9bWrP6xOjoreLniLVNpLUuO3XrV2HDrER+UhVTp+2ArDi3/v2oeAUhwn4Y/TfU01NTdDLhj1hmTx5svz/gwcPRlZWFnr06IH3338fs2bNCstnzJs3z6dXxul0IjMzExMnTkRSUlJYPsPL5XKhsLAQEyZMgMPhCLrcb/duAFx1GDNmDAakh7dOIlDbLtHuQEUVfrd7MyRA+LaJdIwyZgKLdNs8tK0QbreE666/HunJcZp/nlofnNwOnP0vBl4xEFOu9N9Lb1bR8nvyXiEJhiaXhJrr0KEDLrvsMhw8eNDv39PS0lBRUeHzXkVFBdLS0gKuMzY2FrGxLU8LHA6HZhtO7brtdruhg6ktWra5ETkc9mb/b4y2iXSMGqVd9BCptmm8M0wSfv/kvZvJbhO7nnoy+u9JSd01n4elqqoKhw4dQnp6ut+/Z2dnY+3atT7vFRYWIjs7W+uqRQRvGTUXIw1g5WzMJmaw2++N9Lsi7YQ9YXnooYewYcMGHD58GJs3b8Ztt90Gm82G6dOnAwDuuecezJs3T17+V7/6FVavXo0XX3wR+/fvx/z587F9+3bMmTMn3FWLKKPsCEgbRtj+vEvIvJruEhI7UsWuHUVa2C8JHTt2DNOnT8f333+Prl27YsyYMdi6dSu6du0KACgtLYXV2pQnjR49GkuXLsXjjz+Oxx57DH379sXKlStxxRVXhLtqRBFgsFNXIoHxWULUXNgTlmXLlrX69/Xr17d4b9q0aZg2bVq4q6Irnr2S+Dg1v1nJMzIzsSYD4bOEiMKIU/OTERhlm8sPZ2RWTWDCojn+zszFSJubZ9dkFEb6XZF2mLBohkcDEpt8lxCPBqZjmEtCotePIooJC1EYeeeN4H6WKHRMqqk5JiwaM8q1YgoPI21t7y2tRqozhYd8W7NBUmvGKAFMWDQjfFcracoIm59nr+Yl9wQKHqiizxNDkcWEhSiMLE2nrkQUoqakmlk1MWHRDM9ezclIlwCbTl6NU2cKD6Pl1YxQApiwEGnCCAcCeQwLjwbmI98lJHakCl49ijAmLBrjscBcePAnCh/2VFNzTFg0IvqZC1HT05rJbIx2SYgIYMJCpAlDHAjkWc+ZspgN7xIiI2LCojEeC8yF25so/JhUE8CERTM8LzAni4GefshLQubVdPw3QKCCMUqNmLAQacAIhwF2t5PoISB6/SiymLBohHNcmJMRtzZ7283HaJucMUoAExaisDLQFaFml4R4NDAbozykkzFKzTFh0RjPDEhU7G4n0WOAly2pOSYsGuEPzZyMeCbIpNp8jLbJGaMEMGEhCitjXRIyQi1JC01xKnYM8E42as6udwVEJkkSjp89j//WAcfPnofd7gq6rMc7KZdGdSOxSZLymAGAjOR4WK3KosbjkXCi8ryiMkBTjJJ5VTjr0D62RlGZLu1jEeewqfisWrjcHkVl6huULU/RjQlLK1xuCeNe/BKAHXk7v9S7OmQATVOeWy7EjjJj+nTBe/dnKSoz651v8EXxKcWf5cXudjNq3Ogz3t6muGRaUhzWPzxOUdLy4ppivL7uoOLPkjFGCUxY2hRrt8LjdsNqU35GMSAjCZmdEjSoFYmqS/tYZPfuhO0l3yuKGUkC6t0e7D52VvFn7j5WCQCIsVkVJx9DunVAenK84s8kY7t5SDr+tq1U8aDbugYPyp21OOmsQ/fOwe/bio6eBQDYrRbYFPYgJtrdGNItWVEZik5MWFoRY7di71PjUVBQgClTcuBwOPSuEgnOarXg3XuvVBwzh09XY9wL61UNfvEO8F71P2PQNzVR+QrIdJ66eSCeunmg4nIDn1yN6nq36rEvL0wbgqnDLgl6eZfLhYKCAnRpH6vq8yi6cNAtkUA4rISiEW+apHBgwkIkgFDGkch3UvA6P2ks1Kc8M0YpFExYiASiZv4enr1SpCkNOdFvnyZjYMJCJIDwTDjH01fSFiOM9MSEhUgAoUw45+2VYXc7ac4bpwq79byLWxikFAImLEQCUXN5h53tFGmKLwkxSCkMmLAQRQmeu5LWQo0xxiiFggkLkQBCerYLu9spQtTeJeSNa4YohSLsCUt+fj5GjhyJxMREpKSkYOrUqSguLm61zJIlS2CxWHz+xcXFhbtqRMLjJSEyBnVjWIhCEfaEZcOGDZg9eza2bt2KwsJCuFwuTJw4EdXV1a2WS0pKQllZmfzvyJEj4a4akbDC0TvCk1fSWqhhGp674ciswj41/+rVq31eL1myBCkpKdixYwfGjh0bsJzFYkFaWlpQn1FXV4e6ujr5tdPpBNA4jbPLpezpuG3xri/c6zU6tktgatrG3dAAoPG8VWmbeu/YaHA3CL09GDOBGaVtvOlGvUtZrHkuxKhbYYwapV30EC1to6T+mj9LqLKy8cFsnTp1anW5qqoq9OjRAx6PB8OHD8ezzz6LgQP9P+siPz8feXl5Ld5fs2YNEhK0edhgYWGhJus1OrZLYEra5kwdANjhdrtRUFCg6HMaGmwALNiwfj26GOBKKmMmMNHbpr6+Mda+3LgRBxTsav/7fWO5Xbt2QSpVfn1I9HbRk9HbpqamJuhlLZKaqTWD5PF4cMstt+Ds2bPYtGlTwOW2bNmCAwcOYPDgwaisrMQLL7yAjRs3Yt++fejWrVuL5f31sGRmZuL06dNISkoK63dwuVwoLCzEhAkT+PDDZtgugalpm7LKWox9YSMcNgv+PX+Cos8b8vRa1NS7sfbXY9Bd4KeDM2YCM0rbjMr/AmdqXCiYMxp9U9sHXW76W9uw/chZvH7XEEwamBp0OaO0ix6ipW2cTie6dOmCysrKNo/fmvawzJ49G3v37m01WQGA7OxsZGdny69Hjx6Nyy+/HH/84x/x9NNPt1g+NjYWsbEtn97pcDg023BartvI2C6BKWkbh6PBp5wS3lMOh90Y24IxE5jobeMda2Wz2xXV01vObrOp+n6it4uejN42SuquWcIyZ84cfPLJJ9i4caPfXpLWOBwODBs2DAcPHtSodkRi8Q5GDKW/k7eMktbUhljTTLdhqwqZUNjvEpIkCXPmzMGKFSuwbt069OrVS/E63G439uzZg/T09HBXj0hIoT2tmfeMUmSENF9Q4xrCVhcyn7D3sMyePRtLly7FRx99hMTERJSXlwMAkpOTER8fDwC45557cMkllyA/Px8AsGDBAlx11VXo06cPzp49i+effx5HjhzB/fffH+7qEQlN3bOEwl4NolYpnziOKHRhT1jefPNNAMC4ceN83l+8eDFmzpwJACgtLYXV2tS5c+bMGTzwwAMoLy9Hx44dMWLECGzevBkDBgwId/WIhOQ97wxlDDy720l76oKMD+ikcAh7whLMDnf9+vU+r19++WW8/PLL4a4KkXGEdEnowip4NCCNyZeEVObVjFAKBZ8lRCQQVccB9rdThCkdw8IQpXBgwkIkgLDcJRSmuhAFEvpdQoxSUo8JC5EAwnGXEI8FpDVeEiI9MWEhIiJN8ZIQhQMTFiIBND/zVHqnkNzdzvNX0pjqGONdQhQGTFiIDI5nrxRpnPuH9MCEhUgAzQcjqh4fwLNX0pjaGGu69T5sVSETYsJCJACfS0IKy8qTcoWtNkT+yRMcKr2tmZctKQyYsBAZHHvnKdJ4SYj0wISFSADNu8pVT8/Pk1fSmNp5VOQeGcYohYAJC5EAmneVK78k1HIdRFpSH6NE6jFhISIiRUJ5SCeRWkxYiETgc0lI5Sp4+koaU32XEKfmpzBgwkIkAPUHgqbshocC0po8Nb/a8mGrCZkRExYiwSi9ZZRIdIxoCgcmLEQC8J2aP/hyzZdldztpTe1TxSVOzU9hwISFyMB45kr6YORR5DFhIRJAOHpHePJKWgs1THnrPYWCCQuRANRfEmo26JbHAtKYPDW/4ktCF8ozRikEdr0rECmSJKGhoQFut1tROZfLBbvdjtraWsVlo5nadrHZbLDb7RxvESbsmCc9MO5ID6ZIWOrr61FWVoaamhrFZSVJQlpaGo4ePcqDbDOhtEtCQgLS09MRExOjUe2Mx2dqfpWHA3a3k9ZCnZqfEUqhiPqExePxoKSkBDabDRkZGYiJiVH0o/N4PKiqqkL79u1htfIKmpeadpEkCfX19Th16hRKSkrQt29ftukFPlPzq7xLiEcD0lqol4QYoxSKqE9Y6uvr4fF4kJmZiYSEBMXlPR4P6uvrERcXx4NrM2rbJT4+Hg6HA0eOHJHLk3qcs4X0wKn5SQ+mOQIz2RAHt0VLvpeEQl8HkSbUzsgsF2eQkno8chAJRsnZq8/EcRrUhag5+ZKQwnKcOI7CgQkLERERCY8JC5EAwnNJiKevpC1vjCkedOstH97qkMkwYTGo+fPnY+jQoXpXw4eIdTIi1XcJEUWI4sHejFMKAyYsJud2u+HxePSuhumFYzAiz15Ja6HGGHsBKRSmTFgkSUJNfUPQ/87XuxUt39q/YAdUvvvuu+jcuTPq6up83p86dSoyMzORl5eH3bt3w2KxwGKxYMmSJQCAl156CYMGDUK7du2QmZmJX/ziF6iqqpLLL1myBB06dMDHH3+MAQMGIDY2FqWlpSgrK8ONN96I+Ph49OrVC0uXLkXPnj3xyiuvyGXPnj2L+++/H127dkWHDh1wyy23YPfu3fJ6A9WJ2uazH1fSwwJOzU+RY1E56la+JMQYpRBE/Tws/px3uTHgyc90+ex/L8hBQkzbzT5t2jT8z//8Dz7++GNMmzYNAHDy5EmsWrUKH3/8MdauXYvVq1fj888/BwAkJycDaLxl+LXXXkOvXr3w3Xff4Re/+AUeeeQR/OEPf5DXXVNTg+eeew5vvfUWOnfujJSUFNx66604ffo01q9fD4fDgdzcXJw8ebJFneLj4/Hpp58iMTERb7zxBiZMmID//Oc/uPPOO7F3716/dSJllHS385IQ6UHtXUJEodCsh2XhwoXo2bMn4uLikJWVhW3btrW6/AcffID+/fsjLi4OgwYNQkFBgVZVM4T4+HjcfffdWLx4sfzee++9h+7du2PSpElo37497HY70tLSkJaWhvj4eADA3Llzcd1116Fnz564/vrr8cwzz+D999/3WbfL5cIf/vAHjB49Gv369UNpaSk+//xz/OlPf0JWVhaGDx+Ot956C+fPn5fLbNq0Cdu2bcMHH3yAK6+8En379sXTTz+NDh064O9//zvi4+MD1onaFo4TT85xQVoLNcYYoRQKTXpYli9fjtzcXCxatAhZWVl45ZVXkJOTg+LiYqSkpLRYfvPmzZg+fTry8/Nx0003YenSpZg6dSp27tyJK664Iuz1i3fY8O8FOUEt6/F4cM55DolJiWGZ8CzeYQt62QceeAAjR47E8ePHcckll2DJkiWYOXNmq9eBP//8c+Tn52P//v1wOp1oaGhAbW0tampq5Jl+Y2JiMHjwYLlMcXEx7HY7hg8fLr/Xp08fdOzYUX69e/duVFVVoXPnzj6fd/78eRw6dCjo70T+Nd+migbd+qwjfPUh8scbY6rvEmKMUgg0SVheeuklPPDAA7j33nsBAIsWLcKqVavw9ttv49FHH22x/KuvvopJkybh4YcfBgA8/fTTKCwsxBtvvIFFixaFvX4WiyWoyzJAY8LSEGNDQow94jO0Dhs2DEOGDMG7776LiRMnYt++fVi1alXA5Q8fPoybbroJP//5z/Hb3/4WnTp1wqZNmzBr1izU19fLCUt8fLziwW9VVVVIT0/H+vXrAfg+S6hTp06qvyO1dPzseVTXNwS1bE09nyBOkXeqqhbHzgT/MNkGNy8JUejCnrDU19djx44dmDdvnvye1WrF+PHjsWXLFr9ltmzZgtzcXJ/3cnJysHLlSr/L19XV+QxGdTqdABovdbhcLp9lXS4XJEmCx+NRdTeM99qrdx2Rdt999+G1117DsWPHcMMNN+CSSy6Bx+OBw+FocYfPN998A4/Hg+eff15OrpYvXw4A8vf3Lt+8XN++fdHQ0IAdO3ZgxIgRAICDBw/izJkz8vceOnQoysvLYbVa0bNnT0iShHPnziExMREWiyVgnfzxeDyQJAkulws2W/A9TkbhjcGLY7E1Hk/TDv2m1zep+twGlwsuiHvHl5p2MQvDtM2F/eGvl+9WVdzd4Fb0HQ3TLjqIlrZRUv+wJyynT5+G2+1Gamqqz/upqanYv3+/3zLl5eV+ly8vL/e7fH5+PvLy8lq8v2bNmhYPOPSOqaiqqkJ9fb2Sr+Lj3LlzqsuG4qabbsIjjzyCt956C2+++aacnKWkpKCkpARfffUVMjIy0L59e6SlpcHlcuGFF17ApEmTsHXrVrmH6ty5c7BaraitrYUkSfJ6ACAjIwPjxo3DAw88gBdffBEOhwOPP/444uPjUVdXB6fTiVGjRmHkyJG49dZbkZeXhz59+qCsrAxr1qzBTTfdhGHDhvmtU2xsbIvvVF9fj/Pnz2Pjxo1oaAiuJ8GICgsLFS0/rLMVe/+rrs/88o4S1hbqM5BcKaXtYiait82lMRZ8Z7WqGuzdJR44vHszyvYqLyt6u+jJ6G1TUxN8T50h7xKaN2+eT4+M0+lEZmYmJk6ciKSkJJ9la2trcfToUbRv317Vk4Ev7kmItKSkJNx+++0oKCjA9OnT5QTgxz/+MVavXo1bbrkFZ8+exZ///GfMnDkTL774Il544QUsWLAA11xzDZ599lnMnDkTiYmJSEpKQlxcHCwWS4t2eu+993D//ffjxhtvRFpaGn7729+iuLgYycnJ8rKrV6/G448/jl/+8pc4deoUUlJScO2116J3795ISkoKWKeL1dbWIj4+HmPHjo3KpzW7XC4UFhZiwoQJcDgcQZebMkXDSglAbbuYgVHaJtIhapR20UO0tE3zk+e2hD1h6dKlC2w2GyoqKnzer6ioQFpamt8yaWlpipaPjY31e+bucDhabDi32w2LxQKr1apqDIr38oZ3HXo4ceIEfvSjH/ncdRMfH48PP/ywxbK5ubktLq/NmDFD/v/77rsP9913X4tyl1xyCT799FP59bFjx3Dy5Elcdtll8vdOTk7G66+/jtdffx0ejwdOpxNJSUny3wPV6WJWqxUWi8Xv9oom0f791GK7BMa28Y/tEpjR20ZJ3cN+BI6JicGIESOwdu1a+T2Px4O1a9ciOzvbb5ns7Gyf5YHGbq5Ay5vFmTNnsGLFCqxfvx6zZ8/W9LPWrVuHjz/+GCUlJdi8eTPuuusu9OzZE2PHjtX0c4mIiIKhySWh3NxczJgxA1deeSVGjRqFV155BdXV1fJdQ/fccw8uueQS5OfnAwB+9atf4dprr8WLL76IG2+8EcuWLcP27dvxf//3f1pUzzCGDRuGM2fO4LnnnkO/fv00/SyXy4XHHnsM3333HRITEzF69Gj89a9/NXTmTkRE0UOThOXOO+/EqVOn8OSTT6K8vBxDhw7F6tWr5YG1paWlPpdXRo8ejaVLl+Lxxx/HY489hr59+2LlypWazMFiJIcPH47YZ+Xk5CAnJ7i5aYiIiCJNs0G3c+bMwZw5c/z+zTuXR3PTpk2Tp6AnIiIias40Dz/ksyzEwW1BRERKRX3C4h2DoeReb9KWd1twfAwREQXLkPOwKGGz2dChQwf5ycMJCQmK5lPxeDyor69HbW2tbrc1i0hNu0iShJqaGpw8eRIdOnSIylluiYhIG1GfsACQ53PxJi1KSJKE8+fPq3r+TjQLpV06dOgQcI4dIiIif0yRsFgsFqSnpyMlJUXxcxdcLhc2btyIsWPH8hJGM2rbxeFwsGeFiIgUM0XC4mWz2RQfLG02GxoaGhAXF8eEpRm2CxERRRIHZRAREZHwmLAQERGR8JiwEBERkfCiYgyLdyIyJY+pDpbL5UJNTQ2cTifHajTDdgmMbeMf2yUwto1/bJfAoqVtvMftYCYUjYqE5dy5cwCAzMxMnWtCRERESp07dw7JycmtLmORomCedI/HgxMnTiAxMTHsc6U4nU5kZmbi6NGjSEpKCuu6jYztEhjbxj+2S2BsG//YLoFFS9tIkoRz584hIyOjzUlIo6KHxWq1olu3bpp+RlJSkqGDQitsl8DYNv6xXQJj2/jHdgksGtqmrZ4VLw66JSIiIuExYSEiIiLhMWFpQ2xsLJ566inExsbqXRWhsF0CY9v4x3YJjG3jH9slMDO2TVQMuiUiIqLoxh4WIiIiEh4TFiIiIhIeExYiIiISHhMWIiIiEh4TFgALFy5Ez549ERcXh6ysLGzbtq3V5T/44AP0798fcXFxGDRoEAoKCiJU08hS0i5LliyBxWLx+RcXFxfB2kbGxo0bcfPNNyMjIwMWiwUrV65ss8z69esxfPhwxMbGok+fPliyZInm9dSD0rZZv359i5ixWCwoLy+PTIUjJD8/HyNHjkRiYiJSUlIwdepUFBcXt1ku2vczatrFLPuZN998E4MHD5YnhcvOzsann37aaplojxeACQuWL1+O3NxcPPXUU9i5cyeGDBmCnJwcnDx50u/ymzdvxvTp0zFr1izs2rULU6dOxdSpU7F3794I11xbStsFaJxxsaysTP535MiRCNY4MqqrqzFkyBAsXLgwqOVLSkpw44034rrrrkNRURHmzp2L+++/H5999pnGNY08pW3jVVxc7BM3KSkpGtVQHxs2bMDs2bOxdetWFBYWwuVyYeLEiaiurg5Yxgz7GTXtAphjP9OtWzf87ne/w44dO7B9+3Zcf/31uPXWW7Fv3z6/y5shXgAAksmNGjVKmj17tvza7XZLGRkZUn5+vt/lf/jDH0o33nijz3tZWVnST3/6U03rGWlK22Xx4sVScnJyhGonBgDSihUrWl3mkUcekQYOHOjz3p133inl5ORoWDP9BdM2X3zxhQRAOnPmTETqJIqTJ09KAKQNGzYEXMYs+5nmgmkXM+5nvDp27Ci99dZbfv9mlngxdQ9LfX09duzYgfHjx8vvWa1WjB8/Hlu2bPFbZsuWLT7LA0BOTk7A5Y1ITbsAQFVVFXr06IHMzMxWzwbMxAzxEqqhQ4ciPT0dEyZMwFdffaV3dTRXWVkJAOjUqVPAZcwYN8G0C2C+/Yzb7cayZctQXV2N7Oxsv8uYJV5MnbCcPn0abrcbqampPu+npqYGvI5eXl6uaHkjUtMu/fr1w9tvv42PPvoI7733HjweD0aPHo1jx45FosrCChQvTqcT58+f16lWYkhPT8eiRYvw4Ycf4sMPP0RmZibGjRuHnTt36l01zXg8HsydOxdXX301rrjiioDLmWE/01yw7WKm/cyePXvQvn17xMbG4mc/+xlWrFiBAQMG+F3WLPESFU9rJv1lZ2f7ZP+jR4/G5Zdfjj/+8Y94+umndawZiapfv37o16+f/Hr06NE4dOgQXn75ZfzlL3/RsWbamT17Nvbu3YtNmzbpXRWhBNsuZtrP9OvXD0VFRaisrMTf//53zJgxAxs2bAiYtJiBqXtYunTpApvNhoqKCp/3KyoqkJaW5rdMWlqaouWNSE27XMzhcGDYsGE4ePCgFlU0jEDxkpSUhPj4eJ1qJa5Ro0ZFbczMmTMHn3zyCb744gt069at1WXNsJ/xUtIuF4vm/UxMTAz69OmDESNGID8/H0OGDMGrr77qd1mzxIupE5aYmBiMGDECa9euld/zeDxYu3ZtwGuF2dnZPssDQGFhYcDljUhNu1zM7XZjz549SE9P16qahmCGeAmnoqKiqIsZSZIwZ84crFixAuvWrUOvXr3aLGOGuFHTLhcz037G4/Ggrq7O79/MEC8AeJfQsmXLpNjYWGnJkiXSv//9b+nBBx+UOnToIJWXl0uSJEk/+clPpEcffVRe/quvvpLsdrv0wgsvSN9++6301FNPSQ6HQ9qzZ49eX0ETStslLy9P+uyzz6RDhw5JO3bskO666y4pLi5O2rdvn15fQRPnzp2Tdu3aJe3atUsCIL300kvSrl27pCNHjkiSJEmPPvqo9JOf/ERe/rvvvpMSEhKkhx9+WPr222+lhQsXSjabTVq9erVeX0EzStvm5ZdfllauXCkdOHBA2rNnj/SrX/1Kslqt0ueff67XV9DEz3/+cyk5OVlav369VFZWJv+rqamRlzHjfkZNu5hlP/Poo49KGzZskEpKSqR//etf0qOPPipZLBZpzZo1kiSZM14kSZJMn7BIkiS9/vrrUvfu3aWYmBhp1KhR0tatW+W/XXvttdKMGTN8ln///felyy67TIqJiZEGDhworVq1KsI1jgwl7TJ37lx52dTUVGnKlCnSzp07dai1try34l78z9sWM2bMkK699toWZYYOHSrFxMRIvXv3lhYvXhzxekeC0rZ57rnnpEsvvVSKi4uTOnXqJI0bN05at26dPpXXkL82AeATB2bcz6hpF7PsZ+677z6pR48eUkxMjNS1a1fphhtukJMVSTJnvEiSJFkkSZIi159DREREpJypx7AQERGRMTBhISIiIuExYSEiIiLhMWEhIiIi4TFhISIiIuExYSEiIiLhMWEhIiIi4TFhISIiIuExYSEiIiLhMWEhIqGNGzcOc+fO1bsaRKQzJixEREQkPD5LiIiENXPmTLzzzjs+75WUlKBnz576VIiIdMOEhYiEVVlZicmTJ+OKK67AggULAABdu3aFzWbTuWZEFGl2vStARBRIcnIyYmJikJCQgLS0NL2rQ0Q64hgWIiIiEh4TFiIiIhIeExYiElpMTAzcbrfe1SAinTFhISKh9ezZE19//TUOHz6M06dPw+Px6F0lItIBExYiEtpDDz0Em82GAQMGoGvXrigtLdW7SkSkA97WTERERMJjDwsREREJjwkLERERCY8JCxEREQmPCQsREREJjwkLERERCY8JCxEREQmPCQsREREJjwkLERERCY8JCxEREQmPCQsREREJjwkLERERCe//A41PliyFjdW9AAAAAElFTkSuQmCC\n"},"metadata":{}}],"source":["#@title CDAC Simulation\n","!ngspice -b sscs-chipathon-sar-adc/spice/cdac.spice &> /dev/null\n","import math\n","import pandas as pd\n","import matplotlib.pyplot as plt\n","df = pd.read_csv(\"output.txt\", delim_whitespace=True, header=None)\n","df.columns = [\"t\", \"V(out)\", \"V(d1)\", \"V(d2)\", \"V(d3)\", \"V(d4)\", \"V(d5)\" ,\"V(d6)\"]\n","df.plot(x=\"t\", y=\"V(out)\", grid=True)\n","df[\"ytarget\"] = df[\"V(d1)\"] + df[\"V(d2)\"] + df[\"V(d3)\"] + df[\"V(d4)\"] + df[\"V(d5)\"] + df[\"V(d6)\"]\n","df.plot(x=\"t\", y=\"ytarget\", grid=True)\n","plt.show()"]},{"cell_type":"markdown","metadata":{"id":"_5Pg-YCXPJE_"},"source":["## III. Summary of your Idea\n","\n","This is where you summarize your work. Comparison tables and a description of your expected results should be listed here."]},{"cell_type":"markdown","metadata":{"id":"llYW0-ATPJE_"},"source":["## IV. Planification and Tasks\n","\n","Team members are divided in subgroups dedicated to each module of the ADC, the next steps for each group would be focused in consolidating the simulations to caracterize each part of the system and put it to the max capacity. Then each group will draw the layouts of each block."]}],"metadata":{"colab":{"provenance":[]},"kernelspec":{"display_name":"Python 3.9.13 64-bit","language":"python","name":"python3"},"language_info":{"name":"python","version":"3.9.13"},"vscode":{"interpreter":{"hash":"397704579725e15f5c7cb49fe5f0341eb7531c82d19f2c29d197e8b64ab5776b"}}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file